US 20200264791A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0264791 A1l

Sasson et al.

43) Pub. Date: Aug. 20, 2020

(54)

(71)

(72)

@
(22)

(1)

SECURITY AND SELECTIVE DATA
DESTRUCTION

Applicant: International Business Machines

Corporation, Armonk, NY (US)
Inventors: Ben Sasson, North Baddesley (GB);
Miles Mulholland, Chandlers Ford
(GB); Lee Jason Sanders, Chichester
(GB); Gordon Douglas Hutchison,
Eastleigh (GB)

Appl. No.: 16/276,999

(52) US.CL
CPC GOGF 3/0641 (2013.01); GOGF 12/023
(2013.01); GO6F 2212/7205 (2013.01); GO6F

3/0683 (2013.01); GOGF 3/0617 (2013.01)

(57) ABSTRACT

A method and a system for permanently deleting data from
storage. The method includes receiving a wipe command to
permanently delete a data segment stored in a storage
system. The data segment includes an address to blocks
where the data of the data segment is stored. The method

Filed: Feb. 15, 2019 also includes sanitizing the data segment, marking the
A . . address as sanitized, locating a last journal entry in a journal.
Publication Classification The last journal entry includes metadata regarding the data
Int. CL segment. The method also includes sanitizing the last journal
GO6F 3/06 (2006.01) entry, traversing the journal, and sanitizing each journal
GOG6F 12/02 (2006.01) entry of the data segment.
COMPUTER SYSTEM ~
460 /
DISPLAY DISPLAY
DEVICE SYSTEM
MEMORY
e i e st s 404
i TROCESSOR |
} 402
| cpy : STORAGE
i 4021 [CONTROLLER
| | 139
i C}‘,)\U o I BUS
402-2 i . \
f T INTERFAUE
I 40
: cpy | Lt
; a2 Pyl _ ,
| - ! MEMORY | Data Segment |
CPU iy BUS 404 428
] 402N
= |
VO BUS INTERFACE 410
i
/O BUS 408
TERMINAL VG DEVICE STORAGE NETWORK
INTERFACE INTERFACE INTERFACE INTERFACE

Patent Application Publication Aug. 20, 2020 Sheet 1 of 5 US 2020/0264791 A1

J’"’\?OO

Host Host Host
1101 110-2 110-N
@ & 3
< ? Tl Network 125 —~y ? >
Data Compression Deduplication Sanitization
Component Component Component
136 132 124

1] f
!

Storage
Coniroller
130

‘? Storage Bus 135 ~

% o
Journal Journal Journal
144 144 s e = 144
Storage Device Storage Device Storage Device
140-1 140-2 140-N

Storage System 105

FIG. 1

Patent Application Publication

200

—
[

220

NMgie)

Nt

<F

R o))

Aug. 20, 2020 Sheet 2 of 5

US 2020/0264791 Al

FIG. 2A

Patent Application Publication Aug. 20, 2020 Sheet 3 of 5 US 2020/0264791 A1

]
1o
nNEE
f
© /
4 | aE:
% 5;
% s ;;" I ©
g |\ = 'y
EE | S e I, [L
™~ T W & Ol
AN T <t Iy A &g o
AY ‘% o if ol
/FlE® L

Patent Application Publication

30077

Heceive Wipe
Command
303

Y

Sanitize Data
309

v

Mark Address as
Sanitized
312

¥

GC Queue (Optional)
315

Promote Data to Head m‘f

Aug. 20, 2020 Sheet 4 of 5

US 2020/0264791 Al

~Reference or ™
S, OOUCe?

Mark Address as Roference
Sanitized i
330
@v Mark Address as
Sanitized e

Mark Data Source
as “Need Sanitation”
335

r

Locate Last Jounal

YES

- Entry for Data

340
L

Sanitize Current Entry
350

L

Locate Pravious Entry
360

¥

Sanitize Entry
370

e, ENtries?

Reply to Host
390

321

:

Migrate Data to One
of the Referrers
324

Y

Mark Data at New
Source as “Need
Sanitation”
327

FIG. 3

Patent Application Publication Aug. 20, 2020 Sheet 5 of 5 US 2020/0264791 A1

COMPUTER SYSTEM
400)

DISPLAY DISPLAY
DEVICE SYSTEM
405 406
MEMORY
s o e o o oo 404
i~ PROCESSOR “E
i 402 E
i § STORAGE
| CONTROLLER
| 5 130
| E BUS
g ; INTERFACE
| | 407
z | |
| § MEMORY | Data Segment |
| | BUS 404 ' 425 '
g

VO BUS INTERFACE 410

]
/O BUS 408

TERMINAL VO DEVICE STORAGE NETWORK
INTERFACE INTERFACE INTERFACE INTERFACHE

US 2020/0264791 Al

SECURITY AND SELECTIVE DATA
DESTRUCTION

BACKGROUND

[0001] The present disclosure relates to selective data
destruction, and more specifically, to data destruction per-
formed on a storage system.

[0002] Permanently deleting data from storage is becom-
ing increasingly more difficult as storage solution technol-
ogy advances. Modern storage systems allow data to be
prioritized, centralized, and remotely managed all while
implementing data reduction techniques to preserve storage
capacity. Data reduction techniques attempt to reduce or
transform data down to the essential components. Examples
of data reduction techniques include data compression,
deduplication, and thinning volumes. However, these tech-
nological advances tend to leave behind data remnants once
data is deleted. For example, journal entries, metadata,
redundancies in storage, and various other remnants allow
deleted data to be recovered once it has been deleted.

SUMMARY

[0003] Various embodiments are directed to a method of
permanently deleting data segments. The method includes
receiving a wipe command, from a host, to permanently
delete a data segment stored in a storage system. The data
segment includes an address to storage blocks where the
data segment is stored in the storage system. The method
also includes sanitizing the data segment and marking the
address to the storage blocks as sanitized. The method can
also include locating a last journal entry that was entered for
the data segment in a journal used by the storage system. The
last journal entry includes metadata regarding the data
segment. The method also includes sanitizing the last journal
entry once it has been located. The sanitization prevents the
use of the journal to be used as a recovery tool. The method
also includes traversing the journal to locate any previous
journal entry regarding the data segment and sanitizing those
journal entries if they exist.

[0004] Further embodiments are directed to a computer
program product for permanently deleting data segments,
which can include a computer readable storage medium
having program instructions embodied therewith, the pro-
gram instructions executable by a processor to cause the
device to perform operations. The operations include receiv-
ing a wipe command, from a host, to permanently delete a
data segment stored in a storage system. The data segment
includes an address to storage blocks where the data seg-
ment is stored in the storage system. The operations also
includes sanitizing the data segment and marking the
address to the storage blocks as sanitized. The method can
also include locating the last journal entry that was entered
for the data segment in the journal used by the storage
system. The last journal entry includes metadata regarding
the data segment. The operations also include sanitizing the
last journal entry once it has been located. The sanitization
prevents the use of the journal to be used as a recovery tool.
The operations also include traversing the journal to locate
any previous journal entry regarding the data segment and
sanitizing those journal entries if they exist.

[0005] Additional embodiments are directed to a system,
which can include at least one processing component and at
least one memory component. The memory component is

Aug. 20, 2020

configured to store instruction, which when executed from
the memory, cause the processing component to perform
operations on the system. The operations include receiving
a wipe command, from a host, to permanently delete a data
segment stored in a storage system. The data segment
includes an address to storage blocks where the data seg-
ment is stored in the storage system. The operations also
include sanitizing the data segment and marking the address
to the storage blocks as sanitized. The operations can also
include locating a last journal entry that was entered for the
data segment in a journal used by the storage system. The
last journal entry includes metadata regarding the data
segment. The operations also include sanitizing the last
journal entry once it has been located. The sanitization
prevents the use of the journal to be used as a recovery tool.
The operations also include traversing the journal to locate
any previous journal entry regarding the data segment and
sanitizing those journal entries if they exist.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] These and other features, aspects, and advantages
of the embodiments of the disclosure will become better
understood with regard to the following description,
appended claims, and accompanying drawings where:
[0007] FIG. 1 is a diagram of a tiered overview of a
storage system that connects multiple hosts to multiple
storage devices, according to embodiments of the present
disclosure.

[0008] FIG. 2A is a diagram of a gathered-write imple-
mentation, according to embodiments of the present disclo-
sure.

[0009] FIG. 2B is a diagram of an overwrite command of
a gathered-write implementation, according to embodiments
of the present disclosure.

[0010] FIG. 3 is a flow diagram illustrating a process of
permanently deleting data from a storage system, according
to embodiments of the present disclosure.

[0011] FIG. 4 is a block diagram illustrating a computer
system, according to embodiments of the present disclosure.
[0012] While the disclosure is amenable to various modi-
fications and alternative forms, specifics thereof have been
shown by way of example in the drawings and will be
described in detail. It should be understood, however, that
the intention is not to limit the particular embodiments
described. On the contrary, the intention is to cover all
modifications, equivalents, and alternatives falling within
the scope of the disclosure. Like reference numeral are used
to designate like parts in the accompanying drawings.

DETAILED DESCRIPTION

[0013] Permanently deleting data is becoming increas-
ingly more difficult as storage environment technologies
evolve. Deleted data can, at times, be salvaged because the
deletion command does not thoroughly format the physical
location of the stored data. The data may also be stored in
multiple locations that may not necessarily be formatted
when the deletion command is received. How a deletion
occurs can also vary depending on a storage solution con-
figuration, with several storage solutions configured to cater
to the specific needs of an individual, business, or service
provider. One such storage solution is a storage area network
(SAN). Storage area networks have become increasingly
more popular as businesses take advantage of SAN’s ability

US 2020/0264791 Al

to operate as a single storage solution that is customizable
and expandable. However, the complexity of SANs, as well
as other storage solutions, makes permanently deleting data
more difficult. Data that is perceived as deleted, inaccessible,
lost, corrupted, or damaged can often be recovered through
data recovery techniques that utilize clues left by the data.
[0014] Various data deletion techniques attempt to perma-
nently delete data from storage. However, these techniques
attempt at permanent deletion leave behind data remnants
that advanced data forensics can utilize to recover the data
that has been deleted. A data remnant is information that can
be accessed to recover and restore data that has been deleted.
This is particularly true when the data is stored in a data
solution environment such as an SAN. SANs typically
implement data reduction techniques to improve system
performance and increase storage space. Reduction tech-
niques include techniques such as compression, reallocation,
and data deduplication. As a result of such techniques,
remnants of the data are created when the data is written,
moved, or manipulated in any way. Examples of some such
data remnants include journal entries, metadata, and uncol-
lected data marked for garbage collection.

[0015] Some storage systems write data in a particular
way that is also creates data remnants. In some systems, data
is written in a write-forward fashion. In that, the new data
that is written is appended to the end of a write array. For
example, a log structured array appends new data to the end
of the array. When the data is overwritten, the old location
is simply marked as “free.” New writes append to the end of
allocated space even if the data already exists, and even if
the write is an over-write. The new data is not written in
place. Rather, the new write is appended at the end. The old
location where the data was previously stored still contains
the data but waits for garbage collection to reallocate that
space.

[0016] Disclosed herein is a method and a system for an
improved data deletion technique that permanently destroys
data. The disclosure provides a means for permanently
deleting data specified by a host by removing data remnants
created by storage solutions. Also, by providing a means for
hosts to permanently delete potentially sensitive informa-
tion, system security is also improved. Security is increased
because the deleted information is unable to be recovered by
possible nefarious actors.

[0017] FIG.1 is a block diagram illustrating a system 100,
according to one embodiment of the disclosure. The system
100 includes, but is not limited to one or more hosts 110-1,
110-2, 110-N (collectively “host 110”), a network 125, and
a storage system 105. The host 110 is communicatively
coupled to the storage system 105 over the network 125. The
storage system 105 includes a storage controller 130, a
storage bus 135, and one or more storage devices 140-1,
140-2, 140-N (collectively “storage device 140”). The stor-
age controller 130 is communicatively coupled with the
storage device 140 over the storage bus 135. In some
embodiments, the storage system 105 includes a deduplica-
tion component 132, a sanitization component 134, a data
reduction component 136, and a journal 144.

[0018] The storage system 105 is a component of system
100 configured to consolidate, manage, and operate data
storage. In some embodiments, storage system 105 is a
server or an aggregation of servers. Examples of the storage
system 105 include storage servers (e.g., block-based stor-
age), direct attached storage, file servers, server-attached

Aug. 20, 2020

storage, network-attached storage, or any other storage
solution. In some embodiments, the components of the
storage system 105 are implemented within a single device.
In some other embodiments, the components of the storage
system 105 comprise of a distributed architecture. For
example, the storage system 105 can comprise of multiple
storage devices 140 that are physically located at different
locations but are able to communicate over a communication
network to achieve a desired result.

[0019] The host 110 is a component of system 100 con-
figured to provide data and commands to the storage system
105. In some embodiments, the host 110 is a server (e.g.,
Windows, Power Systems, IBM I, UNIX, and System Z), a
personal computer (e.g., desktop, laptop, and tablet), or any
device capable of communicating over a network. The data
can be manipulated in a variety of ways such as reading,
writing, deleting, and moving the data. To accomplish this,
commands are sent by the host 110 to the storage system via
SCSI commands, in some embodiments.

[0020] The network 125 is a component of system 100
configured to facilitate direct, high-speed data transfers and
communication between the host 110 and the storage system
105. Examples of the network 125 include a local area
network (LAN), a wide area network (WAN), a storage area
network (SAN), intranet, or any combination thereof.
[0021] The storage controller 130 is a component of
storage system 105 configured to manage the input and
output of data from the network 125 to the storage device
140. Data can be stored and manipulated depending on the
needs of the system. In some embodiments, the storage
controller arranges and configures the storage devices 140 in
a redundant array of independent disks (RAID) configura-
tion. For example, data stored within the storage system 105
can be striped across all configured storage devices 140.
Various RAID configurations also offer techniques such as
striping, mirroring, and providing parity bits of data. The
storage controller 130 is also configured to manage how the
data, received by the storage system 105, is stored and
retrieved. For example, in tier-based storage configurations,
data is placed in storage devices 140 best suited for the type
of data that is received.

[0022] The deduplication component 132 is a component
of storage system 105 configured to identify unique chunks
of data, or byte patterns, and stores a signature of the chunk
for reference when writing new data chunks. If the signature
of the chunk matches an existing signature, the new chunk
is replaced with a reference that points to the stored chunk.
The same byte pattern might occur many times resulting in
the amount of data that is stored being greatly reduced. In
some embodiments, 256 KB blocks are identified and writ-
ten to storage. In some other embodiments, 8 KB chunks are
identified, compressed, and written to storage.

[0023] When a matching signature is located by the dedu-
plication component 132, metadata is created, or updated,
that points the metadata to the existing copy of the data. This
allows the storage system 105 to locate the data as well as
to locate any possible duplicates.

[0024] The sanitization component 134 is a component of
storage system 105 configured to delete data stored on the
storage system 105. The sanitization component 134 can
delete data in a variety of ways. For example, the sanitiza-
tion component 134 can overwrite data with a random,
instead of static, pattern of bits. Each sector of storage will
contain different data. Other deletion techniques that can be

US 2020/0264791 Al

performed by the sanitization component 134 include mul-
tiple overwrites of the data, firmware level deletion, over-
writes using is, Os, and random characters. In some embodi-
ments, the sanitization component 134 deletes data based on
a data wiping standard. For example, the wiping standard
can be DoD 5220.22-M ECE, CESG CPA, BSI-GSE,
NCSC-TG-025, and any other known data wiping standard.

[0025] The data compression component 136 is a compo-
nent of storage system 105 configured to compress data
stored on the storage volumes of the storage devices 140.
The data compression component 136 is configured to
compress data located at a physical address within the
storage system 105. The compression of data allows for
physical space on the storage to be freed up for other use.
The data compression component 136 can also be config-
ured to perform an address translation of the compressed
data as well as a space translation. A translation to physical
address may be necessary for the execution of the data when
it is accessed. The address translation maps the virtual
address of the compressed data to the physical address of the
compressed data. Also, a space translation is required for to
decompress the data when it is accessed. The space trans-
lation provides for physical space on the storage system 105
for the decompression of the data.

[0026] The storage bus 135 is a component of storage
system 105 configured to facilitate direct, high-speed trans-
fer and communication between the storage devices 140,
either directly or through the storage controller 130. In some
embodiments, the storage bus 135 is an internal bus. In some
other embodiments, the storage bus 135 is an external bus.
The storage bus 135 enables data to be moved without server
intervention, therefore freeing up processing cycles on the
server end. For example, a disk device can back up its data
to a tape device as needed without receiving a command
from a server or controller. Examples of the storage bus 135
include a LAN, a WAN, a Fibre Channel (FC), and any
combination thereof. In some embodiments, implementa-
tions interconnect together into many network configura-
tions capable of communicating over long distances. The
storage bus 135 is configured to transfer data utilizing a
variety of standards. Some standards include the Small
Computer System Interface (SCSI), Fibre Channel, fiber
connection (FICON), and Internet Protocol (IP) standards.
[0027] The storage device 140 is a component of storage
system 105 configured to store and manage a portion of the
input and output of data on the storage system 105. This
configuration can assist with the integration of the storage
device 140 with other such devices. Examples of storage
devices include tape systems (e.g., tape drives, tape auto-
loaders, tape libraries), disk systems, storage arrays, mag-
netic drives, solid-state drives, and optical drives. In some
embodiments, the storage device includes a journal 144.
[0028] The journal 144 is a component of storage system
105 configured to store information on the data that is stored
within the storage system 105. The journal 144 can be
located, but is not limited to, at least one storage device 140.
In some embodiments, a journal entry is created when data
is written, read, deleted, or moved. For example, the storage
system 105 can create a journal entry of the location where
a particular piece of data is stored and what type of content
is contained within the data. To prevent outside access to the
journal 144, some embodiments encrypt the journal 144. In
some embodiments, the journal is stored outside of the
storage system 105 and is accessed over the network 125.

Aug. 20, 2020

[0029] FIG. 2A is a block diagram illustrating a diagram
200 of an array of data segments being written to storage,
according to embodiments of the disclosure. The diagram
200 includes data segments 210-1, 210-2, 210-3, 210-4,
210-5, 210-N (collectively “data segment 2107), journal
entry 220 illustrated by blocks H1-H6, and physical address
230 illustrated by block 1-6. A gathered-write architecture
allocates data sequentially and provides a journal entry that
provides a lookup to match the block address with the
physical address within the architecture.

[0030] The data segments 210 are gathered in an array.
Once the array is prepared to write to the physical address
230, the location of the data segments is written to the
journal 220. This is illustrated by the journal entry for each
data segment 210 having a corresponding journal number
that matches the physical address where it is written. In
some embodiments, the data segments are compressed as
they are written on to a physical address to reduce the overall
space needed to store the data segment. For example, data
segment 210-1 may have no compression while data seg-
ment 210-2 may be compressed.

[0031] FIG. 2B is a block diagram illustrating an over-
write command on the data segments of diagram 200,
according to embodiments of the present disclosure. The
diagram additionally includes data segment 210-1' and free
marker 240. Traditional in-place architecture will overwrite
data using the same physical address as the data that is being
overwritten. For example, if a data segment 210 is over-
written with a series of random numbers, the system will
overwrite the physical address where the data segment 210
is located with random numbers. As previously discussed,
using gathered-write architecture, the overwrite command of
a data segment will produce new data created at the end of
the write array where free space is located. Data segment
210-1' is an overwrite command intending to overwrite data
segment 210-1. The overwrite command appends the data to
the end of the array where unused storage is located and
marks the old physical location of 210-1 with the free
marker 240. The free marker acts as an indicator that the
location requires garbage collection and can also inform the
system that the location is no longer needed and free to be
reallocated as available storage. Also, a new journal entry is
added to the journal 220 reflecting the location of the
physical address where the data segment 210-1' is located.
To note, the journal entry indicating where 210-1 is still
present in the journal 220. Data forensics need only to access
the journal to discover the location of 210-1 and retrieve that
stored information. The overwrite command did not physi-
cally overwrite the data because it simply was created at the
end of the available space in the system. The present
disclosure presents a method and system for permanently
deleting data that may be stored in such a manner.

[0032] FIG. 3 is a flow diagram illustrating a process 300
of permanently deleting data from a storage system, accord-
ing to some embodiments of the present disclosure. To
illustrate process 300, but not to limit embodiments, FIG. 3
is described within the context of system 100 of FIG. 1.
Where elements described with respect to FIG. 3 are iden-
tical to elements shown in FIG. 1, the same reference
numbers are used in both Figures.

[0033] A wipe command is received by the storage system
105 from a host 110. This is illustrated at step 303. The wipe
command informs the storage system 105 that a data seg-
ment stored on the storage system 105 requires permanent

US 2020/0264791 Al

deletion. In some embodiments, the wipe command is a
separate command that is sent by a host 110 or other system.
In some other embodiments, the wipe command is attached
to another command. For example, the wipe command can
be a SCSI tag attached to an overwrite command. The wipe
command can include information on the data segment that
is to be deleted, the type of deletion to be performed (e.g.,
multiple pass, random number, and all Os write over), and
when the deletion is to occur.

[0034] The wipe command can be sent using a variety of
protocols. For examples, the command can be sent using
SCSI, FCP, FC, iSCSI, and other available communication
protocols capable of transmitting commands over a bus.
[0035] The deduplication component 132 then determines
whether the data segment received the wipe command is
deduplicated. This is illustrated at step 306. A determination
into whether the data segment has been deduplicated is
required because of how deduplicated data is handled in a
storage system. Deduplicated data may not be physically
stored at the physical location where the data segment points
to. In some embodiments, the data segment is a reference to
a source of data that is located at a separate location. In some
other embodiments, the data segment is a source that has
references pointing to, and relying on, the data located at the
source.

[0036] If the deduplication component 132 determines
that the data segment received has not been deduplicated, the
sanitization component 134 can sanitize the data segment.
This is illustrated at step 309. The sanitization of the data can
be dependent on the level of sanitization requested by the
host 110 or is defaulted by the storage system 105. In some
embodiments, the host 110 dictates the type of sanitization
that is to be performed by the sanitization component 134
within the wipe command that is received. For example, the
sanitization component 134 may perform a DoD 5220.22-M
ECE wipe standard that is requested in the wipe command.
[0037] To indicate that the data segment has been sani-
tized, the process 300 proceeds by marking the address
location of the data segment as sanitized. This is illustrated
at step 312. The address mark is an indicator that informs the
storage system 105 that the data stored at that address has
been sanitized. The marking can be accomplished by pro-
viding a SCSI flag that is read when attempting to access
data from that address location. Other approaches that
provide indications regarding addresses can also be used. In
some embodiments, the address is marked as sanitized prior
to the sanitization step 309. For example, the process 300
can mark the address location as sanitized and then proceed
with sanitizing the data segment.

[0038] In some embodiments, the storage system 105 will
automatically return a zero-buffer response when the address
location, marked as sanitized, is accessed. Other types of
responses can include random unreadable data or intention-
ally unstable data that prevents access to the address loca-
tion. The random data return prevents the data segment from
being read and prohibits would-be attackers from attempting
to retrieve the data segment from the address location.
[0039] Once the data segment has been sanitized and
marked as sanitized, the process 300 proceeds by promoting
the address location of the data to the head of the garbage
collection queue. This is illustrated at step 315. Promoting
the address location to the head of the garbage collection
queue allows the storage system 105 to deallocate the
storage space and return it to available space as quickly as

Aug. 20, 2020

possible. In some systems, garbage collection is not fre-
quently performed and the longer the data segment resides
in the system as occupied, the higher the risk that the data
can be retrieved and possibly recovered. In some embodi-
ments, promoting the address location to the head of the
garbage collection queue is unnecessary as the system
provides for efficient garbage collection.

[0040] If the deduplication component 132 determines
that the data segment received has been deduplicated, the
deduplication component 132 then determines whether the
data segment received is a reference address location or a
source address location. This is illustrated at step 318. In a
deduplicated system, a reference address location merely
points to the source address where the actual data is stored.
A source address location contains the stored data but may
have references pointing to that location that still require the
information.

[0041] If the deduplication component 132 determines
that the data segment received is a reference address loca-
tion, the sanitization component 134 will mark the address
as sanitized. This is illustrated at step 330. By marking the
address as sanitized, the reference address location is
detached from the source address location and is no longer
able to retrieve the data that is located at the source because
the pointer is eliminated. In some embodiments, the saniti-
zation marker is similar to the mark used at step 312. In
some embodiments, the storage system 105 will automati-
cally return a zero-buffer response when the address location
that is marked as sanitized has been accessed. Other types of
responses can include random unreadable data or intention-
ally unstable data that prevents access to the address loca-
tion.

[0042] In conjunction with marking the reference address
as sanitized, the sanitization component will mark the source
address indicating that the source address requires sanitiza-
tion once all references are eliminated. This is illustrated at
step 335. As other reference address locations require the
data at the source address location, deleting the source data
would destabilize the storage system 105. In some embodi-
ments, the source address need not be marked as sanitized
because it has already been previously marked as sanitized.
[0043] If the deduplication component 132 determines
that the data segment received is a source address location,
the sanitization component 134 will mark the address as
sanitized. This is illustrated at step 321. The marker indi-
cates that the address location is no longer able to be read,
and that the data segment is sanitized. In some embodi-
ments, the sanitization marker is similar to the mark used at
step 312. In some embodiments, the storage system 105 will
automatically return a zero-buffer response when the address
location that is marked as sanitized has been accessed. Other
types of responses can include random unreadable data or
intentionally unstable data that prevents access to the
address location.

[0044] The data that is stored at the address location
marked for sanitization is migrated by the storage controller
130 to a reference address location pointing to the source
address location. This is illustrated at step 324. The dedu-
plication component 132 determines the references, if any,
that are pointing to the source address location. Upon
determining all references, the address location of one of the
references is used as the new source address location. The
data of'the original source address location is migrated to the
new source address location. The other references, if any, are

US 2020/0264791 Al

redirected to the new source address location. This allows
for the references to still access the data that the original
source address contained.

[0045] In some embodiments, each reference address
pointing to the source address is marked as requiring sani-
tization. By marking the references, the storage system 105
can inventory and trace all references to sensitive data. If
necessary, the storage system 105 can sanitize all references
to ensure that the sensitive data is destroyed completely.
[0046] Upon migrating the data from the original source
address location, to the new source address location, the
sanitization component 134 marks the new address location
as requiring sanitization. This is illustrated at step 327. By
marking the new source address location, the storage system
105 can sanitize the new source address location once all
references to the address have been eliminated and the data
is no longer needed.

[0047] The process 300 proceeds by locating the last
journal entry, in the journal 144, for the data segment that
received the wipe command. This is illustrated at step 340.
The storage controller 130 locates the journal 144 and
searches the journal for the latest entry of the data segment.
A journal entry can be any information relating to the data
segment. For example, a journal entry can indicate that data
has been migrated from one address location to another
address location. It can also indicate that the data has been
transferred to a different storage device 140. A journal entry
can be used to locate and trace the prior locations data has
been stored. The ability to use the journal to retrieve deleted
data can cause vulnerability to the storage system. As such,
the journal entries of sensitive data need to be located and
deleted. In some embodiments, the journal 144 is located
outside of the storage system 105 and is accessed remotely.
In other embodiments, the journal 144 is encrypted and
requires decryption by the storage controller 130.

[0048] Once the storage controller 130 locates the latest
journal entry for the data segment, the sanitization compo-
nent 134 sanitizes and deletes the journal entry from the
journal 144. This is illustrated at step 350. Similar to step
309, the sanitization of the data can be dependent on the
level of sanitization requested by the host 110 or storage
system 105. In some embodiments, the entire journal is
deleted and marked as sanitized.

[0049] To ensure that all journal entries for the data
segment are deleted and sanitized, the process 300 proceeds
with an iterative process of traversing the journal 144. The
storage controller begins by locating, if any, a previous
journal entry for the data segment. This is illustrated at step
360. In some instances, data can be migrated multiple times
to suit the needs of the storage system 105. For example,
data may be migrated from one storage device to another
device because of a drive failure or to alleviate capacity
concerns. Data can also be migrated to different storage
devices based on the type of data that is stored. There are
numerous reasons why data is transferred. Journal entries are
recorded into the journal 144 each time the data is manipu-
lated in such a manner. To permanently delete the data
segment, each journal entry of the data segment requires
sanitization.

[0050] If a previous journal entry is located, the sanitiza-
tion component 134 sanitizes the journal entry. This is
illustrated at step 370. The process 300 proceeds by repeat-
ing steps 360 and 370. This is illustrated at step 380. The
process continues until no journal entries are located in the

Aug. 20, 2020

journal 144. After all journal entries have been sanitized, the
process 300 replies to the host that the data segment has been
sanitized and the process is complete. This is illustrated at
step 390.

[0051] FIG. 4 is a high-level block diagram illustrating an
exemplary computer system 400 that can be used in imple-
menting one or more of the methods, tools, components, and
any related functions described herein (e.g., using one or
more processor circuits or computer processors of the com-
puter). In some embodiments, the major components of the
computer system 400 comprise one or more processors 402,
a memory subsystem 404, a terminal interface 412, a storage
interface 416, an input/output device interface 414, and a
network interface 418, all of which can be communicatively
coupled, directly or indirectly, for inter-component commu-
nication via a memory bus 403, an input/output bus 408, bus
interface unit 407, and an input/output bus interface unit
410.

[0052] The computer system 400 contains one or more
general-purpose programmable central processing units
(CPUs) 402-1, 402-2, and 402-N, herein collectively
referred to as the CPU 402. In some embodiments, the
computer system 400 contains multiple processors typical of
arelatively large system; however, in other embodiments the
computer system 400 can alternatively be a single CPU
system. Each CPU 402 may execute instructions stored in
the memory subsystem 410 and can include one or more
levels of on-board cache.

[0053] The memory 404 can include a random-access
semiconductor memory, storage device, or storage medium
(either volatile or non-volatile) for storing or encoding data
and programs. In some embodiments, the memory 404
represents the entire virtual memory of the computer system
400 and may also include the virtual memory of other
computer systems coupled to the computer system 400 or
connected via a network. The memory 404 is conceptually
a single monolithic entity, but in other embodiments the
memory 404 is a more complex arrangement, such as a
hierarchy of caches and other memory devices. For example,
memory may exist in multiple levels of caches, and these
caches may be further divided by function, so that one cache
holds instructions while another holds non-instruction data,
which is used by the processor or processors. Memory can
be further distributed and associated with different CPUs or
sets of CPUs, as is known in any of various so-called
non-uniform memory access (NUMA) computer architec-
tures. The memory 404 also contains a storage controller
130 and a data segment 425.

[0054] These components are illustrated as being included
within the memory 404 in the computer system 400. How-
ever, in other embodiments, some or all of these components
may be on different computer systems and may be accessed
remotely, e.g., via a network. The computer system 400 may
use virtual addressing mechanisms that allow the programs
of the computer system 400 to behave as if they only have
access to a large, single storage entity instead of access to
multiple, smaller storage entities. Although these compo-
nents are illustrated as being separate entities, in other
embodiments some of these components, portions of some
of these components, or all of these components may be
packaged together.

[0055] In an embodiment, the storage controller 130
includes instructions that execute on the processor 402 or
instructions that are interpreted by instructions that execute

US 2020/0264791 Al

on the processor 402 to carry out the functions as further
described in this disclosure. In another embodiment, the
storage controller 130 is implemented in hardware via
semiconductor devices, chips, logical gates, circuits, circuit
cards, and/or other physical hardware devices in lieu of, or
in addition to, a processor-based system. In another embodi-
ment, the storage controller 130 includes data in addition to
instructions.

[0056] Although the memory bus 403 is shown in FIG. 4
as a single bus structure providing a direct communication
path among the CPUs 402, the memory subsystem 410, the
display system 406, the bus interface 407, and the input/
output bus interface 410, the memory bus 403 can, in some
embodiments, include multiple different buses or commu-
nication paths, which may be arranged in any of various
forms, such as point-to-point links in hierarchical, star or
web configurations, multiple hierarchical buses, parallel and
redundant paths, or any other appropriate type of configu-
ration. Furthermore, while the input/output bus interface 410
and the input/output bus 408 are shown as single respective
units, the computer system 400 may, in some embodiments,
contain multiple input/output bus interface units 410, mul-
tiple input/output buses 408, or both. Further, while multiple
input/output interface units are shown, which separate the
input/output bus 408 from various communications paths
running to the various input/output devices, in other embodi-
ments some or all of the input/output devices may be
connected directly to one or more system input/output buses.
[0057] The computer system 400 may include a bus inter-
face unit 407 to handle communications among the proces-
sor 402, the memory 404, a display system 406, and the
input/output bus interface unit 410. The input/output bus
interface unit 410 may be coupled with the input/output bus
408 for transferring data to and from the various input/
output units. The input/output bus interface unit 410 com-
municates with multiple input/output interface units 412,
414, 416, and 418, which are also known as input/output
processors (I0OPs) or input/output adapters (IOAs), through
the input/output bus 408. The display system 406 may
include a display controller. The display controller may
provide visual, audio, or both types of data to a display
device 405. The display system 406 may be coupled with a
display device 405, such as a standalone display screen,
computer monitor, television, or a tablet or handheld device
display. In alternate embodiments, one or more of the
functions provided by the display system 406 may be on
board a processor 402 integrated circuit. In addition, one or
more of the functions provided by the bus interface unit 407
may be on board a processor 402 integrated circuit.

[0058] In some embodiments, the computer system 400 is
a multi-user mainframe computer system, a single-user
system, or a server computer or similar device that has little
or no direct user interface but receives requests from other
computer systems (clients). Further, in some embodiments,
the computer system 400 is implemented as a desktop
computer, portable computer, laptop or notebook computer,
tablet computer, pocket computer, telephone, smart phone,
network switches or routers, or any other appropriate type of
electronic device.

[0059] It is noted that FIG. 4 is intended to depict the
representative major components of an exemplary computer
system 400. In some embodiments, however, individual
components may have greater or lesser complexity than as
represented in FIG. 4, Components other than or in addition

Aug. 20, 2020

to those shown in FIG. 4 may be present, and the number,
type, and configuration of such components may vary.

[0060] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0061] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0062] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0063] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be

US 2020/0264791 Al

connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0064] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0065] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0066] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0067] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the {functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,

Aug. 20, 2020

can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.
[0068] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.
1. A computer-implemented method for selectively
destroying data on a storage system, the method comprising:
sanitizing, in response to a wipe command to permanently
delete a data segment stored in the storage system, the
data segment, wherein the data segment includes an
address to blocks where data of the data segment is
stored in the storage system;
marking the address to the blocks as sanitized;
based on sanitizing the data segment,
locating a last journal entry for the data segment
located in a journal for the storage system, wherein
the last journal entry contains information regarding
the data segment;
sanitizing the last journal entry;
traversing the journal to locate one or more previous
journal entries for the data segment; and
sanitizing the one or more previous journal entries in the
journal.
2. The method of claim 1, further comprising:
determining, prior to sanitizing the data segment,
whether the data segment is deduplicated on the storage
system,
based on determining that the data segment is dedupli-
cated,
determining whether the address points directly to the
data segment as a data source address location;
marking, upon determining that the data segment is the
data source address location,
the address to the blocks as sanitized;
migrating the data segment from the data source address
location to a reference address location;
setting the reference address location as a new source
address location for the data segment; and
marking the new source address location such that the
mark indicates that new source address requires sani-
tization when no longer needed.
3. The method of claim 1, further comprising:
determining, prior to sanitizing the data segment,
whether the data segment is deduplicated on the storage
system,
based on determining that the data segment is dedupli-
cated,
determining whether the address points directly to the
data segment as a data source address location;
marking, upon determining that the data segment is a
reference to the data source address location, the
address to the blocks as sanitized; and

US 2020/0264791 Al

marking the data source address location such that the
mark indicates that the data source address location
requires sanitization when no longer needed.

4. The method of claim 1, wherein sanitizing the data
segment comprises:

overwriting the blocks with random data at least once; and

marking the data segment as sanitized, wherein reading

from the data segment returns causes a zero buffer to be
returned.

5. The method of claim 1, further comprising:

promoting the data segment to a front of a queue for

garbage collection.

6. The method of claim 1, further comprising:

performing, prior to sanitizing the data segment, at least

one of address translation and space translation on the
data segment, wherein the data segment is compressed
on the storage system.

7. The method of claim 1, wherein the wipe command is
attached to a SCSI command.

8. A computer-readable medium having instruction stored
therein, which when executed by a computer, cause the
computer to perform operations, the operations comprising:

sanitize, in response to a wipe command to permanently

delete a data segment stored in the storage system, the
data segment, wherein the data segment includes an
address to blocks where data of the data segment is
stored in the storage system;

mark the address to the blocks as sanitized;

based on sanitizing the data segment,

locate a last journal entry for the data segment located
in a journal for the storage system, wherein the last
journal entry contains information regarding the data
segment;

sanitize the last journal entry;

traverse the journal to locate one or more previous journal

entries for the data; and

sanitize the one or more previous journal entries in the

journal.

9. The computer-readable medium of claim 8, further
comprising:

determine, prior to sanitizing the data segment, whether

the data segment is deduplicated on the storage system;
based on determining that the data is deduplicated,
determine whether the address points directly to the
data segment as a data source address location;
mark, upon determining that the data segment is the data
source address location, the address to the blocks as
sanitized;

migrate the data segment from the data source address

location to a reference address location;

set the reference address location as a new source address

location for the data segment; and

mark the new source address location such that the mark

indicates that new source address requires sanitization
when no longer needed.

10. The computer-readable medium of claim 8, further
comprising:

determine, prior to sanitizing the data segment, whether

the data segment is deduplicated on the storage system;
based on determining that the data segment is dedupli-
cated,
determine whether the address points directly to the
data segment as a data source address location;

Aug. 20, 2020

mark, upon determining that the data segment is a refer-
ence to the data source address location, the address to
the blocks as sanitized; and

mark the data source address location such that the mark
indicates that the data source address location requires
sanitization when no longer needed.

11. The computer-readable medium of claim 8, further

comprising:

overwrite the blocks with random data at least once; and

mark the data segment as sanitized, wherein reading from
the data segment causes a zero buffer to be returned.

12. The computer-readable medium of claim 8, further
comprising:

promote the data segment to a front of a queue for garbage
collection.

13. The computer-readable medium of claim 8, further

comprising:

perform, prior to sanitizing the data segment, perform at
least one of address translation and space translation on
the data segment, wherein the data segment is com-
pressed on the storage system.

14. The computer-readable medium of claim 8, wherein
the wipe command is attached to a SCSI command for
deletion of data.

15. A system, comprising:

a processor;

a memory to store instructions, which when executed
from the memory, cause the processor to perform
operations on the system,

sanitizing, in response to a wipe command to permanently
delete a data segment stored in the storage system, the
data segment, wherein the data segment includes an
address to blocks where data of the data segment is
stored in the storage system;

marking the address to the blocks as sanitized;

based on sanitizing the data segment,
locating a last journal entry for the data segment

located in a journal for the storage system, wherein
the last journal entry contains information regarding
the data segment;

sanitizing the last journal entry;

traversing the journal to locate one or more previous
journal entries for the data segment; and

sanitizing the one or more previous journal entries in the
journal.

16. The system of claim 15, wherein the operations further

comprise:

prior to sanitizing the data segment,
determining whether the data segment is deduplicated

on the storage system;

upon determining that the data is deduplicated,
determining whether the address points directly to the

data segment as a data source address location;
upon determining that the data segment is the data source
address location, marking the address to the blocks as
sanitized;

migrating the data segment from a data source address
location to a reference address location;

setting the reference address location as a new source
address location for the data segment; and

marking the new source address location such that the
mark indicates that new source address requires sani-
tization when no longer needed.

US 2020/0264791 Al

17. The system of claim 15, wherein the operations further
comprise:
prior to sanitizing the data segment,
determining whether the data segment is deduplicated
on the storage system;
upon determining that the data segment is deduplicated,
determining whether the address points directly to the
data segment as a data source address location;
upon determining that the data segment is a reference to
the data source address location,
marking the address to the blocks as sanitized; and
marking the data source address location such that the
mark indicates that the data source address location
requires sanitization when no longer needed.
18. The system of claim 15, wherein the operation of
sanitizing the data segment comprises:
overwriting the blocks with random data at least once; and
marking the data segment address location as sanitized,
wherein reading from the address returns causes a zero
buffer to be returned.
19. The system of claim 15, wherein the operations further
comprise:
promoting the data segment to the front of a queue for
garbage collection.
20. The system of claim 15, wherein the operations further
comprise:
prior to sanitizing the data segment,
performing at least one of address translation and space
translation on the data segment address location,
wherein the data segment is compressed on the
storage system.

#* #* #* #* #*

Aug. 20, 2020

