US 20200264881A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2020/0264881 A1l

Drego et al.

43) Pub. Date: Aug. 20, 2020

(54)

(71)
(72)

@
(22)

(60)

SYSTEMS AND METHODS FOR
IMPLEMENTING CORE LEVEL
PREDICATION WITHIN A MACHINE
PERCEPTION AND DENSE ALGORITHM
INTEGRATED CIRCUIT

Applicant: quadric.io, Inc., Burlingame, CA (US)

Inventors: Nigel Drego, San Carlos, CA (US);
Ananth Durbha, San Carlos, CA (US);
Aman Sikka, San Carlos, CA (US);
Mrinalini Ravichandran, San Carlos,
CA (US); Daniel Firu, San Carlos, CA
(US); Veerbhan Kheterpal, San Carlos,

CS (US)
Appl. No.: 16/793,166
Filed: Feb. 18, 2020

Related U.S. Application Data

Provisional application No. 62/807,588, filed on Feb.
19, 2019.

Publication Classification

(51) Int. CL
GOGF 9/30 (2006.01)
GOGF 9/38 (2006.01)
(52) US.CL
CPC ... GOGF 9/30134 (2013.01); GOGF 9/3838
(2013.01); GOGF 9/30101 (2013.01)
(57) ABSTRACT

Systems and methods for implementing an integrated circuit
with core-level predication includes: a plurality of process-
ing cores of an integrated circuit, wherein each of the
plurality of cores includes: a predicate stack defined by a
plurality of single-bit registers that operate together based on
one or more of logical connections and physical connections
of the plurality of single-bit registers, wherein: the predicate
stack of each of the plurality of processing cores includes a
top of stack single-bit register of the plurality of single-bit
registers having a bit entry value that controls whether select
instructions to the given processing core of the plurality of
processing cores is executed.

100
Register File
130
140
:' T T T T T T T T T T Tiftegrated Circtit Aray 105 !
| 1
1
149 120 120 120 120 120 120 120 120 |,
1 1
1 1
1 1
149 : 120 120 120 120 120 120 120 120 :
| 1
1 !
1 1
149 1| 120 120 110 110 110 110 120 120 |1
1 !
1 1
| 1
149 : 120 120 110 110 110 110 120 120 :
O N 1 1
> | & 1
149 : 120 120 110 110 110 110 120 120 :
: | | | [< |
--116 !
I I I] | I
| I
148 1 120 120 110 110 110 110 120 120 :
1
1 |
1 1
1
148 : 120 120 120 120 120 120 120 120 |
1 1
1 1
1 1
149 : 120 120 120 120 120 120 120 120 :
A : S RRECEEE L !

v

Aug. 20,2020 Sheet 1 of 6 US 2020/0264881 Al

Patent Application Publication

100

Register File

130

651

120

120

120

120

120

120

120

120

651

120

120

110

110

110

<--116

110

120

120

651

120

120

110

110

110

110

120

120

651

120

120

110

110

110

110

120

120

651

Integrated Circuit Array 105

120

120

110

110

110

110

120

120

651

120

120

120

120

120

120

120

120

651

(i1 i1 r i i1 1 I

651

155

157

vy

160

150

145

147

FIGURE 1

Patent Application Publication

122

1
114

ty

122

H

122

120

Aug. 20,2020 Sheet 2 of 6

US 2020/0264881 Al

"~

112
< - =
|| = 118 = || +—]| =
114
114
— v 112 = || —— v
— 5l 118 | —l| —
114
122
—> —>

/

FIGURE 2

112

143"

114

114

112

141"

118

114

122

Patent Application Publication

170

GPCP unit(s) 171

|
|
|
175 1
|
|

Single Composition Instructions

Aug. 20,2020 Sheet 3 of 6 US 2020/0264881 Al

FIGURE 3A

Memory

130

Microprocessor

132

134

1
Compute

\/

Data Transfer

v

Single Composition Instructions

'

FIGURE 3B

Patent Application Publication Aug. 20, 2020 Sheet 4 of 6 US 2020/0264881 A1

400
[Configuring a Predicate Stack S410 }
{ Setting a Controlling Bit S420]
4 N
Implementing a Predicate Stack S430
4)
Implementing a Non-Nested Condition S432
\. J
4 N
Implementing a Nested Condition S434
. J/
4 N
Implementing Loop Instructions S436
_ J/
N
Implementing Nested Loops S438
J
\\ J
i Implementing a Global Enablement S440 i

FIGURE 4

Patent Application Publication

predicate condition

row < reference value

1111111111111

0]1111111111111111

predelse 1

predpop 1

1111111111111

FIGURE 5

Aug. 20,2020 Sheet 5 of 6 US 2020/0264881 Al

predicate stack

0]1111111111111111

1111111111111

Patent Application Publication

Aug. 20,2020 Sheet 6 of 6

row < reference value

S

1111111111111

\

[O1111111111111111

\

O111111111111111

\

1111111111111

\

1111111111111

\pmdpo,ﬂ/

0
0j111111111111111

US 2020/0264881 Al

Nested Condition

predelse 1 l
Attt 111111111
row < reference value
[11]111114111111141

1111111111111

predelse 2 l

l

[01111111111111111

ARIERRRRRRRRRERE

predpop 2 \ /

A1t 11111111

1111111111111

FIGURE 6

US 2020/0264881 Al

SYSTEMS AND METHODS FOR
IMPLEMENTING CORE LEVEL
PREDICATION WITHIN A MACHINE
PERCEPTION AND DENSE ALGORITHM
INTEGRATED CIRCUIT

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/807,588, filed 19 Feb. 2019,
which is incorporated in its entirety by this reference.

TECHNICAL FIELD

[0002] The one or more inventions described herein relate
generally to the integrated circuitry field, and more specifi-
cally to a new and useful perception and dense algorithm
processing integrated circuitry architecture in the integrated
circuitry field.

BACKGROUND

[0003] Modern applications of artificial intelligence and
generally, machine learning appear to be driving innovations
in robotics and specifically, in technologies involving
autonomous robotics and autonomous vehicles. Also, the
developments in machine perception technology have
enabled the abilities of many of the implementations in the
autonomous robotics’ and autonomous vehicles’ spaces to
perceive vision, perceive hearing, and perceive touch among
many other capabilities that allow machines to comprehend
their environments.

[0004] The underlying perception technologies applied to
these autonomous implementations include a number of
advanced and capable sensors that often allow for a rich
capture of environments surrounding the autonomous robots
and/or autonomous vehicles. However, while many of these
advanced and capable sensors may enable a robust capture
of the physical environments of many autonomous imple-
mentations, the underlying processing circuitry that may
function to process the various sensor signal data from the
sensors often lack in corresponding robust processing capa-
bilities sufficient to allow for high performance and real-
time computing of the sensor signal data.

[0005] The underlying processing circuitry often include
general purpose integrated circuits including central pro-
cessing units (CPUs) and graphic processing units (GPU). In
many applications, GPUs are implemented rather than CPUs
because GPUs are capable of executing bulky or large
amounts of computations relative to CPUs. However, the
architectures of most GPUs are not optimized for handling
many of the complex machine learning algorithms (e.g.,
neural network algorithms, etc.) used in machine perception
technology. For instance, the autonomous vehicle space
includes multiple perception processing needs that extend
beyond merely recognizing vehicles and persons. Autono-
mous vehicles have been implemented with advanced sensor
suites that provide a fusion of sensor data that enable route
or path planning for autonomous vehicles. But, modern
GPUs are not constructed for handling these additional high
computation tasks.

[0006] At best, to enable a GPU or similar processing
circuitry to handle additional sensor processing needs
including path planning, sensor fusion, and the like, addi-
tional and/or disparate circuitry may be assembled to a

Aug. 20, 2020

traditional GPU. This fragmented and piecemeal approach
to handling the additional perception processing needs of
robotics and autonomous machines results in a number of
inefficiencies in performing computations including ineffi-
ciencies in sensor signal processing.

[0007] Accordingly, there is a need in the integrated
circuitry field for an advanced integrated circuit that is
capable of high performance and real-time processing and
computing of routine and advanced sensor signals for
enabling perception of robotics or any type or kind of
perceptual machine.

[0008] The inventors of the inventions described in the
present application have designed an integrated circuit archi-
tecture that allows for enhanced sensor data processing
capabilities and have further discovered related methods for
implementing the integrated circuit architecture for several
purposes including for enabling perception of robotics and
various machines.

SUMMARY OF THE INVENTION(S)

[0009] In one embodiment, a system for implementing an
integrated circuit with core-level predication includes a
plurality of processing cores of an integrated circuit, wherein
each of the plurality of cores includes: a predicate stack
defined by a plurality of single-bit registers that operate
together based on one or more of logical connections and
physical connections of the plurality of single-bit registers,
wherein: the predicate stack of each of the plurality of
processing cores includes a top of stack single-bit register of
the plurality of single-bit registers having a bit entry value
that controls whether select instructions to the given pro-
cessing core of the plurality of processing cores are
executed.

[0010] In one embodiment, instructions push a result of a
conditional clause onto the predicate stack of the given
processing core of the plurality of processing cores; if the
conditional clause evaluates to TRUE, based on a compari-
son of distinct values of the conditional clause, the given
processing core executes an instruction of the conditional
clause.

[0011] In one embodiment, instructions push a result of a
conditional clause onto the predicate stack of the given
processing core of the plurality of processing cores; if the
conditional clause evaluates to FALSE, based on a compari-
son of distinct values of the conditional clause, the given
processing core bypasses an instruction of the conditional
clause and selectively executes or not a distinct instruction
clause.

[0012] In one embodiment, each of the plurality of single-
bit registers of the predicate stack is initialized to a value of
1 according to i/0 binary system; if the conditional clause
evaluates to FALSE, based on a comparison of distinct
values of the conditional clause, a bit entry value of 0 is
pushed to a top of the predicate stack.

[0013] In one embodiment, the given processing core
selects to execute instructions of a predicated ELSE clause
over instructions of an IF clause of the conditional clause
based on the bit entry value of the top of the predicate stack
being pushed to 0.

[0014] Inoneembodiment, if the conditional clause evalu-
ates to FALSE, based on a comparison of distinct values of
data of the conditional clause: (i) a bit entry value of a top
of the predicate stack of a given processing core of the
plurality of processing cores is pushed to 0; and (ii) the given

US 2020/0264881 Al

processing core selects to execute instructions of an alter-
native instruction over instructions of an IF clause of the
conditional clause, wherein an execution of the alternative
instructions flips the bit entry value of the top of the
predicate stack from 0 to 1.

[0015] Inone embodiment, in response to executing or not
executing the select instructions at the given processing
core, executing by the given processing core a predicated
pop instruction that pops the bit entry value from the top of
the predicate stack and exposes a bit entry value of a bit
entry that was previously below the top of stack.

[0016] Inone embodiment, instructions pushing a result of
a conditional clause onto the predicate stack of the given
processing core include a nested conditional clause; a coun-
ter of the given processing core tracks a depth of the nested
conditional clause within a body of the instructions; and
instructions affecting a predicate stack of the nested condi-
tional clause include a value of the counter associated with
the depth of the nested conditional clause.

[0017] In one embodiment, the given processing cores
executes instructions of a loop body; a conditional loop
break if evaluated to TRUE causes an execution of a disable
instruction that stops an execution of the instructions of the
loop body by the given processing core and that disables the
given processing core.

[0018] In one embodiment, the execution of the disable
instruction changes a bit entry value of an enable bit of the
given processing core from 1 to 0 according to a 1/0 binary
system; a subsequent execution of an enable instruction
paired with the disable instruction causes a re-enablement of
the given processing core and changes the bit entry value of
the enable bit from 0 to 1.

[0019] In one embodiment, the given processing core
executes instructions of a nested loop body; a counter of the
given processing core tracks a depth of the nested loop body;
and instructions affecting the nested loop body include a
value of the counter associated with the depth of the nested
loop body.

[0020] In one embodiment, a conditional loop break hav-
ing the value of the counter tracking the depth of nested loop
body, if evaluated to TRUE causes an execution of a disable
instruction that stops an execution of the instructions of the
nested loop body by the given processing core and that
disables the given processing core.

[0021] In one embodiment, a subsequent execution of an
enable instruction having the value of the counter tracking
the depth of nested loop body paired with the disable
instruction causes a re-enablement of the given processing
core.

[0022] In one embodiment, the given processing cores
executes instructions of a loop body; a conditional loop
continue if evaluated to TRUE causes an execution of an
idling instruction that pauses an execution of a remainder of
instructions of a current iteration of the loop body by the
given processing core and that idles the given processing
core.

[0023] In one embodiment, executing an enable instruc-
tion at an end of instructions within the loop body; at a
subsequent iteration of the loop body, re-enabling the given
processing core based on the execution of the enable instruc-
tion and executing instructions of the subsequent iteration of
the loop body.

[0024] In one embodiment, if it is determined that a subset
or all the plurality of processing cores are in a disabled state,

Aug. 20, 2020

a dispatcher forces a skip to an end of instructions at the
subset or all the plurality of processing cores and executes
an enable instruction that changes a value of an enable bit
from 0 to 1 to enable the subset or all the plurality of
processing cores.

[0025] Inone embodiment, a method for implementing an
integrated circuit with core-level predication includes imple-
menting a plurality of processing cores of an integrated
circuit, wherein each of the plurality of cores includes: a
predicate stack defined by a plurality of single-bit registers
that operate together based on one or more of logical
connections and physical connections of the plurality of
single-bit registers, wherein: the predicate stack of each of
the plurality of processing cores includes a top of stack
single-bit register of the plurality of single-bit registers
having a bit entry value that controls whether select instruc-
tions to the given processing core of the plurality of pro-
cessing cores are executed.

[0026] Inone embodiment, the method includes pushing a
result of a conditional clause onto the predicate stack of the
given processing core of the plurality of processing cores; if
the conditional clause evaluates to TRUE, based on a
comparison of distinct values of the conditional clause,
executing by the given processing core an instruction of the
conditional clause.

[0027] Inone embodiment, the method includes pushing a
result of a conditional clause onto the predicate stack of the
given processing core of the plurality of processing cores; if
the conditional clause evaluates to FALSE, based on a
comparison of distinct values of the conditional clause,
bypassing by the given processing core an instruction of the
conditional clause and selectively executing or not a distinct
instruction clause.

[0028] In one embodiment, the method includes initializ-
ing each of the plurality of single-bit registers of the predi-
cate stack to a value of 1 according to i/o binary system; if
the conditional clause evaluates to FALSE, based on a
comparison of distinct values of the conditional clause,
pushing a bit entry value of 0 onto of a top of the predicate
stack of the given processing core of the plurality of pro-
cessing cores.

BRIEF DESCRIPTION OF THE FIGURES

[0029] FIG. 1 illustrates a schematic of a system 100 in
accordance with one or more embodiments of the present
application;

[0030] FIG. 2 illustrates a detailed schematic of a segment
of the integrated circuit array 105 in accordance with one or
more embodiments of the present application;

[0031] FIG. 3A illustrates a schematic of an instructions
generator in accordance with one or more embodiments of
the present application;

[0032] FIG. 3B illustrates a schematic of an integrated
circuit controller in accordance with one or more embodi-
ments of the present application; and

[0033] FIG. 4 illustrates a method 400 for implementing a
predicate stack in accordance with one or more embodi-
ments of the present application; and

[0034] FIG. 5 illustrates a schematic of a predicate stack
having a non-nested condition in accordance with one or
more embodiments of the present application; and

[0035] FIG. 6 illustrates a schematic of a predicate stack
having nested condition in accordance with one or more
embodiments of the present application.

US 2020/0264881 Al

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0036] The following description of preferred embodi-
ments of the present application are not intended to limit the
inventions to these preferred embodiments, but rather to
enable any person skilled in the art of to make and use these
inventions.

1. Overview

[0037] As discussed above in the background section, the
state of the art in integrated circuit architecture lacks a
suitable solution for handling the multitude of perception
processing tasks of robotics and autonomous machines.
While GPUs may be modified with additional and/or dis-
parate circuitry to perform some of these perception pro-
cessing requirements of robotics and autonomous machines,
significant gaps in a GPU’s processing capabilities exist
such that the resulting performance is low and not in
real-time. Other perception processing circuits may exist
including neural network-specific processors, computer-vi-
sion-specific processors, and the like; however, none of
these provide a single comprehensive integrated circuit that
is capable of processing the many disparate perception
algorithms and computations needed for sensor acquisition,
sensor fusion, perception processing, path planning, and the
like.

[0038] Accordingly, one or more embodiments of the
present application function to provide a comprehensive
optimized compute platform for processing perception algo-
rithms, perception data (e.g., sensor data and the like), and
various perception processing requirements of robotics and
autonomous machines. In preferred embodiments, the opti-
mized compute platform may be implemented as a high
performance and real-time processing dense algorithm pro-
cessing unit (DAPU) and/or perception processing unit
(PPU). In one or more implementations, the integrated
circuit disclosed in the various embodiments of the present
application includes an array core having a plurality of
disparate processing elements and data flow and storage
elements that operate to form a mesh architecture enabling
the movement of data among and between many combina-
tions of processing elements within the array core.

[0039] The mesh architecture defined by the plurality of
processing elements in the array core preferably enable
in-memory computing and data movement, as described in
U.S. Pat. No. 10,365,860, U.S. patent application Ser. No.
16/292,537, U.S. Provisional Application Nos. 62/649,551
and 62/649,551, which are all incorporated herein in their
entireties by this reference and further, enable a core-level
predication.

II. A System Architecture of a Dense Algorithm and/or
Perception Processing Circuit (Unit)

[0040] As shown in FIG. 1, the integrated circuit 100
(dense algorithm and/or perception processing unit) for
performing perception processing includes a plurality of
array cores 110, a plurality of border cores 120, a dispatcher
(main controller) 130, a first plurality of periphery control-
lers 140, a second plurality of periphery controllers 150, and
main memory 160. The integrated circuit 100 may addition-
ally include a first periphery load store 145, a second
periphery load store 155, a first periphery memory 147, a
second periphery memory 157, a first plurality of dual FIFOs
149, and a second plurality of dual FIFOs 159.

Aug. 20, 2020

[0041] The integrated circuit 100 preferably functions to
enable real-time and high computing efficiency of percep-
tion data and/or sensor data. A general configuration of the
integrated circuit 100 includes a plurality of array core 110
defining central signal and data processing nodes each
having large register files that may eliminate or significantly
reduce clock cycles needed by an array core 110 for pulling
and pushing data for processing from memory. The instruc-
tions (i.e., computation/execution and data movement
instructions) generating capabilities of the integrated circuit
100 (e.g., via the dispatcher 130 and/or a compiler module
175) functions to enable a continuity and flow of data
throughout the integrated circuit 100 and namely, within the
plurality of array cores 110 and border cores 120.

[0042] An array core 110 preferably functions as a data or
signal processing node (e.g., a small microprocessor) or
processing circuit and preferably, includes a register file 112
having a large data storage capacity (e.g., 1024 kb, etc.) and
an arithmetic logic unit (ALU) 118 or any suitable digital
electronic circuit that performs arithmetic and bitwise opera-
tions on integer binary numbers. In a preferred embodiment,
the register file 112 of an array core 110 may be the only
memory element that the processing circuits of an array core
110 may have direct access to. An array core 110 may have
indirect access to memory outside of the array core and/or
the integrated circuit array 105 (i.e., core mesh) defined by
the plurality of border cores 120 and the plurality of array
cores 110.

[0043] The register file 112 of an array core 110 may be
any suitable memory element or device, but preferably
comprises one or more static random-access memories
(SRAMs). The register file 112 may include a large number
of registers, such as 1024 registers, that enables the storage
of a sufficiently large data set for processing by the array
core no. Accordingly, a technical benefit achieved by an
arrangement of the large register file 112 within each array
core 110 is that the large register file 112 reduces a need by
an array core 110 to fetch and load data into its register file
112 for processing. As a result, a number of clock cycles
required by the array core 112 to push data into and pull data
out of memory is significantly reduced or eliminated alto-
gether. That is, the large register file 112 increases the
efficiencies of computations performed by an array core 110
because most, if not all, of the data that the array core no is
scheduled to process is located immediately next to the
processing circuitry (e.g., one or more MACs, ALU, etc.) of
the array core no. For instance, when implementing image
processing by the integrated circuit 100 or related system
using a neural network algorithm(s) or application(s) (e.g.,
convolutional neural network algorithms or the like), the
large register file 112 of an array core may function to enable
a storage of all the image data required for processing an
entire image. Accordingly, most or if not, all layer data of a
neural network implementation (or similar compute-inten-
sive application) may be stored locally in the large register
file 112 of an array core 110 with the exception of weights
or coeflicients of the neural network algorithm(s), in some
embodiments. Accordingly, this allows for optimal utiliza-
tion of the computing and/or processing elements (e.g., the
one or more MACs and ALU) of an array core no by
enabling an array core no to constantly churn data of the
register file 112 and further, limiting the fetching and loading
of data from an off-array core data source (e.g., main
memory, periphery memory, etc.).

US 2020/0264881 Al

[0044] By comparison, to traverse a register file in a
traditional system implemented by a GPU or the like, it is
typically required that memory addresses be issued for
fetching data from memory. However, in a preferred
embodiment that implements the large register file 112, the
(raw) input data within the register file 112 may be auto-
matically incremented from the register file 112 and data
from neighboring core(s) (e.g., array cores and/or border
cores) are continuously sourced to the register file 112 to
enable a continuous flow to the computing elements of the
array core 110 without an express need to make a request (or
issuing memory addresses) by the array core 110.

[0045] While in some embodiments of the present appli-
cation, a predetermined data flow scheduled may mitigate or
altogether, eliminate requests for data by components within
the integrated circuit array 105, in a variant of these embodi-
ments traditional random memory access may be achieved
by components of the integrated circuit array 105. That is, if
an array core 110 or a border core 120 recognizes a need for
a random piece of data for processing, the array core 110
and/or the border 120 may make a specific request for data
from any of the memory elements within the memory
hierarchy of the integrated circuit 100.

[0046] An array core 110 may, additionally or alterna-
tively, include a plurality of multiplier (multiply) accumu-
lators (MACs) 114 or any suitable logic devices or digital
circuits that may be capable of performing multiply and
summation functions. In a preferred embodiment, each array
core 110 includes four (4) MACs and each MAC 114 may
be arranged at or near a specific side of a rectangular shaped
array core 110, as shown by way of example in FIG. 2.
While, in a preferred embodiment each of the plurality of
MACs 114 of an array core 110 may be arranged near or at
the respective sides of the array core no, it shall be known
that the plurality of MACs 114 may be arranged within (or
possibly augmented to a periphery of an array core) the array
core 110 in any suitable arrangement, pattern, position, and
the like including at the respective corners of an array core
no. In a preferred embodiment, the arrangement of the
plurality of MACs 114 along the sides of an array core no
enables efficient inflow or capture of input data received
from one or more of the direct neighboring cores (i.e., an
adjacent neighboring core) and the computation thereof by
the array core 110 of the integrated circuit 100.

[0047] Accordingly, each of the plurality of MACs 114
positioned within an array core 110 may function to have
direct communication capabilities with neighboring cores
(e.g., array cores, border cores, etc.) within the integrated
circuit 100. The plurality of MACs 114 may additionally
function to execute computations using data (e.g., operands)
sourced from the large register file 112 of an array core no.
However, the plurality of MACs 114 preferably function to
source data for executing computations from one or more of
their respective neighboring core(s) and/or a weights or
coeflicients (constants) bus 116 that functions to transfer
coefficient or weight inputs of one or more algorithms
(including machine learning algorithms) from one or more
memory elements (e.g., main memory 160 or the like) or one
or more input sources.

[0048] The weights bus 116 may be operably placed in
electrical communication with at least one or more of
periphery controllers 140, 150 at a first input terminal and
additionally, operably connected with one or more of the
plurality of array core 110. In this way, the weight bus 116

Aug. 20, 2020

may function to collect weights and coefficients data input
from the one or more periphery controllers 140, 150 and
transmit the weights and coeflicients data input directly to
one or more of the plurality of array cores 110. Accordingly,
in some embodiments, multiple array cores 110 may be fed
weights and/or coefficients data input via the weights bus
116 in parallel to thereby improve the speed of computation
of the array cores 110.

[0049] Each array core 110 preferably functions to bi-
directionally communicate with its direct neighbors. That is,
in some embodiments, a respective array core 110 may be
configured as a processing node having a rectangular shape
and arranged such that each side of the processing node may
be capable of interacting with another node (e.g., another
processing node, a data storage/movement node, etc.) that is
positioned next to one of the four sides or each of the faces
of the array core 110. The ability of an array core 110 to
bi-directionally communicate with a neighboring core along
each of its sides enables the array core 110 to pull in data
from any of its neighbors as well as push (processed or raw)
data to any of its neighbors. This enables a mesh commu-
nication architecture that allows for efficient movement of
data throughout the collection of array and border cores 110,
120 of the integrated circuit 100.

[0050] Each of'the plurality of border cores 120 preferably
includes a register file 122. The register file 122 may be
configured similar to the register file 112 of an array core 110
in that the register file 122 may function to store large
datasets. Preferably, each border core 120 includes a sim-
plified architecture when compared to an array core 110.
Accordingly, a border core 120 in some embodiments may
not include execution capabilities and therefore, may not
include multiplier-accumulators and/or an arithmetic logic
unit as provided in many of the array cores no.

[0051] Inatraditional integrated circuit (e.g., a GPU or the
like), when input image data (or any other suitable sensor
data) received for processing compute-intensive application
(e.g., neural network algorithm) within such a circuit, it may
be necessary to issue padding requests to areas within the
circuit which do not include image values (e.g., pixel values)
based on the input image data. That is, during image
processing or the like, the traditional integrated circuit may
function to perform image processing from a memory ele-
ment that does not contain any image data value. In such
instances, the traditional integrated circuit may function to
request that a padding value, such as zero, be added to the
memory element to avoid subsequent image processing
efforts at the memory element without an image data value.
A consequence of this typical image data processing by the
traditional integrated circuit results in a number of clock
cycles spent identifying the blank memory element and
adding a computable value to the memory element for image
processing or the like by the traditional integrated circuit.
[0052] In a preferred implementation of the integrated
circuit 100, one or more of the plurality of border cores 120
may function to automatically set to a default value when no
input data (e.g., input sensor data) is received. For instance,
input image data from a sensor (or another circuit layer) may
have a total image data size that does not occupy all border
core cells of the integrated circuit array 105. In such
instance, upon receipt of the input image data, the one or
more border cores 120 (i.e., border core cells) without input
image data may be automatically set to a default value, such
as zero or a non-zero constant value.

US 2020/0264881 Al

[0053] In some embodiments, the predetermined input
data flow schedule generated by the dispatcher and sent to
one or more of the plurality of border cores may include
instructions to set to a default or a predetermined constant
value. Additionally, or alternatively, the one or more border
cores 120 may be automatically set to a default or a
predetermined value when it is detected that no input sensor
data or the like is received with a predetermined input data
flow to the integrated circuit array 105. Additionally, or
alternatively, in one variation, the one or more border cores
120 may be automatically set to reflect values of one or more
other border cores having input sensor data when it is
detected that no input sensor data or the like is received with
a predetermined input data flow to the integrated circuit
array 105.

[0054] Accordingly, a technical benefit achieved accord-
ing to the implementation of one or more of the plurality of
border cores 120 as automatic padding elements, may
include increasing efficiencies in computation by one or
more of the plurality of array cores 110 by minimizing work
requests to regions of interest (or surrounding areas) of input
sensor data where automatic padding values have been set.
Thereby, reducing clock cycles used by the plurality of array
core 110 in performing computations on an input dataset.

[0055] In a preferred implementation of the integrated
circuit 100, the progression of data into the plurality of array
cores no and the plurality of border cores 120 for processing
is preferably based on a predetermined data flow schedule
generated at the dispatcher 130. The predetermined data
flow schedule enables input data from one or more sources
(e.g., sensors, other NN layers, an upstream device, etc.) to
be loaded into the border cores 120 and array cores 110
without requiring an explicit request for the input data from
the border cores 120 and/or array cores 110. That is, the
predetermined data flow schedule enables an automatic flow
of raw data from memory elements (e.g., main memory 160)
of the integrated circuit 100 to the plurality of border cores
120 and the plurality of array cores 110 having capacity to
accept data for processing. For instance, in the case that an
array core 110 functions to process a first subset of data of
a data load stored in its register file 112, once the results of
the processing of the first subset of data is completed and
sent out from the array core 110, the predetermined data flow
schedule may function to enable an automatic flow of raw
data into the array core 110 that adds to the data load at the
register file 112 and replaces the first subset of data that was
previously processed by the array core 110. Accordingly, in
such instance, no explicit request for additional raw data for
processing is required from the array core 110. Rather, the
integrated circuit 100 implementing the dispatcher 130 may
function to recognize that once the array core 110 has
processed some amount of data sourced from its register file
112 (or elsewhere) that the array core 110 may have addi-
tional capacity to accept additional data for processing.

[0056] In a preferred embodiment, the integrated circuit
100 may be in operable communication with an instructions
generator 170 that functions to generate computation, execu-
tion, and data movement instructions, as shown by way of
example in FIG. 3A. The instructions generator 170 may be
arranged off-chip relative to the components and circuitry of
the integrated 100. However, in alternative embodiments,
the instructions generator 170 may be cooperatively inte-
grated within the integrated circuit 100 as a distinct or
integrated component of the dispatcher 130.

Aug. 20, 2020

[0057] Preferably, the instructions generator 170 may be
implemented using one or more general purpose computers
(e.g., a Mac computer, Linux computer, or any suitable
hardware computer) or general purpose computer process-
ing (GPCP) units 171 that function to operate a compiler
module 175 that is specifically configured to generate mul-
tiple and/or disparate types of instructions. The compiler
module 175 may be implemented using any suitable com-
piler software (e.g., a GNU Compiler Collection (GCC), a
Clang compiler, and/or any suitable open source compiler or
other compiler). The compiler module 175 may function to
generate at least computation instructions and execution
instructions as well as data movement instructions. In a
preferred embodiment, at compile time, the compiler mod-
ule 175 may be executed by the one or more GPCP units 171
to generate the two or more sets of instructions computation/
execution instructions and data movement instructions
sequentially or in parallel. In some embodiments, the com-
piler module 175 may function to synthesize multiple sets of
disparate instructions into a single composition instruction
set that may be loaded into memory (e.g., instructions buffer,
an external DDR, SPI flash memory, or the like) from which
the dispatcher may fetch the single composition instruction
set from and execute.

[0058] In a first variation, however, once the compiler
module 175 generates the multiple disparate sets of instruc-
tions, such as computation instructions and data movement
instructions, the instructions generator 170 may function to
load the instructions sets into a memory (e.g., memory 160
or off-chip memory associated with the generator 170). In
such embodiments, the dispatcher 130 may function to fetch
the multiple sets of disparate instructions generated by the
instructions generator 170 from memory and synthesize the
multiple sets of disparate instructions into a single compo-
sition instruction set that the dispatcher may execute and/or
load within the integrated circuit 100.

[0059] In a second variation, the dispatcher 130 may be
configured with compiling functionality to generate the
single composition instruction set. In such variation, the
dispatcher 130 may include processing circuitry (e.g.,
microprocessor or the like) that function to create instruc-
tions that include scheduled computations or executions to
be performed by various circuits and/or components (e.g.,
array core computations) of the integrated circuit 100 and
further, create instructions that enable a control a flow of
input data through the integrated circuit 100. In some
embodiments, the dispatcher 130 may function to execute
part of the instructions and load another part of the instruc-
tions into the integrated circuit array 105. In general, the
dispatcher 130 may function as a primary controller of the
integrated circuit 100 that controls and manages access to a
flow (movement) of data from memory to the one or more
other storage and/or processing circuits of the integrated
circuit 100 (and vice versa). Additionally, the dispatcher 130
may schedule control execution operations of the various
sub-controllers (e.g., periphery controllers, etc.) and the
plurality of array cores 110.

[0060] As shown by way of example in FIG. 3B, in some
embodiments, the processing circuitry of the dispatcher 130
includes disparate circuitry including a compute instruction
generator circuit 132 and a data movement instructions
generator circuit 134 (e.g., address generation unit or
address computation unit) that may independently generate
computation/execution instructions and data transfers/

US 2020/0264881 Al

movements schedules or instructions, respectively. Accord-
ingly, this configuration enables the dispatcher 130 to per-
form data address calculation and generation of
computation/execution instructions in parallel. The dis-
patcher 130 may function to synthesize the output from both
the computer instructions generator circuit 132 and the data
movement instructions generator circuit 134 into a single
instructions composition that combines the disparate out-
puts.

[0061] The single instructions composition generated by
the instructions generator 170 and/or the dispatcher 130 may
be provided to the one or more downstream components and
integrated circuit array 105 and allow for computation or
processing instructions and data transfer/movement instruc-
tions to be performed simultaneously by these various
circuits or components of the integrated circuit 100. With
respect to the integrated circuit array 105, the data move-
ment component of the single instructions composition may
be performed by one or more of periphery controllers 140,
150 and compute instructions by one or more of the plurality
of array cores 110. Accordingly, in such embodiment, the
periphery controllers 140, 150 may function to decode the
data movement component of the instructions and if
involved, may perform operations to read from or write to
the dual FIFOs 149, 159 and move that data from the dual
FIFOs 149, 159 onto a data bus to the integrated circuit (or
vice versa). It shall be understood that the read or write
operations performed by periphery controllers 140, 150 may
performed sequentially or simultaneously (i.e., writing to
and reading from dual FIFOs at the same time).

[0062] It shall be noted that while the compute instructions
generator circuit 132 and the data movement instructions
generator circuit 134 are preferably separate or independent
circuits, in some embodiments the compute instructions
generator circuit 132 and the data movement instructions
generator circuit 134 may be implemented by a single circuit
or a single module that functions to perform both compute
instructions generation and data movement instruction gen-
eration.

[0063] In operation, the dispatcher 130 may function to
generate and schedule memory addresses to be loaded into
one or more the periphery load store 145 and the periphery
load store 155. The periphery load stores 145, 155 preferably
include specialized execution units that function to execute
all load and store instructions from the dispatcher 130 and
may generally function to load or fetch data from memory
or storing the data back to memory from the integrated array
core. The first periphery load store 145 preferably commu-
nicably and operably interfaces with both the first plurality
of dual FIFOs 149 and the first periphery memory 147. The
first and the second periphery memory 147, 157 preferably
comprise on-chip static random-access memory.

[0064] In configuration, the first periphery load store 145
may be arranged between the first plurality of dual FIFOs
149 and the first periphery memory 147 such that the first
periphery load store 145 is positioned immediately next to or
behind the first plurality of dual FIFOs 149. Similarly, the
second periphery load store 155 preferably communicably
and operably interfaces with both the second plurality of
dual FIFOs 159 and the second periphery memory 157.
Accordingly, the second periphery load store 155 may be
arranged between the second plurality of dual FIFOs 159
and the second periphery memory 157 such that the second

Aug. 20, 2020

periphery load store 155 is positioned immediately next to or
behind the second plurality of dual FIFOs 159.

[0065] In response to memory addressing instructions
issued by the dispatcher 130 to one or more of the first and
the second periphery load stores 145, 155, the first and the
second periphery load stores 145, 155 may function to
execute the instructions to fetch data from one of the first
periphery memory 147 and the second periphery memory
157 and move the fetched data into one or more of the first
and second plurality of dual FIFOs 149, 159. Additionally,
or alternatively, the dual FIFOs 149, 159 may function to
read data from a data bus and move the read data to one or
more of the respective dual FIFOs or read data from one or
more of the dual FIFOs and move the read data to a data bus.
Similarly, memory addressing instructions may cause one or
more of the first and the second periphery load stores 145,
155 to move data collected from one or more of the plurality
of dual FIFOs 149, 159 into one of the first and second
periphery memory 147, 157.

[0066] Each of the first plurality of dual FIFOs 149 and
each of the second plurality of dual FIFOs 159 preferably
comprises at least two memory elements (not shown). Pref-
erably, the first plurality of dual FIFOs 149 may be arranged
along a first side of the integrated circuit array 105 with each
of the first plurality of dual FIFOs 149 being aligned with a
row of the integrated circuit array 105. Similarly, the second
plurality of dual FIFOs 159 may be arranged along a second
side of the integrated circuit array 105 with each of the
second plurality of dual FIFOs 159 being aligned with a
column of the integrated circuit array 105. This arrangement
preferably enables each border 120 along the first side of the
integrated circuit array 105 to communicably and operably
interface with at least one of the first periphery controllers
145 and each border 120 along the second side of the
integrated circuit array 105 to communicably and operably
interface with at least one of the second periphery control-
lers 155.

[0067] While itis illustrated in at least FIG. 1 that there are
a first and second plurality of dual FIFOs, first and second
periphery controllers, first and second periphery memories,
and first and second load stores, it shall be noted that these
structures may be arranged to surround an entire periphery
of the integrated circuit array 105 such that, for instance,
these components are arranged along all (four) sides of the
integrated circuit array 105.

[0068] The dual FIFOs 149, 159 preferably function to
react to specific instructions for data from their respective
side. That is, the dual FIFOs 149, 159 may be configured to
identify data movement instructions from the dispatcher 130
that is specific to either the first plurality of dual FIFOs 149
along the first side or the second plurality of dual FIFOs
along the second side of the integrated circuit array 105.
[0069] According to a first implementation, each of the
dual FIFOs may use first of the two memory elements to
push data into the integrated circuit array 105 and second of
the two memory elements to pull data from the integrated
circuit array 105. Thus, each dual FIFO 149, 159 may have
a first memory element dedicated for moving data inward
into the integrated circuit array 105 and a second memory
element dedicated for moving data outward from the inte-
grated circuit array 105.

[0070] According to a second implementation, the dual
FIFOs may be operated in a stack (second) mode in which
each respective dual FIFO functions to provide data into the

US 2020/0264881 Al

integrated circuit array 105 in a predetermined sequence or
order and collect the data from the integrated circuit array
105 in the same predetermined sequence or order.

[0071] Additionally, the integrated circuit 100 preferably
includes main memory 160 comprising a single unified
memory. The main memory 160 preferably functions to
store data originating from one or more sensors, system-
derived or generated data, data from one or more integrated
circuit layers, data from one or more upstream devices or
components, and the like. Preferably, the main memory 160
comprises on-chip static random-access memory or the like.

[0072] Additionally, or alternatively, main memory 160
may include multiple levels of on-die (on-chip) memory. In
such embodiments, the main memory 160 may include
multiple memory (e.g., SRAM) elements that may be in
electrical communication with each other and function as a
single unified memory that is arranged on a same die as the
integrated circuit array 105.

[0073] Additionally, or alternatively, main memory 160
may include multiple levels of off-die (off-chip) memory
(not shown). In such embodiments, the main memory 160
may include multiple memory (e.g., DDR SRAM, high
bandwidth memory (HBM), etc.) elements that may be in
electrical communication with each other and function as a
single unified memory that is arranged on a separate die than
the integrated circuit array.

[0074] It shall be noted that in some embodiments, the
integrated circuit 100 includes main memory 160 compris-
ing memory arranged on-die and off-die. In such embodi-
ments, the on-diec and the off-die memory of the main
memory 160 may function as a single unified memory
accessible to the on-die components of the integrated circuit
100.

[0075] Each of the first periphery memory 147 and the
second periphery memory 157 may port into the main
memory 160. Between the first periphery memory 147 and
the main memory 160 may be arranged a load store unit that
enables the first periphery memory 147 to fetch data from
the main memory 160. Similarly, between the second
periphery memory 157 and the main memory 160 may be
arranged a second load store unit that enables the second
periphery memory 157 to fetch data from the main memory
160.

[0076] It shall be noted that the data transfers along the
memory hierarchy of the integrated circuit 100 occurring
between dual FIFOs 149, 159 and the load stores 145, 155,
between the load stores 145, 155 and the periphery memory
147, 157, and the periphery memory 147, 157 and the main
memory 160 may preferably be implemented as presched-
uled or predetermined direct memory access (DMA) trans-
fers that enable the memory elements and load stores to
independently access and transfer data within the memory
hierarchy without direct invention of the dispatcher 130 or
some main processing circuit. Additionally, the data trans-
fers within the memory hierarchy of the integrated circuit
100 may be implemented as 2D DMA transfers having two
counts and two strides thereby allowing for efficient data
access and data reshaping during transfers. In a preferred
embodiment, the DMA data transfers may be triggered by a
status or operation of one or more of the plurality of array
cores 110. For instance, if an array core is completing or has
completed a processing of first set of data, the completion or

Aug. 20, 2020

near-completion may trigger the DMA transfers to enable
additional data to enter the integrated circuit array 105 for
processing.

II1. Method for Core-Level Predication

[0077] As shown in FIG. 4, a method 400 for implement-
ing core-level predication within an integrated circuit
includes configuring a predicate stack for distinct processing
cores of an integrated circuit array S410, setting a control-
ling bit S420, implementing a predicate stack at each of a
plurality of distinct processing cores S430, and a re-enable-
ment of processing cores S440. Additionally, S430 may
include implementing a standard condition with a predicate
stack S432, implementing a nested condition with a predi-
cate stack S434, implementing a predicate stack and a loop
body S436, one or more nested loops and a predicate stack
S438.

[0078] It should be recognized that while each of S432,
S434, S436, and S438 describe one or more distinct embodi-
ments implementing a predicate stack, it may be possible in
some embodiments of the present application to combine the
one or more distinct embodiments of S432, S434, S436, and
S438 such that the same predicate stack may be imple-
mented in the combination of the distinct embodiments. For
instance, the same predicate stack may be implemented with
a standard condition, a nested condition, a loop, and a nested
loop.

[0079] The method 400 preferably enables a granular
control and/or manipulation of a plurality of distinct pro-
cessing cores of an array of processing cores within an
integrated circuit. In one or more embodiments of the
present application, attributes of various data and/or appli-
cations being handled by the array of processing cores
within the integrated circuit may inform or govern whether
a given processing core should execute a set of instructions
over other distinct sets of instructions to the given process-
ing core. In one or more embodiments, each of a plurality of
processing cores of an array of processing cores may simul-
taneously function to see all instructions to the array. In such
embodiments, only a subset of the instructions to the array
may be intended for a given processing core within the array.
Thus, to identify whether some portion of the instructions
should be processed by the given processing core, an evalu-
ation of a predicate condition may be performed and a result
of the evaluation (e.g., 1 or 0) may be pushed onto a
predicate stack that may inform a decision by the given
processing core to execute or not to execute a set of
instructions that may be accessible to the given processing
core.

[0080] Accordingly, one or more embodiments of the
present application may enable a selectivity of between
distinct sets of instructions based on an evaluation of a
condition at a given processing core. In these circumstances,
by setting or pushing one or more conditions to one or more
processing cores of the integrated circuit, the one or more
embodiments of the present application may function to
ensure that a given processing core executes only those
instructions that are intended for the given processing core
and avoids executing invalid instructions or the like. Thus,
in one or more embodiments of the present application, a
result of a predicate condition pushed to a hardware stack
within each of a plurality of processing cores within an array
of processing cores of an integrated circuit (e.g., integrated
circuit 100) may be set and/or may be controlled to allow

US 2020/0264881 Al

each respective processing core within the array to decide
which instructions of a plurality of instructions viewable by
the respective processing core should be executed thereby
improving an efficiency in computational performance of the
integrated circuit and a quality of outputs of the integrated
circuit.

4.1 Predication Default/Implementing a Core-Level
Predicate Stack

[0081] S410, which includes configuring a predicate stack
for distinct processing cores of an integrated circuit array,
may function to configure a predicate stack at each of a
plurality of distinct processing cores within an array of
processing cores. That is, in one or more embodiments, each
distinct processing core within an integrated circuit array
may be specifically configured to have a predicate stack of
registers having a predetermined depth or size (i.e., a pre-
determined number of registers arranged in an order or
linear/sequential manner) and further configured with an
initial setting at each (bit) entry along the predetermined
depth. Additionally, or alternatively, the predicate stack of
registers preferably may be arranged with logical connec-
tions and/or physical connections between them within each
respective processing core.

[0082] Inone or more embodiments, S410 may function to
configure a size or depth of each predicate stack of the
plurality of processing cores of a given array of processing
cores. Preferably, each predicate stack includes an assem-
blage and/or stack of entries that may operate together to
enable one or more computations and/or execution of
instructions by an associated processing core. Each entry of
the predicate stack of a given processing core may include
a 1-bit hardware register, a single-bit entry, or any suitable
memory capable of storing at least a single bit of data.
Accordingly, the collection of 1-bit registers or the single-bit
entries together define the predicate stack having a prede-
termined depth of the 1-bit registers or the single-bit entries.
For instance, in a non-limiting example, S410 may function
to configure a predicate stack with sixteen (16) 1-bit regis-
ters arranged in an ordered fashion, such as a linear arrange-
ment or linear stack. It shall be noted that any suitable N-bit
(where N may be the number of distinct bit entries) predicate
stack may be implemented.

[0083] Additionally, or alternatively, S410 may function
to configure an initial setting of each of the plurality of
single-bit entries within each distinct predicate stack. For
instance, S410 may function to bias and/or initialize the
entries of predicate stack to an initial condition, such as ON
or OFF, Active or Inactive, True or not True/False, 1 or O etc.

[0084] In a preferred embodiment, as a default, S410 may
function to initialize the bit entries of each of the predicate
stacks of an array of processing cores of a given integrated
circuit to 1 or to some binary value or setting (e.g., ON,
Execute, etc.) indicating that each of the plurality of pro-
cessing cores may be available for selecting and processing
a specific set of instructions. That is, in such preferred
embodiment, S410 may function to bias or initialize each of
the entries within each distinct predicate stack to a default
value of 1 that together with an associated predicate condi-
tion at a top of the predicate stack informs an automatic
selection a set of instructions that a processing core may
automatically execute unless the condition evaluates to
FALSE or not TRUE.

Aug. 20, 2020

[0085] Alternatively, S410 may function to initialize at
least a controlling bit entry (e.g., a top of stack) of the
predicate stacks of each of a plurality of processing cores of
an integrated circuit array to O bit entry value thereby
requiring a satisfaction or an evaluation of a predicate
condition to TRUE to change from the initialized value of 0
to a bit entry value of 1 that may be needed to select an
execute select instructions. In yet other embodiments, S410
may additionally or alternatively function to differentiate in
setting the initial bit entry values of the predicate stacks of
the processing cores of a given integrated circuit array such
that a subset of the predicate stacks may be initialized with
a bit entry value of 1 and another subset of the predicate
stacks may be initialized with a bit entry value of 0.

4.2 Setting a Controlling Bit

[0086] S420, which includes setting a controlling bit, may
function to configure each predicate stack with a control bit
or a controlling bit. A control bit as referred to herein
preferably relates to a bit along a predicate stack, depending
on its value, may function to control an operation of an entire
predicate stack. That is, in some embodiments, a single
control bit may be set or configured to a bit entry within a
predicate stack that governs a selection between distinct
sections of computer instructions to execute by an associated
processing core. selects a first instruction over a second
instruction or the like. For instance, a top of a predicate stack
may be designated as a controlling bit such that a bit value
at the top of stack may govern whether a first instruction or
a second instruction pushed to the predicate stack is
executed. Accordingly, a value of the controlling bit allows
a given processing core to select and execute proper instruc-
tions. In a preferred embodiment, a bit value of the top of
stack may be governed by an initialized setting and changed
or maintained based on an evaluation of a predicate condi-
tion associated with the top of stack. For example, a value
of a controlling bit at a top of stack may be 1 or 0 depending
on an evaluation of a predicate condition to TRUE or
FALSE.

[0087] Accordingly, in a preferred embodiment, S420 may
function to configure or set a predicate stack with a top of
stack controlling bit. That is, S420 may function to designate
a single bit entry at a first position, a leading position, or a
top position of a predicate stack as the bit entry value that
governs whether the predicate stack and the associated
processing core will execute one set of instructions over
another depending on the value of the bit entry at the first
position or the top position of the predicate stack. In a
preferred implementation, instructions from an instruction
source (e.g., a compiler, dispatcher, or the like) may push a
computed result of a predicate condition to a predicate stack.
The predicate condition, in such preferred implementation,
may be a condition that can be validated or invalidated and
preferably, includes a logical expression that evaluates to
TRUE or FALSE for a typical purpose of directing an
execution path in code or the like and in several embodi-
ments of the present application, for governing an operation
of a given processing core having the predicate stack.
[0088] Accordingly, in the preferred implementation, each
of'the processing cores may be configured with circuitry that
may first function to evaluate a predicate condition and push
a result of the evaluation to the predicate stack and that may
function to inform a bit value at the top of the predicate
stack. In the circumstance that it is determined, that the

US 2020/0264881 Al

predicate condition at the top of stack is TRUE or satisfied,
an initial bit entry value of 1 may be maintained at or added
to the top of the predicate stack and a first instruction set may
be selected over another instruction set for execution by the
processing core. Conversely, in the circumstance that the
predicate condition evaluates to FALSE or not TRUE, a bit
entry value of 0 may be added to the top of the predicate
stack and a selection of second set or different set of
instructions for execution may be made by a given process-
ing core.

4.3. Implementing a Predicate Stack

[0089] S430, which includes implementing a predicate
stack at each of a plurality of distinct processing cores, may
function to provide one or more instruction encodings that
operate to push one or more of a result of a condition to a
predicate stack and provide dedicated instructions to the
predicate stack that affect a value of a top of stack bit entry
of a predicate stack of a give processing core.

[0090] In a preferred implementation, S430 may function
to designate a first instruction encoding (e.g., predstack or
predpush) that may be used to push a result of a conditional
clause onto a predicate stack. In such preferred implemen-
tation, any instruction may function to push a result of a
condition onto a predicate stack by writing the condition to
a designated result register or the like. For instance, in one
non-limiting example, an instruction encoding such as pred-
push may be implemented to push a condition onto a
predicate stack. In some embodiments, the push of a con-
dition onto a predicate stack may itself be predicated by
another condition.

[0091] In a preferred implementation, S430 may function
to designate a second instruction encoding (e.g., predelse)
that designates an ELSE clause in the circumstance that a
condition to a predicate stack evaluates to FALSE or not
TRUE. In one or more embodiments, an execution of a
predelse instruction may cause a flip of a top of stack bit
entry value. In one or more embodiments, if the predpush or
predpush condition evaluates to FALSE, the top of stack bit
entry value changes to 0 and an execution of a predelse
instruction can flip the top of stack bit entry value from O to
1 which may allow a given processing core to automatically
select and execute instructions within an ELSE clause rather
than an IF clause. In one or more embodiments, a plurality
of the second instruction encodings may be pushed by
instructions to a predicate stack and in such circumstances,
each distinct instruction having the second instruction
encoding may be specific depth of the stack, an N depth
location, where N indicates a stack depth for which the
instructions according to the second encoding corresponds
to (e.g., predelse 2, predelse 4, etc.).

[0092] In a preferred implementation, S430 may function
to designate a third instruction encoding (e.g., predpop) that
may be used to change or in some instances, maintain a bit
entry value of a top of stack controller or top of stack bit
entry. In such preferred embodiment, the third instruction
encoding may function to pop the top of stack bit entry value
from a current bit value to a bit value of the bit entry
immediately following or below the top of stack. For
example, if a bit entry value at a top of a predicate stack is
0, a predpop instruction (e.g., predpop 1) may function to
pop the bit entry value of 0 from the predicate stack thereby
allowing the bit entry value (e.g., 1) below a current top of
stack to be a new top of stack value. Since all bit entries of

Aug. 20, 2020

apredicate stack are typically initialized to is, in one or more
embodiments, a predpop allows the top of stack to return to
a bit entry value of 1 if it is the only entry remaining on the
stack.

[0093] Preferably, the third instruction encoding compris-
ing predpop or the like may be applied at an end or a
termination of an instruction clause (e.g., at an end of an
iffelse clause or the like) thereby allowing a top of a
predicate stack to take on a value of a bit entry that follows
the top of stack, which may be popped from the predicate
stack. Accordingly, it shall be assumed herein that the third
instruction encoding for popping the top of stack of a
predicate stack may be applied in all instances following a
completion of an instruction or other variant implementa-
tions of the predicate stack described in more detail below.

4.3.1 Condition-Based Predication|Standard IF Construct

[0094] S432, which includes implementing a predicate
stack having a standard condition (e.g., if-then statement or
the like), may function to implement a predicate stack of a
given processing core having a single conditional clause
(e.g., an IF clause), as shown by way of example in FIG. 5.
In one embodiment, implementing the predicate stack
includes pushing a result of a predicate condition to a proper
result register (e.g., cmplt row, 4, predstack or the like).

[0095] Preferably, at runtime and upon receiving an input
data set or computer instructions at a given processing core,
S432 may function to evaluate the predicate condition of the
predicate stack to determine whether a given set of instruc-
tions will be executed and/or a given set of data will be
processed at the given processing core having the predicate
stack. Using circuitry at the given processing core, S432
may function to implement the evaluation of the predicate
condition to determine whether the predicate condition
evaluates to TRUE or FALSE (not TRUE). If the predicate
condition evaluates to TRUE, S432 may function to main-
tain a top of stack value of 1 and continue to execute one or
more instructions pushed to the predicate stack of the given
processing core. Alternatively, if the predicate condition
evaluates to FALSE, S432 may function to change or flip the
top of stack value from 1 to 0 and if no ELSE clause exists,
the given processing core may function to bypass the IF
instructions.

[0096] Additionally, or alternatively, if the predicate con-
dition evaluates to FALSE and the top of controller condi-
tion is set to 0, S432 may function to push a further
instruction (e.g., predpop) preferably at an end of an instruc-
tion set that functions to pop the top of stack to remove the
existing bit entry value of O at the top of the predicate stack
and allow for a new top of stack value, preferably 1, to be
the top of stack value. In one example, if a bit entry value
at the top of stack is 0 and a bit entry value below the top
of'stack is 1, a predpop instruction or similar instruction may
function to pop the top of the stack thereby causing a bit
entry value (i.e., 1) below a current top of stack of 0 to
become the new top of stack value. That is, the top of stack
value is replaced with or takes on a bit value of a bit entry
that may be immediately below the top of stack. In a
preferred embodiment, since all bit entry values of a predi-
cate stack may be initialized to is with only a bit value of the
top of stack changing depending on an evaluation of a
predicate condition, a predpop instruction or similar instruc-

US 2020/0264881 Al

tion would function to pop the top of stack to a value of 1
since the bit entry values below the top of stack may all
typically be initialized to is.

43.1 Nested Condition-Based Predication|IF/ELSE
Condition Construct

[0097] S434, which includes implementing a nested con-
dition predicate stack, may function to implement a predi-
cate stack of a given processing core having multiple
conditions, as shown by way of example in FIG. 6. For
example, a nested condition may include an instruction set
in which a second conditional clause may exist within a
body of or embedded within a first conditional clause and so
forth.

[0098] It shall be known that one or more conditions may
be nested within any type or any suitable instructional
construct. For instance, a primary or outer IF clause may
include one or more nested or inner IF conditional clauses.
Similarly, in some instances, an outer ELSE clause may
include one or more nested inner IF conditional clauses.
Additionally, or alternatively, nested IF conditional clauses
may be nested into both IF or ELSE clauses.

[0099] In one implementation, an IF conditional clause
may be nested within an outer ELSE clause or the like of a
predicate stack. In such implementation, an execution of an
ELSE clause may enable a subsequent opportunity to evalu-
ate the nested IF conditional clause along the depth of the
stack. That is, in such example implementation, when an
initial and/or primary predicate stack IF condition of an
IF/ELSE clause evaluates to FALSE, the ELSE clause may
be executed that may eventually allow for an evaluation of
the nested IF condition within a depth of the stack.

[0100] It shall be noted that if an outer IF predicate
condition evaluates to FALSE and a subsequent evaluation
to TRUE of a nested or inner predicate condition may not
function to flip or change a top of stack value for the outer
IF condition. Similarly, if a predelse statement of a nested
condition operates to flip a top of stack of a predicate stack
of the nest condition from O to 1, the effect of the predelse
statement of the nested condition may not function to affect
a top of stack value of an outer IF clause. In such embodi-
ments, S434 may function to implement a restrictive logic
that limits an effect of a nested predelse (ELSE clause) or the
like onto an outer condition or onto conditions at depths
prior to a depth of the nested predelse statement. Accord-
ingly, in one or more embodiments, a predelse statement or
instruction may typically include an N depth value indicat-
ing where within a depth of stack should the effects of an
execution of the predelse should apply. For instance, an
effect of an execution of a predelse 3 statement should apply
against a predicate stack associated with an IF conditional
clause that two depths below an outer IF conditional clause
(e.g., IF—if (2)—if (3)).

[0101] In one non-limiting implementation, implementing
the nested condition predicate stack may include pushing an
outer predicate stack condition (e.g., IF clause) to a proper
result register (e.g., cmplti row, 4, predstack // if (row<4))
that includes a nested predicate condition (e.g., cmplti col, 2,
predstack // if (col>2) clause to a proper result register that
may be evaluated to TRUE or FALSE.

[0102] Additionally, and similar to an identification of an
N depth value for a predelse instruction (i.e., a predicate
ELSE clause), S432 may function to push a further a
predicate pop instruction (e.g., predpop) preferably at an end

Aug. 20, 2020

of each of an outer conditional instructions and the nested
conditional instructions that each respectfully function to
pop the top of stack of their respective predicate stacks. In
such example implementation, since the outer conditional
clause may be found at the outermost depth (i.e., the first
depth) of the instruction stack, the outer conditional clause
may be associated with an N depth of 1 and thus, the
predpop instruction may be directed to the N depth of 1 (i.e.,
predpop 1). Additionally, since the inner/nested conditional
clause may be found at a second depth of the instruction
stack, the predpop instruction to pop the predicate stack of
the nested condition may be directed to an N depth of 2 (i.e.,
predpop 2).

4.3.2 Loop Body Implemented with a Predicate Stack
[0103] S436, which includes implementing a predicate
stack and a loop body, may function to implement the
predicate stack in conjunction with a loop body and provide
dedicated instructions for affecting an exit or breaking from
the loop body. In such embodiments, the predicate stack may
be implemented in parallel or orthogonally to the loop body.
S436 may additionally or alternatively provide a dedicated
disable instruction that may be triggered by an evaluation of
a conditional loop break that may function to allow a given
processing core to exit the loop body based on a manipu-
lation of a bit value of an enable bit.

[0104] In a preferred embodiment, S436 may function to
implement an enable bit for each distinct processing core of
the plurality of processing cores of an integrated circuit
array. An enable bit preferably functions as a global bit that
operates outside of the predicate stack and that controls and
ON/OFF state of a given processing core. In one or more
embodiments, the enable bit is preferably initialized to a bit
entry value of 1 indicating that an associated processing core
should be enabled (i.e., ACTIVE or ON). In such embodi-
ments, a conditional loop break that if evaluated to TRUE
causes an execution of a dedicated disable instruction that
may function to change a value of the enable bit from 1 to
0 thereby disabling an associated processing core and stop-
ping a loop.

[0105] In some embodiments, a predicated loop break
(e.g., cmpgtei cr4, predstack // if (I>=2) then break), if
evaluated to TRUE, may trigger an execution of a disable
instruction. In such an example, the disable instructions
operates to stop a given processing core from processing
instructions of a loop body when or if a comparison or the
like of the conditional loop break evaluates to FALSE. In
such preferred embodiment, the loop break or the disable
instructions may include a predicate conditional loop break
(e.g., predstack // if (i>=2) then break) that if evaluated to
TRUE causes an execution of a disable instruction. In a
preferred embodiment, the predicated loop break may be
injected directly into the predicate stack by a compiler. That
is, rather than a condition pushed to the predicate stack (i.e.,
from a dispatcher or the like), S436 may function to cause
the compiler to force the conditional loop break with a
dedicated disable instruction.

[0106] In the circumstance that a disable function may be
executed by a given processing core, the given processing
core may maintain a disabled state (i.e., OFF state) until the
given processing core is re-enabled. In some embodiments,
S436 may function to re-enable the given processing core
with a dedicated enable instruction at end or after a comple-
tion of a loop that flips a bit entry value of an enable bit from
0 (i.e., OFF) to 1 (i.e., ON) and that reverts the given

US 2020/0264881 Al

processing core back to an ON state from an OFF state
following the predicated loop break and execution of the
disable instruction. Preferably, the enable instructions may
be provided directly from a compiler to re-enable the
stopped processing core. Additionally, or alternatively, if or
when a conditional loop break evaluates to TRUE, S436
may function to provide the dedicated disable instruction
paired with a corresponding enable instruction. In this way,
while the disable instruction may operate to stop a loop and
turn off a given processing core, the corresponding enable
instruction may function to ensure that the given processing
core does not remain in an OFF state and may be re-enabled
to an ON state.

[0107] Accordingly, in such embodiments, enable instruc-
tions may be found floating outside of the loop body and
directed to the processing core by the compiler for re-
enablement of the processing core. In a variant of such
embodiments involving one or more nest loops, the dedi-
cated enable instructions may be found inside of the loop
body of the nested loop and may be executed based on an
evaluation of a condition clause or the like.

[0108] Additionally, or alternatively, S436 may function
to provide a dedicated a conditional loop continue that if
evaluated to TRUE causes an execution of an idling instruc-
tion that pauses an execution of a remainder of instructions
of a current iteration of a loop body by a given processing
core and that idles the given processing core. That is, in such
embodiments, a loop continue may cause the given process-
ing core not to execute some amount of or remaining
instruction sets in a current iteration of the loop, but may
allow the given processing core to start processing instruc-
tions of the loop again on the next iteration of the loop.
[0109] Additionally, or alternatively, in one embodiment,
S436 may function to execute an enable instruction at an end
of the instructions of the loop body, which causes at a
subsequent iteration of the loop body, a re-enablement of the
given processing core based on the execution of the enable
instruction and the continued execution of instructions of a
subsequent iteration of the loop body.

4.3.3 Nested Loops Implemented with a Predicate Stack
[0110] S438, which includes implementing one or more
nested loops with a predicate stack, may function to imple-
ment a predicate stack and one or more loops nested within
an outer loop body and provide a conditional loop break and
disable instructions directed to distinct N depth of the stack
for exiting the one or more nested loops.

[0111] In one or more embodiments, the method 400 may
function to implement S438 in a similar manner as S436 in
that a dedicated disable instruction may be injected to a
given processing core that disables or stops the processing
core thereby allowing the given processing core to exit from
a loop. Similar to S436, S438 may similarly inject an enable
instruction or a re-enable instruction to the given processing
core that may function to flip a value of an enable bit to 1
and that may turn the given processing core back to an ON
state or otherwise, allows the given processing core to
perform execution of code.

[0112] Since the one or more loops may be nested within
one or more depths of a loop body, S438 may additionally
enable a tracking of a depth of each of the one or more
nested loops within the loop body. In one implementation,
S438 may function to implement a nested loop counter or
loop depth counter that counts each nested loop and its depth
or position within the loop body and attributes a distinct

Aug. 20, 2020

counter value as a depth of a respective nested loop within
the loop body. For instance, if a first outer loop may be
counted as being at a depth of 1, a first nested loop may be
counted as being at a depth of 2, and a second nested loop
may be counted as being at a depth of 3 and so on.

[0113] Accordingly, if a given processing core desires to
break from a specific one of the nested loops executing on
the given processing core, S438 may function to cause the
compiler or the like to provide a dedicated disable instruc-
tion to the processing core that stops the processing core
from executing instructions within the loop body. In a
preferred embodiment, S438 may additionally or alterna-
tively implement a counter that keeps track of a nesting level
or depth of each nested loop. In this way, the proper nested
loop at the associated N depth of a loop body or the like may
be known and enable instructions may be directed to the
level of the nested loop. That is, an enable instruction, in
such embodiments, must have a count associated with it that
matches a value of a counter that is tracking a nesting level
of a specific nested loop. In one non-limiting example, if a
loop depth of the specific nested loop that a given processing
core desires to exit is 2, S438 may function to direct an
enable instruction (e.g., enable 2 or the like) to a loop having
a depth of 2 or level 2 of the nested loop body, which may
indicate that the nested loop is at least one level down from
an outer loop. Additionally, or alternatively, the loop depth
N value may be used for specifically directing other instruc-
tions, such as predelse or predpop towards specific nested
loops and the like.

4.4 Failsafe|Re-Enablement of Cores

[0114] Optionally, or additionally, S440, which includes
implementing a global re-enablement of processing cores,
may function to provide a global enable instruction to a
plurality of processing cores within an array of processing
cores. In one or more embodiments, if a plurality of pro-
cessing cores may be disabled or otherwise, may be main-
taining a stopped condition, S240 may function to propagate
a global enable instruction to all processing cores of the
array.

[0115] In some embodiments, the global enable instruction
to all processing cores of an array may be a failsafe (e.g., a
failsafe to 1 bit entry or an ON condition). In such embodi-
ments, if it is determined by S440 that an amount (e.g., a
majority) or all processing cores of a given array have been
disabled for or beyond a failsafe threshold (e.g., a maximum
amount of time), S440 may automatically cause an execu-
tion of enable instruction at each of the plurality of process-
ing cores within an array of processing cores. In such
embodiments, the enable instruction may function to ensure
that each distinct enable bit associated with each distinct
processing core may have a bit entry value of 1 thereby
ensuring that the processing cores are in an ON state.
[0116] In some embodiments, S440 may function to
propagate a status of each processing core of a plurality of
processing cores to a dispatcher that identifies whether an all
stop or a majority stop of the plurality of processing cores
has occurred.

[0117] Inone example, if a majority or all processing cores
of an array of processing cores desiring to exit one or more
loops, which upon exiting the loops caused a disablement or
a stoppage of the processing cores, S440 implementing a
dispatcher may function to force a skip to the end of the
loops bypassing all instructions associated with each of the

US 2020/0264881 Al

one or more loops and execute an enable instruction that
causes bit entry values of the enables bits to flip from Os to
1s allowing the stopped processing cores to re-enable to an
ON state.
[0118] The systems and methods of the preferred embodi-
ment and variations thereof can be embodied and/or imple-
mented at least in part as a machine configured to receive a
computer-readable medium storing computer-readable
instructions. The instructions are preferably executed by
computer-executable components preferably integrated with
the system and one or more portions of the processor and/or
the controller. The computer-readable medium can be stored
on any suitable computer-readable media such as RAMs,
ROMs, flash memory, EEPROMs, optical devices (CD or
DVD), hard drives, floppy drives, or any suitable device.
The computer-executable component is preferably a general
or application specific processor, but any suitable dedicated
hardware or hardware/firmware combination device can
alternatively or additionally execute the instructions.
[0119] Although omitted for conciseness, the preferred
embodiments include every combination and permutation of
the implementations of the systems and methods described
herein.
[0120] As a person skilled in the art will recognize from
the previous detailed description and from the figures and
claims, modifications and changes can be made to the
preferred embodiments of the invention without departing
from the scope of this invention defined in the following
claims.

1. A system for implementing an integrated circuit with
core-level predication, the system comprising:

a plurality of processing cores of an integrated circuit,

wherein each of the plurality of cores includes:

(1) a predicate stack defined by a plurality of single-bit
registers that operate together based on one or more
of logical connections and physical connections of
the plurality of single-bit registers,

wherein:
the predicate stack of each of the plurality of pro-

cessing cores includes a top of stack single-bit
register of the plurality of single-bit registers
having a bit entry value that controls whether
select instructions to the given processing core of
the plurality of processing cores are executed; and

(i1) an enable bit that operates outside of the predicate
stack and that controls an ON/OFF state of a given
processing core of the plurality of processing cores,

wherein:

a conditional loop break if evaluated to TRUE causes
an execution of a disable instruction that:
(a) stops the execution of the instructions of a loop
body by the given processing core,
(b) changes a value of the enable bit, and
(c) disables the given processing core and changes
the given processing core from an ON state to
an OFF state,
the execution of the disable instruction changes a bit
entry value of the enable bit of the given process-
ing core from 1 to 0 or 0 to 1 according to a binary
system, and
a subsequent execution of an enable instruction that
is paired with the disable instruction causes a
re-enablement of the given processing core and
changes the bit entry value of the enable bit.

Aug. 20, 2020

2. The system according to claim 1, wherein:

instructions push a result of a conditional clause onto the
predicate stack of the given processing core of the
plurality of processing cores;

if the conditional clause evaluates to TRUE, based on a
comparison of distinct values of the conditional clause,
the given processing core executes an instruction of the
conditional clause.

3. The system according to claim 1, wherein:

instructions push a result of a conditional clause onto the
predicate stack of the given processing core of the
plurality of processing cores;

if the conditional clause evaluates to FALSE, based on a
comparison of distinct values of the conditional clause,
the given processing core bypasses an instruction of the
conditional clause and selectively executes or not a
distinct instruction clause.

4. The system according to claim 1, wherein:

each of the plurality of single-bit registers of the predicate
stack is initialized to a value of 1;

if the conditional clause evaluates to FALSE, based on a
comparison of distinct values of the conditional clause,
a bit entry value of 0 is pushed to a top of the predicate
stack.

5. The system according to claim 4, wherein:

the given processing core selects to execute instructions
of a predicated ELSE clause over instructions of an IF
clause of the conditional clause based on the bit entry
value of the top of the predicate stack being pushed to
0.

6. The system according to claim 1, wherein:

if the conditional clause evaluates to FALSE, based on a
comparison of distinct values of data of the conditional
clause:

(1) a bit entry value of a top of the predicate stack of a
given processing core of the plurality of processing
cores is pushed to 0; and

(ii) the given processing core selects to execute instruc-
tions of an alternative instruction over instructions of
an IF clause of the conditional clause, wherein an
execution of the alternative instructions flips the bit
entry value of the top of the predicate stack from 0
to 1.

7. The system according to claim 1, wherein:

in response to executing or not executing the select
instructions at the given processing core, executing by
the given processing core a predicated pop instruction
that pops the bit entry value from the top of the
predicate stack and exposes a bit entry value of a bit
entry that was previously below the top of stack.

8. The system according to claim 1, wherein

instructions pushing a result of a conditional clause onto
the predicate stack of the given processing core include

a nested conditional clause;

a counter of the given processing core tracks a depth of
the nested conditional clause within a body of the
instructions; and

instructions affecting a predicate stack of the nested
conditional clause include a value of the counter asso-
ciated with the depth of the nested conditional clause.

9. (canceled)

10. (canceled)

US 2020/0264881 Al

11. The system according to claim 1, wherein:

the given processing core executes instructions of a nested
loop body;

a counter of the given processing core tracks a depth of
the nested loop body; and

instructions affecting the nested loop body include a value
of the counter associated with the depth of the nested
loop body.

12. The system according to claim 11, wherein:

the conditional loop break having the value of the counter
tracking the depth of nested loop body, if evaluated to
TRUE causes the execution of the disable instruction
that stops an execution of the instructions of the nested
loop body by the given processing core and that dis-
ables the given processing core.

13. The system according to claim 12, wherein:

a subsequent execution of the enable instruction having
the value of the counter tracking the depth of nested
loop body paired with the disable instruction causes the
re-enablement of the given processing core.

14. The system according to claim 1, wherein:

the given processing cores executes instructions of the
loop body;

a conditional loop continue if evaluated to TRUE causes
an execution of an idling instruction that pauses an
execution of a remainder of instructions of a current
iteration of the loop body by the given processing core
and that idles the given processing core.

15. The system according to claim 1, wherein:

executing the enable instruction at an end of instructions
within the loop body;

at a subsequent iteration of the loop body, re-enabling the
given processing core based on the execution of the
enable instruction and executing instructions of the
subsequent iteration of the loop body.

16. The system according to claim 1, wherein:

if it is determined that a subset or all the plurality of
processing cores are in a disabled state, a dispatcher
forces a skip to an end of instructions at the subset or
all the plurality of processing cores and executes an
enable instruction that changes a value of an enable bit
from 0 to 1 or 1 to O to enable the subset or all the
plurality of processing cores.

17. A method for implementing an integrated circuit with

core-level predication, the method comprising:
implementing a plurality of processing cores of an inte-
grated circuit, wherein each of the plurality of cores
includes:

(1) a predicate stack defined by a plurality of single-bit
registers that operate together based on one or more
of logical connections and physical connections of
the plurality of single-bit registers,

wherein:
the predicate stack of each of the plurality of pro-

cessing cores includes a top of stack single-bit

Aug. 20, 2020

register of the plurality of single-bit registers
having a bit entry value that controls whether
select instructions to the given processing core of
the plurality of processing cores are executed; and
(i1) an enable bit that operates outside of the predicate
stack and that controls an ON/OFF state of a given
processing core of the plurality of processing cores,
wherein:
a conditional loop break if evaluated to TRUE causes
an execution of a disable instruction that:
(a) stops the execution of the instructions of a loop
body by the given processing core,
(b) changes a value of the enable bit, and
(c) disables the given processing core and changes
the given processing core from an ON state to
an OFF state,
the execution of the disable instruction changes a bit
entry value of the enable bit of the given process-
ing core from 1 to 0 or 0 to 1 according to a binary
system, and
a subsequent execution of an enable instruction that
is paired with the disable instruction causes a
re-enablement of the given processing core and
changes the bit entry value of the enable bit.
18. The method according to claim 17, further compris-
ing:
pushing a result of a conditional clause onto the predicate
stack of the given processing core of the plurality of
processing cores;
if the conditional clause evaluates to TRUE, based on a
comparison of distinct values of the conditional clause,
executing by the given processing core an instruction of
the conditional clause.
19. The method according to claim 17, further compris-
ing:
pushing a result of a conditional clause onto the predicate
stack of the given processing core of the plurality of
processing cores;
if the conditional clause evaluates to FALSE, based on a
comparison of distinct values of the conditional clause,
bypassing by the given processing core an instruction
of the conditional clause and selectively executing or
not a distinct instruction clause.
20. The method according to claim 17, further compris-
ing:
initializing each of the plurality of single-bit registers of
the predicate stack to a value of 1;
if the conditional clause evaluates to FALSE, based on a
comparison of distinct values of the conditional clause,
pushing a bit entry value of 0 onto of a top of the
predicate stack of the given processing core of the
plurality of processing cores.

#* #* #* #* #*

