US 20200264698A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0264698 A1

Veeramani et al.

43) Pub. Date: Aug. 20, 2020

(54)

(71)

(72)

(73)

@

(22)

(63)

KEYBOARD FOR VIRTUAL REALITY

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: Karthik Veeramani, Hillsboro, OR
(US); Jianfang Zhu, Hillsboro, OR
(US); Sayan Labhiri, Hillsboro, OR
(US); Bo Qiu, Hillsboro, OR (US);
Bradley A. Jackson, Hillshoro, OR
(US); Paul S. Diefenbaugh, Portland,
OR (US); Kim Pallister, Portland, OR
us)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Appl. No.: 16/793,539
Filed: Feb. 18, 2020

Related U.S. Application Data

Continuation of application No. 15/476,988, filed on
Apr. 1, 2017, now Pat. No. 10,606,343.

Publication Classification

(51) Int. CL
GOGF 3/01 (2006.01)
GOGF 3/03 (2006.01)
GOGF 1/16 (2006.01)
GOGF 3/042 (2006.01)
GO2B 27/01 (2006.01)
(52) US.CL
CPC ... GOGF 3/011 (2013.01); GOGF 3/0304

(2013.01); GOGF 1/1686 (2013.01); GO2B
27/017 (2013.01); GOGF 3/0425 (2013.01);
GOGF 3/0426 (2013.01); GOGF 3/017
(2013.01); GO6F 1/163 (2013.01)

(57) ABSTRACT

An embodiment of a graphics apparatus may include an
image generator, and a gesture tracker communicatively
coupled to the image generator. The image generator may be
configured to generate an image of a virtual input device, the
gesture tracker may be configured to determine a position of
a user’s finger relative to the virtual input device, and the
image generator may be further configured to generate an
image of a virtual finger based on the determined position of
the user’s finger relative to the virtual input device. Other
embodiments are disclosed and claimed.

(®
gooogooodo

Patent Application Publication

lO——\
r‘ll

Application
Processor

!

FIZ

Aug. 20,2020 Sheet 1 of 16

Persistent Storage
Media

A

Fl3

Graphics Processor

i

US 2020/0264698 Al

A

!

Gesture Tracker

14

20——\

!

Input Generator

\—15

FIG. 1

/‘21

!

Device Tracker

k-16

[—22

Image Generator

Gesture Tracker

A
A 4

!

I

Input Generator

L23

FIG. 2

v

I

Device Tracker

k24

v

Patent Application Publication Aug. 20,2020 Sheet 2 of 16 US 2020/0264698 A1

30 "w
F3l

Generate an image of a virtual input device

} r

Determine a position of a user’s finger relative to the virtual input
device

33
v [

Generate an image of a virtual finger based on the determined position of
the user’s finger relative to the virtual input device

® ©

FIG. 3

30"\
®)

F34

Determine a position of a user’s hand relative to the virtual input
device

1 -

Generate an image of a virtual hand based on the determined position
of the user’s hand relative to the virtual input device

f‘36

Generate input data based on the determined position of the user’s
finger relative to the virtual input device

v (%

Generate a visual indication corresponding to the generated input
data

FIG. 4

Y

Patent Application Publication Aug. 20,2020 Sheet 3 of 16 US 2020/0264698 A1

30’—\

©

/-38

Identify a characteristic of a physical input device

r‘ 39
Generate the image of the virtual input device based on the
identified characteristic of the physical input device

f‘ 40
Determine a position of the physical input device relative to the
user

v ['41

Determine a position the user’s hand relative to the position of
the physical input device

A 4 f- 42

Generate an image of a virtual representation of the physical
input device based on the position of the physical input device
relative to the user

: i

Generate an image of a virtual hand based on the determined
position of the user’s hand relative to the physical input device

r‘ 44
Load a three-dimensional model of the virtual input device
—B1 based on the identified characteristic of the physical input
device

=B

4

The virtual input device may include one of a virtual keyboard, a virtual
mouse, a virtual touchpad, a virtual stylus, and a virtual scroll wheel

FIG. 5

Patent Application Publication Aug. 20,2020 Sheet 4 of 16 US 2020/0264698 A1
60 W 60 w
62 E(63
61

FIG. 6A Qm
FIG. 6B

{®
ggooopooooo

Patent Application Publication Aug. 20, 2020 Sheet S of 16 US 2020/0264698 A1

PROCESSOR CORE(S) - 107 | [!!

GRAPHICS REGISTER = |
CACHE
PROCESSOR(S) FILE INSTRUCTION SET !
104 I
108 106 109 1
LI
PROCESSOR(S)
102
PROCESSOR BUS
110 J
e i MEMORY - 120
| EXTERNAL | MEMORY
[GRAPHICS | CONTROLLER INSTRUCTIONS - 121
: PROCESSOR HUB
| 112 116 DATA-122

DATA STORAGE LEGACY I/0
DEVICE “l I“' CONTROLLER
124 4
USB CONTROLLER(S)
WIRELESS /0 142
transcever (GBI conmrouier - | KEYBOARD |
126 HUB | /MOUSE - 144
130 i ————
FIRMWARE
AUDIO CONTROLLER
INTERFACE | () 146
128 —

!

NETWORK
CONTROLLER

100 J =
FIG. 8

US 2020/0264698 Al

Aug. 20,2020 Sheet 6 of 16

Patent Application Publication

6 "OIA

80¢
¥0SS3ID0Yd SIIHAVYD
TTC
¥3TIOYLNOD
AV1dSIa
_
vTC _ TTC - ONIY LDINNODYILNI _
o d3TT0UINOD 90¢ - (S)LINN FHDOVD AFYVHS =5
Jorc AYOWIW _ €le
(S)LINN %55z 7| — o/
¥3ITI0¥LNOD o | LN I A/ﬂvom
sng 0T¢ R | === S)LINN
140D L 2nov) JHOVD
IN3OV W3LSAS | NZocC 30D “ VZ0¢C 340D

8T¢C
AHOW3IW
a3aqa3agwni

ﬁ.\ 00¢ 40SS3204d

US 2020/0264698 Al

Aug. 20,2020 Sheet 7 of 16

01 “OIdA

[43

301A3d
AV1dSIA

1€ - 3DVIHILINI AHOWIW

90¢ 1€ ; 1€ 1€ v0¢e [40]3
INIDNA
33400 INM3dId W31SAS-9NS INM3dId 3INISNG YITIOYLNGD
0O3dIA VIQ3In VIQIW/ag ae 1114 AV1dSIA
||||||||||||||||||||||||||||||||||||| h_TJ/ 0] 83

3d5

Patent Application Publication

/l\ 00¢

40OSS3I30Ud SOIHAVYD

US 2020/0264698 Al

Aug. 20,2020 Sheet 8 of 16

Patent Application Publication

A K|

252
(3719vIvoSs)
AVHYY
LINN NOILND3IX3

T

W

IN3dId
VIGIW

(01574
INIONI DNNCINYS

1 9P - 140d v1va
Alowa |
ol |
_
_
| __
_ 9¢cy
_ H3LT14/37v0S IOV
R 737
AJOWa " NOI1LVINILST NOILOW
woJ4 _ .M..mﬁu.m
| JIDVIYILNIAA/3SIONIA
|
_
_
_

(0]57

ANIDONT ONISS3IO0Ud SOIHAVYD

1

o

INI3dId A€

Alowa
woJ4

5017
HINVIILS
ONVININOD

US 2020/0264698 Al

1l e N ongge |
I N¥9S _ NCT9S | |
2 11 syzramvs |1 sn3 I
- ___.IIII__.III_ |
- 1 NO9S - 3400-8ns ||
e |
7 __ _"
S | NOZS t
Q I, saounosay-aauvHs __
S __ I
50 - — — — _ _ ._“
= e e e e -
I
| N¥ss __ NTSS ||
g 11 syz1dmvs |1 sn3 |
< b — — o —— |
2 I NOSS 3¥02-9nS _
= L—————————— I
u IIIIIIIIII
[~™
g
5 005
= ¥0SSI00Yd
g SOIHdYY9
=
e
«
[~™

<l O

V085S - 340D SJIHAVYD

V¥95 V95
SHITAWVS sN4

V095 - 3403-9NS

V0.S
S32HNOSIY AIUVHS

V¥Ss Vas
SHITAWVS sN4

V055 IHOI3-9NS

9¢s
INM3dId

AY13INOID

veSs
AN3 LNOYd
0O3dIA

€ES 0es
XdW 30A

Z€S - INIDN3 VIQIN

€0s
YINVIYLS
ANVWWOD

123INOJYILNI ONIY

vom\

0§

US 2020/0264698 Al

Aug. 20,2020 Sheet 10 of 16

Patent Application Publication

¢l "Old

— _ _
719 _ _
1¥0d V1va _ 505 _ | @ | o s
_ " _ 3 ni JHOVD NOILDNYLSNI
c1s | |
IHOVD V1vd L]
T
A, mp
| |
o ltReos | ___ | 7805 | veos __ _
RERRTALS | " n3 0 b 509 -5
| _ HOLVdSIa | ¥IAVHS
: N avI¥HL | 73Xid

s

1014

057 - Yien 101097 ——— QXXX¥| (0L p=9p02do

SV - Y1e |9jjeded ————» o_xxxxnoo_‘onmcooao

9¥Z - SNO3UR||BISIN ——» QXXX¥), | 0D=0p0odo

US 2020/0264698 Al

¥PZ - 1011u0) Mol —— XXX | 0)=8p0ado

TV - 21807 /an0y —» QXXX§XQ0(=0p0ddo

e

ovZ
3002330 300240

T¢L | 07 | BTL vz €L | TL
TOHS | 00¥S | 1530 | 104¥INOI | X3ANI | 300240

Aug. 20,2020 Sheet 11 of 16

0L
- NOILONYLSNI
2 LIVINOD Lig-¥9
=
2
= VT Tt T T N ST o= T — — ——
z | 97z Ve | Ter | o | 8L | 9L 274 474
= ! 300N $53¥AQV/SSIDV zous | Tous | oows | 153 [32I5-03X3 | T0MLNOD [30020
=] o e - - - - o - - - —- - -
- (2
= NOILDNYLSNI
= Lig-82T
<
= ——
g 00z
= SLYINYO4 NOLLONYLSNI 30D SDIHAVYD

Patent Application Publication Aug. 20, 2020 Sheet 12 of 16 US 2020/0264698 A1

Graphics
Processor Media
800 Pipeline
830
Command
Streamer ,—---& -------- | I Ip— N
~ , A
820 303 i Video Front- Media \
802 \'_ ; End Engine | |
""""""""" " 834 837 H
\ : A AN J
; Vertex | | ~-<£-
1 Fetcher 1 850
i 805 ! 831 \/\
; | }
i Y !
; Vertex : Execution
: 1 o Sampler
i Shader t L1 Units 351 Text
P\ 87 J 852A e exture
: — ‘ Cache — Cache
4 \ ¢ 5 351 Execution |||Data Por| g5
i Hull Shader| ¢ = 224 Uni 0206
1 + O nits 856
g ! 811 : = 8528
2 i ! & A
S 1 1 2
= | 2
5 ' Tessellator 3
E : 813 : £ " 2N y
20 i E = Render
' i . Cache
& ; Domain i Raster/ L3 Pixel §78
‘ Shader Depth Cache Ops
i i 873 875 877
1
! :
H '
1]
H
i
? :
H 1
' i
! i 870
! i Render
' : Engine
‘] g
' i
: 1
' H
‘ :

FIG. 15

Patent Application Publication Aug. 20, 2020 Sheet 13 of 16 US 2020/0264698 A1l

Graphics Processor Command Format

900
Client Opcode Sub-Opcode Data Command Size |
902 904 905 906 908 |
Graphics Processor Command Sequence
910
[Pipeline Flush 1
I 912 |
[Pipeline Select
| 913 l
Pipeline Control
914
Return Buffer State
916
922 920 924
\ 3D Media Ve
Pipeline?
3D Pipeline State Media Pipeline State
930 940
3D Primitive Media Object
232 942
A 4
Execute Execute
934 944

FIG. 16B

Patent Application Publication Aug. 20, 2020 Sheet 14 of 16 US 2020/0264698 A1

Data Processing System 1000

3D Graphics Application

<€ 1010
Shader Instructions EXGCU’[ab;-eO;-I;StrUCtIODS
1012 —
Graphics
Objects
1016
Operating System (0S}
User Mode Graphics Driver | 2220
M 1026p =3 Graphics API
emary < O Sha .er {e.g. Direct3D/OpenGL)
1050 Compiler | 1022
Shader Compiler 1024

1027 ‘l‘

0S Kernel Mode Functions

P Kernel Mode Graphics Driver <__J—* 1028
A 1029
A A
y \ 4 A4
Graphics Processor General Purpose
Processor 1030 Core(s)
1032 a— 1034

1)

FIG. 17

US 2020/0264698 Al

Aug. 20,2020 Sheet 15 of 16

Patent Application Publication

81 "OId

€L ALIIOVANOISAA

(o
NOILYINNIS
JHYYMLA0S

osTp
UL~ 07Ty
07kl ~ (v1va NOIS3a STIT
— WOISAHd 0 1aH) || Nois3a 1LY
300N FHYMANYH
oIt
ALMIOV4
NOILYOIdgv4

011 - INJNdOT13A3A JHOD dl

Patent Application Publication Aug. 20, 2020 Sheet 16 of 16 US 2020/0264698 A1

APPLICATION GRAPHICS
PROCESSOR(s) PROCESSOR 1200

1205 1210 /

| |
| ' | '
| IMAGE | | VIDEO |
| PROCESSOR | | PROCESSOR |
I 1215 : I 1220 :
| | | |
o o | e o o |
USB UART SPI/SDIO 128/12C DISPLAY
1225 1230 1235 1240 1245
_____ | P
: Sgﬁgmy MEMORY FLASH : MPI || HDMmI
I I 1265 1260 | 1255 | 1250
L2120 L
N /)

FIG. 19

US 2020/0264698 Al

KEYBOARD FOR VIRTUAL REALITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims the benefit of pri-
ority to U.S. Non-Provisional patent application Ser. No.
15/476,988 filed on Apr. 1, 2017.

TECHNICAL FIELD

[0002] Embodiments generally relate to virtual reality
(VR). More particularly, embodiments relate to a keyboard
for virtual reality.

BACKGROUND

[0003] A VR environment may include a host system
running a VR application connected to a head-mounted
display (HMD) to immerse a user in a virtual environment.
As the user moves or turns their head, the display may be
updated to track the motion so the user may perceive what
is displayed as appearing to be a realistic environment. In the
VR environment, user input may typically take the form of
sensed head movement, eye tracking or gesture recognition.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The various advantages of the embodiments will
become apparent to one skilled in the art by reading the
following specification and appended claims, and by refer-
encing the following drawings, in which:

[0005] FIG. 1 is a block diagram of an example of an
electronic processing system according to an embodiment;
[0006] FIG. 2 is a block diagram of an example of a
graphics apparatus according to an embodiment;

[0007] FIGS. 3 to 5 are flowcharts of an example of a
method of displaying virtual objects according to an
embodiment;

[0008] FIGS. 6A to 6B are illustrative diagrams of an
example of a user with a VR system according to an
embodiment;

[0009] FIG. 7 is an illustrative diagram of an example of
displayed virtual objects according to an embodiment;
[0010] FIGS. 8-10 are block diagrams of an example of an
overview of a data processing system according to an
embodiment;

[0011] FIG. 11 is a block diagram of an example of a
graphics processing engine according to an embodiment;
[0012] FIGS. 12-14 are block diagrams of examples of
execution units according to an embodiment;

[0013] FIG. 15 is a block diagram of an example of a
graphics pipeline according to an embodiment;

[0014] FIGS. 16A-16B are block diagrams of examples of
graphics pipeline programming according to an embodi-
ment;

[0015] FIG. 17 is a block diagram of an example of a
graphics software architecture according to an embodiment;
[0016] FIG. 18 is a block diagram of an example of an
intellectual property (IP) core development system accord-
ing to an embodiment; and

[0017] FIG. 19 is a block diagram of an example of a
system on a chip integrated circuit according to an embodi-
ment.

Aug. 20, 2020

DESCRIPTION OF EMBODIMENTS

[0018] Turning now to FIG. 1, an embodiment of an
electronic processing system 10 may include an application
processor 11, persistent storage media 12 communicatively
coupled to the application processor 11, a graphics processor
13 communicatively coupled to the application processor 11,
and a gesture tracker 14 communicatively coupled to the
application processor 11. In some embodiments, the graph-
ics processor 13 may be configured to generate an image of
a virtual input device, the gesture tracker 14 may be con-
figured to determine a position of a user’s finger relative to
the virtual input device, and the graphics processor 13 may
be further configured to generate an image of a virtual finger
based on the determined position of the user’s finger relative
to the virtual input device. Some embodiments of the system
10 may further include an input generator 15 communica-
tively coupled to the gesture tracker 14 to generate input data
based on the determined position of the user’s finger relative
to the virtual input device. Some embodiments of the system
may additionally, or alternatively, include a device tracker
16 communicatively coupled to the graphics processor 13 to
identify a characteristic of a physical input device. For
example, the graphics processor 13 may be configured to
generate the image of the virtual input device based on the
identified characteristic of the physical input device.
[0019] Embodiments of each of the above application
processor 11, persistent storage media 12, graphics proces-
sor 13, gesture tracker 14, input generator 15, device tracker
16, and other system components may be implemented in
hardware, software, or any suitable combination thereof. For
example, hardware implementations may include configu-
rable logic such as, for example, programmable logic arrays
(PLAs), field-programmable gate arrays (FPGAs), complex
programmable logic devices (CPLDs), or in fixed-function-
ality logic hardware using circuit technology such as, for
example, ASIC, complementary metal oxide semiconductor
(CMOS) or transistor-transistor logic (TTL) technology, or
any combination thereof. Alternatively, or additionally, these
components may be implemented in one or more modules as
a set of logic instructions stored in a machine- or computer-
readable storage medium such as random access memory
(RAM), read only memory (ROM), programmable ROM
(PROM), firmware, flash memory, etc., to be executed by a
processor or computing device. For example, computer
program code to carry out the operations of the components
may be written in any combination of one or more operating
system applicable/appropriate programming languages,
including an object-oriented programming language such as
PYTHON, PERL, JAVA, SMALLTALK, C++, C# or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages.

[0020] Sensor Examples

[0021] Forexample, a VR system may include a variety of
sensors such as two dimensional (2D) cameras, three dimen-
sional (3D) cameras, depth cameras, gyroscopes, acceler-
ometers, inertial measurement units (IMUs), location ser-
vices, microphones, proximity sensors, thermometers,
biometric sensors, etc. The sensors may be distributed across
multiple devices. Some embodiments may include an
INTEL REALSENSE camera. The information from the
sensors may include or be combined with input data from the
user’s other devices (e.g. smartphones, wearable devices,
human interface devices (HIDs), etc.). For example, the

US 2020/0264698 Al

user’s device(s) may include one or more 2D, 3D, and/or
depth cameras. The user’s device(s) may also include gyro-
scopes, accelerometers, IMUs, location services, thermom-
eters, biometric sensors, etc. For example, the user may
carry a smartphone (e.g. in the user’s pocket) and/or may
wear a wearable device (e.g. such as a smart watch, an
activity monitor, and/or a fitness tracker). The user’s device
(s) may also include a microphone which may be utilized to
detect if the user is speaking, on the phone, speaking to
another nearby person, etc.

[0022] The sensors available to the VR system may also
include some or all of the user’s various other devices which
are capable of capturing information related to the user’s
actions or activity (e.g. including an input/output (1/O)
interface of the user devices which can capture keyboard/
mouse/touch activity). The VR system may get information
directly from the user’s other devices (e.g. wired or wire-
lessly) or the VR system may be able to integrate informa-
tion from the devices from a server or a service (e.g.
information may be uploaded from a fitness tracker to a
cloud service, which the VR system may download).
[0023] Gesture Tracker Examples

[0024] The VR system may be configured to perform
facial recognition, gaze tracking, facial expression recogni-
tion, and/or gesture recognition including body-level ges-
tures, arm/leg-level gestures, hand-level gestures, and/or
finger-level gestures. For example, a machine vision system
may be configured to classify an action of the user. In some
embodiments, a suitably configured machine vision system
may be able to determine if the user is present at a computer,
typing at a keyboard, using a mouse, using a trackpad, using
a touchscreen, using a HMD, using a VR system, sitting,
standing, and/or otherwise taking some other action or
activity. For example, devices such as the MICROSOFT
KINECT and the MICROSOFT HOLOLENSE may provide
various gesture tracking capabilities.

[0025] Device Tracker Examples

[0026] Some embodiments of a VR system, for example,
may analyze and/or perform feature/object recognition on
images captured by a camera. For example, machine vision
and/or image processing may identify and/or recognize
objects in a scene (e.g. a desk, a table, a keyboard, mouse,
other HIDs, etc.). For example, the device tracker may get
camera data related to a real object in a scene and may use
that information to identify position and orientation of the
real object. In some embodiments, the device tracker may be
configured to construct a 3D model of an object in the
captured scene. The device tracker may also identify when
the real object in the scene moves from one position/
orientation to another.

[0027] Focus/Gaze Tracker Examples

[0028] The VR system may get information from the
sensors to determine focus information. At a high level,
focus information may be based on 1) where the user is
assumed to be looking, 2) where the user is determined to be
looking, 3) where an application wants the user to look,
and/or 4) where the user is predicted to be looking in the
future. Some focus cues may be stronger in the focal region
of where the user is looking. If the user is looking straight
ahead they may see things in sharp focus. With scenes or
objects towards the periphery, the user may notice motion
but not details in sharp focus.

[0029] Some embodiments, for example, may include an
eye tracker or get eye information from an eye tracker to

Aug. 20, 2020

track the user’s eyes. The user may go through a calibration
process which may help the eye tracker provide more
accurate information. When a user is wearing a VR headset,
for example, a camera may capture an image of a pupil and
the system may determine where the user is looking (e.g. a
focus area, depth of field, and/or direction). The camera may
capture pupil information and the system may infer where
the user’s focus area is based on that information.

[0030]

[0031] The VR system may also get information from the
sensors, and/or the focus/gaze tracker, and other sources to
provide motion information. At a high level, motion infor-
mation may be based on 1) the user moving their head, 2) the
user moving their eyes, 3) the user moving their body, 4)
where an application wants the user to turn their head, eyes,
and/or body, and/or 4) where the user is predicted to turn
their head, eyes, and/or body in the future. Some motion
information may be determined readily from the sensed
information. For example, head position, velocity, accelera-
tion, motion direction, etc. may be determined from an
accelerometer. Eye motion information may be determined
by tracking eye position information over time (e.g. if the
eye tracker provides only eye position information).

[0032] Some motion information may be content-based. In
a game or on-the-fly 3D content, for example, the applica-
tion may know how quickly and where the objects are
moving. The application may provide the information to the
motion tracker (e.g. through an application programming
interface (API) call). Future content-based object motion
information for a next frame/scene may also be fed into the
motion tracker for decision making. Some content-based
motion information may be determined by image processing
or machine vision processing the content.

[0033]

[0034] Those skilled in the art will appreciate that aspects
of various trackers described herein may overlap with other
trackers and that portions of each tracker may be imple-
mented or distributed throughout various portions of an
electronic processing system. For example, the focus tracker
may use motion information to provide a predicted future
focus area and the motion tracker may use focus information
to predict a future motion. Eye motion information may
come directly from an eye tracker, may be determined/
predicted by the focus tracker, and/or may be determined/
predicted by the motion tracker. The examples herein should
be considered as illustrative and not limiting in terms of
specific implementations.

[0035] Turning now to FIG. 2, an embodiment of a graph-
ics apparatus 20 may include an image generator 21, and a
gesture tracker 22 communicatively coupled to the image
generator 21. In some embodiments, the image generator 21
may be configured to generate an image of a virtual input
device, the gesture tracker 22 may be configured to deter-
mine a position of a user’s finger relative to the virtual input
device, and the image generator 21 may also be configured
to generate an image of a virtual finger based on the
determined position of the user’s finger relative to the virtual
input device. The gesture tracker 22 may be further config-
ured to determine a position of a user’s hand relative to the
virtual input device, and the image generator may be further
configured to generate an image of a virtual hand based on
the determined position of the user’s hand relative to the
virtual input device.

Motion Tracker Examples

Tracker Overlap Examples

US 2020/0264698 Al

[0036] In some embodiments, the apparatus 20 may fur-
ther include an input generator 23 communicatively coupled
to the gesture tracker 22 to generate input data based on the
determined position of the user’s finger relative to the virtual
input device. For example, the image generator 21 may
generate a visual indication corresponding to the generated
input data. For example, if the user presses a key in the real
or virtual environments, the key may appear to move or may
appear immersed as if it was pressed in the virtual environ-
ment. Additionally, or alternatively, the key may be high-
lighted with a different color, the key may be outlined, or
some other visual indication may be generated. In addition,
or alternatively, audio, haptic, or other feedback may be
generated corresponding to the generated input data (e.g. a
key click sound).

[0037] Some embodiments may additionally, or alterna-
tively include a device tracker 24 communicatively coupled
to the image generator 21 to identify a characteristic of a
physical input device, where the image generator 21 may be
further configured to generate the image of the virtual input
device based on the identified characteristic of the physical
input device. For example, the device tracker 24 may be
configured to determine a position of the physical input
device relative to the user, and the gesture tracker 22 may be
configured to determine a position the user’s hand relative to
the position of the physical input device. The image gen-
erator may be configured to generate an image of a virtual
representation of the physical input device based on the
position of the physical input device relative to the user, and
to generate an image of a virtual hand based on the deter-
mined position of the user’s hand relative to the physical
input device. In some embodiments, the image generator 21
may be configured to load a three-dimensional model of the
virtual input device based on the identified characteristic of
the physical input device. In any of the embodiments herein,
non-limiting examples of the virtual input device may
include any of a virtual keyboard, a virtual mouse, a virtual
touchpad, a virtual stylus, and a virtual scroll wheel.

[0038] For example, embodiments or portions of the
image generator 21 may be implemented in applications or
driver software (e.g. through an API). Other embodiments or
portions of the image generator 21 may be implemented in
specialized code (e.g. shaders) to be executed on a graphics
processor unit (GPU). Other embodiments or portions of the
image generator 21 may be implemented in fixed function
logic or specialized hardware (e.g. in the GPU). In some
embodiments, the image generator 21 may be part of a VR
application with access to a database/library of 3D models of
input devices and a database/library of 3D models of fingers
and/or hands. For example, the VR application may run on
a general purpose processor which calls appropriate driver
routines and/or graphics routines to generate images of the
virtual input device(s), virtual finger(s), and/or virtual hands
on the display(s). In some embodiments, the image genera-
tor 21 may be part of a VR runtime system loaded as driver
routines. For example, VR applications may simply request
input through an API call and the VR runtime routines may
execute appropriate code and call appropriate graphics rou-
tines to generate the images of the virtual input device(s),
virtual finger(s), and/or virtual hands on the display(s).

[0039] For example, embodiments or portions of the input
generator 23 may be implemented in applications or driver
software (e.g. through an API). Other embodiments or
portions of the input generator 23 may be implemented in

Aug. 20, 2020

specialized code (e.g. shaders) to be executed on a GPU.
Other embodiments or portions of the input generator 23
may be implemented in fixed function logic or specialized
hardware (e.g. in the GPU). For example, the input generator
23 may get information from a gesture tracker to indicate
that the user has performed a key press action with a
particular finger. The input generator 23 may determine the
position of the corresponding virtual finger relative to the
virtual keyboard to identify which key the user pressed (or
virtually pressed). The input generator 23 may then send a
signal through the 10 interface corresponding to the identi-
fied key. The input generator 23 may also be configured to
generate signals through the 10 interface that correspond to
gestures such as touch (e.g. for a touchpad or a touch
screen), scrolling (e.g. for a scroll wheel on a mouse), button
clicks (e.g. for mouse buttons). The input generator 23 may
also be configured to generate signals through the 10 inter-
face based on information from the gesture tracker 22 and/or
the device tracker 24 that correspond to movement of an
input device (e.g. such as moving a physical mouse or
virtually moving a virtual mouse).

[0040] Embodiments of each of the above image generator
21, gesture tracker 22, input generator 23, device tracker 24,
and other components of the apparatus 20 may be imple-
mented in hardware, software, or any combination thereof.
For example, hardware implementations may include con-
figurable logic such as, for example, PLAs, FPGAs, CPLDs,
or in fixed-functionality logic hardware using circuit tech-
nology such as, for example, ASIC, CMOS, or TTL tech-
nology, or any combination thereof. Alternatively, or addi-
tionally, these components may be implemented in one or
more modules as a set of logic instructions stored in a
machine- or computer-readable storage medium such as
RAM, ROM, PROM, firmware, flash memory, etc., to be
executed by a processor or computing device. For example,
computer program code to carry out the operations of the
components may be written in any combination of one or
more operating system applicable/appropriate programming
languages, including an object-oriented programming lan-
guage such as PYTHON, PERL, JAVA, SMALLTALK,
C++, C# or the like and conventional procedural program-
ming languages, such as the “C” programming language or
similar programming languages.

[0041] Turning now to FIGS. 3 to 5, an embodiment of a
method 30 of displaying virtual objects may include gener-
ating an image of a virtual input device at block 31,
determining a position of a user’s finger relative to the
virtual input device at block 32, and generating an image of
a virtual finger based on the determined position of the
user’s finger relative to the virtual input device at block 33.
The method 30 may also include determining a position of
a user’s hand relative to the virtual input device at block 34,
and generating an image of a virtual hand based on the
determined position of the user’s hand relative to the virtual
input device at block 35. For example, some embodiments
may include generating input data based on the determined
position of the user’s finger relative to the virtual input
device at block 36, and generating a visual indication
corresponding to the generated input data at block 37.
[0042] In some embodiments, the method 30 may further
include identifying a characteristic of a physical input device
at block 38, and generating the image of the virtual input
device based on the identified characteristic of the physical
input device at block 39. For example, the method 30 may

US 2020/0264698 Al

include determining a position of the physical input device
relative to the user at block 40, determining a position the
user’s hand relative to the position of the physical input
device at block 41, generating an image of a virtual repre-
sentation of the physical input device based on the position
of the physical input device relative to the user at block 42,
and generating an image of a virtual hand based on the
determined position of the user’s hand relative to the physi-
cal input device at block 43. Some embodiments may further
include loading a three-dimensional model of the virtual
input device based on the identified characteristic of the
physical input device at block 44. For example, the virtual
input device may include one of a virtual keyboard, a virtual
mouse, a virtual touchpad, a virtual stylus, and a virtual
scroll wheel at block 45, among other HIDs.

[0043] Embodiments of the method 30 may be imple-
mented in a system, apparatus, application processor, graph-
ics processor unit (GPU), parallel processor unit (PPU), or
a graphics processor pipeline apparatus such as, for
example, those described herein. More particularly, hard-
ware implementations of the method 30 may include con-
figurable logic such as, for example, PLAs, FPGAs, CPLDs,
or in fixed-functionality logic hardware using circuit tech-
nology such as, for example, ASIC, CMOS, or TTL tech-
nology, or any combination thereof. Alternatively, or addi-
tionally, the method 30 may be implemented in one or more
modules as a set of logic instructions stored in a machine- or
computer-readable storage medium such as RAM, ROM,
PROM, firmware, flash memory, etc., to be executed by a
processor or computing device. For example, computer
program code to carry out the operations of the components
may be written in any combination of one or more operating
system applicable/appropriate programming languages,
including an object-oriented programming language such as
PYTHON, PERL, JAVA, SMALITALK, C++, C# or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. For example, the method 30 may be
implemented on a computer readable medium as described
in connection with Examples 19 to 25 below.

[0044] For example, embodiments or portions of the
method 30 may be implemented in applications or driver
software (e.g. through an API). Other embodiments or
portions of the method 30 may be implemented in special-
ized code (e.g. shaders) to be executed on a GPU. Other
embodiments or portions of the method 30 may be imple-
mented in fixed function logic or specialized hardware (e.g.
in the GPU).

[0045] While VR applications may be well suited for
entertainment, conventional VR systems may not be as well
suited for productivity usages such as web browsing, check-
ing e-mail, word processing, spreadsheets, etc. Some
embodiments may increase the potential for VR systems to
support productivity usages. For example, an embodiment of
VR system may replace a multi-monitor desktop setup in a
work cubicle with a headset and some wireless input
devices, thereby reducing wiring and desktop clutter. Some
embodiments may provide a way to use common HIDs, such
as keyboard and mouse, which may be important for user
productivity. For productivity, a user may want to use their
most comfortable HID (such as an ergonomic keyboard/
mouse) for long time periods, the same way they might
without a HMD. Also, a user who prefers to look at a
keyboard while typing may have difficulty typing while

Aug. 20, 2020

wearing the HMD (e.g. without being able to see the
keyboard). Some embodiments may advantageously
improve usability of a keyboard and/or mouse in a VR
environment for productivity usages. For example, some
embodiments may expand the use of input devices for VR
applications.

[0046] For entertainment usages with limited input
requirements, some applications or a VR runtime routine
may draw a software keyboard, which a user may control
through gaze together with a touchpad or controller to enter
data. For cursor input, gaze may control a cursor movement
and the touchpad/controller may act as a selection action.
Gaze control for input may be a limited option for produc-
tivity usage. Advantageously, some embodiments may pro-
vide better input speed for more intensive data input appli-
cations. Some embodiments may also provide more
ergonomic comfort for entering data over a longer time
period.

[0047] Turning now to FIG. 6A, FIG. 6B, and FIG. 7, a
VR system 60 may include a HMD 61 to be worn by a user
62. A look-down camera 63 may be positioned on the HMD
61 to capture image and/or depth image information (e.g. see
FIG. 6A), which may be used for gesture tracking of the
fingers and/or hands 64 of the user 62. If the user 62
addresses a keyboard 65 in the real environment by placing
their hands 64 near the keyboard 65 (e.g. see FIG. 6B), a
gesture tracker may recognize that gesture and the VR
system 60 may generate an image of a virtual keyboard 65v
along with virtual hands 64v in the virtual environment
shown on a display 66 of the HMD 61 in response to the
recognized gesture. The VR system may further recognize a
physical mouse 67 in the real environment and generate an
image of a virtual mouse 67v in the virtual environment on
the display 66. In some embodiments, the VR system 60
may overlay one or more productivity applications 68 (e.g.
a file browser, a web browser, and email application, etc.) in
front of the VR scene so the user can productively work on
another application without removing the HMD 61. As
illustrated in FIG. 7, a key press in the real environment may
generate a visual indication of a key press 69 in the virtual
environment (e.g. a movement of the pressed key in the 3D
model, and/or a change in color or highlight of the pressed
key).

[0048] Some embodiments may provide a VR runtime
routine to render a 3D representation of the actual keyboard/
mouse model that a user has setup (e.g. or which has been
auto-detected). The virtual keyboard may be drawn in the
virtual space close to where the user’s finger would be if
they were inside the virtual space. Virtual hands/fingers may
also be rendered graphically, positioned appropriately on the
keys/mouse the user wants to interact with. Some embodi-
ments may texture the animated hands/fingers to match the
user’s skin tone/color based on corresponding information
sensed by the HMD’s various trackers.

[0049] In some embodiments, the VR system may identify
a physical input device. For example, the VR runtime
routine may present a menu to the user on a one-time basis
(which can be overridden or changed), and the user may
select the appropriate device (e.g. identified by model num-
bers of the devices). The user may also attach their physical
devices to the VR system and the model or serial number
may be auto-detected. For example, if the device is paired
over Bluetooth to the VR runtime routine, the model of the
device may be identified using the idVendor and idProduct

US 2020/0264698 Al

fields of the USB HID Device Descriptor. The VR system
may load a 3D model of the identified product either from
the cloud or from local storage based on the model or serial
number. In some embodiments, the VR system may be able
to determine a physical layout of the identified product and
generate the 3D model based on the physical layout.
[0050] Some embodiments may provide the user two or
more options to interact with a physical input device in the
virtual environment. For example, the user may connect
their physical input device to the VR system and use the
device as they normally would for input. Additionally, or
alternatively, the user may use a dummy physical device
(e.g. not connected to the VR system but still providing
haptic feedback through the feel of the device). Additionally,
or alternatively, the user may just make the motions of using
an input device (e.g. type on the desk or in the air as though
a keyboard existed at their hand position). In any of these
examples, the user would see a virtual input device in the
virtual environment, and a gesture tracker (e.g. a wide
angled, world-facing camera on the HMD) may constantly
track the user’s hand and finger movements. The VR system
may update the rendered image to correspond to the user
using the virtual input device. For example, if the user’s
finger moves from key “A” to key “L” in the real environ-
ment, animated fingers in the virtual space may be updated
accordingly. If the user physically repositions the input
device (e.g. to get more ergonomic comfort), the location
and orientation of the 3D model of that device may be
adjusted in the virtual world.

[0051] Some embodiments may also be useful for AR/MR
applications. For example, if the user does not have physical
access to their input device(s), they may make a gesture that
the AR/MR system may recognize as addressing a keyboard/
mouse/stylus/etc. (e.g. holding both hands out in front of
their body with their fingers curved). The AR/MR system
may then generate an image of a virtual input device
proximate to the user’s hands/fingers for the user to interact
with in the AR/MR environment. Advantageously, the vir-
tual input device may correspond to the user’s usual physical
input device and the user’s muscle memory for that device
may provide more productive use of the virtual input device.
In some embodiments, the VR/AR/MR system may scale a
size of the virtual keyboard to a detected and/or measured
hand size based on the user’s resting and/or natural hand
position (e.g. when no physical device is present).

[0052] In some embodiments, the user may advanta-
geously have the flexibility to switch seamlessly between
their real devices and a pretend device if they don’t have
access to their real ones. In some embodiments, the devices
may be drawn in the virtual space to closely match a user’s
physical setup (e.g. matching a model of a real device,
positioned close to the user’s view, texturing the graphical
hands with the user’s skin color etc.). The user may advan-
tageously find the setup in the virtual environment very
close to the productivity setup they are used to in their real
space.

[0053] In some embodiments, the user may call up a
virtual productivity environment on the HMD display. When
the productivity environment is setup, models for virtual
input devices may be identified. For example, the user may
connect or pair a physical input device (e.g. keyboard/
mouse/stylus/touchpad/etc.) to the VR system over a
medium such as USB or Bluetooth. The connection may
cause exchange of HID descriptors, which may allow the

Aug. 20, 2020

VR system to identify the make and model of the device.
The user may additionally, or alternatively, select a device
from an appropriate interface. For example, the VR system
presents an interface that allows the choice of make and
model of their preferred input device. In both (a) and (b), the
VR system remembers the choice until overridden with a
different preference. In addition, or alternatively, the VR
system may read a bar code, a quick-response (QR) code,
radio-frequency identification (RFID) tag, or other symbol
or tag on the physical input device to recognize the device.
In addition, or alternatively, the VR system may use machine
vision to recognize the device. In some embodiments, the
VR system may be further configured to create a 3D model
of the physical input device (e.g. using machine vision).
[0054] The VR system may then load a 3D graphical
model of the make and model identified (or the created 3D
model), either from cloud or local storage (e.g. from a
database of 3D models). A world-facing, wide-angled cam-
era on the periphery of the HMD may start tracking the
user’s hand, fingers, and any real input device that the user
may be interacting with. The VR system may take inputs
from the tracker and overlay a graphical version of the user’s
hands and input devices, in the orientation and position close
to the real scenario (e.g. as detected by the tracking camera).
The tracker input may be constantly monitored to update the
graphical model with user’s current hand/finger positions.
Advantageously, the user may be able to type more com-
fortably without looking outside the HMD because the user
may be able to see their virtual fingers as they type.
[0055] In some embodiments, the VR system may be part
of a virtual operating system (OS) specifically designed to
support VR applications together with productivity applica-
tions. When the user brings up the virtual productivity
environment, they may pause a VR application to attend to
other applications (e.g. e-mail). The paused VR scene may
become a background image for the other application win-
dows. For example, the user making a keyboard gesture may
automatically pause the current VR application. The user
may also allow the VR application to keep running and the
virtual OS and/or other application windows may appear to
float in front of the VR graphics.

[0056] System Overview

[0057] FIG. 8 is a block diagram of a processing system
100, according to an embodiment. In various embodiments
the system 100 includes one or more processors 102 and one
or more graphics processors 108, and may be a single
processor desktop system, a multiprocessor workstation
system, or a server system having a large number of pro-
cessors 102 or processor cores 107. In on embodiment, the
system 100 is a processing platform incorporated within a
system-on-a-chip (SoC) integrated circuit for use in mobile,
handheld, or embedded devices.

[0058] An embodiment of system 100 can include, or be
incorporated within a server-based gaming platform, a game
console, including a game and media console, a mobile
gaming console, a handheld game console, or an online
game console. In some embodiments system 100 is a mobile
phone, smart phone, tablet computing device or mobile
Internet device. Data processing system 100 can also
include, couple with, or be integrated within a wearable
device, such as a smart watch wearable device, smart
eyewear device, augmented reality device, or virtual reality
device. In some embodiments, data processing system 100 is
a television or set top box device having one or more

US 2020/0264698 Al

processors 102 and a graphical interface generated by one or
more graphics processors 108.

[0059] In some embodiments, the one or more processors
102 each include one or more processor cores 107 to process
instructions which, when executed, perform operations for
system and user software. In some embodiments, each of the
one or more processor cores 107 is configured to process a
specific instruction set 109. In some embodiments, instruc-
tion set 109 may facilitate Complex Instruction Set Com-
puting (CISC), Reduced Instruction Set Computing (RISC),
or computing via a Very Long Instruction Word (VLIW).
Multiple processor cores 107 may each process a different
instruction set 109, which may include instructions to facili-
tate the emulation of other instruction sets. Processor core
107 may also include other processing devices, such a
Digital Signal Processor (DSP).

[0060] In some embodiments, the processor 102 includes
cache memory 104. Depending on the architecture, the
processor 102 can have a single internal cache or multiple
levels of internal cache. In some embodiments, the cache
memory is shared among various components of the pro-
cessor 102. In some embodiments, the processor 102 also
uses an external cache (e.g., a Level-3 (L.3) cache or LL.C)
(not shown), which may be shared among processor cores
107 using known cache coherency techniques. A register file
106 is additionally included in processor 102 which may
include different types of registers for storing different types
of data (e.g., integer registers, floating point registers, status
registers, and an instruction pointer register). Some registers
may be general-purpose registers, while other registers may
be specific to the design of the processor 102.

[0061] In some embodiments, processor 102 is coupled to
a processor bus 110 to transmit communication signals such
as address, data, or control signals between processor 102
and other components in system 100. In one embodiment the
system 100 uses an exemplary ‘hub’ system architecture,
including a memory controller hub 116 and an Input Output
(I/O) controller hub 130. A memory controller hub 116
facilitates communication between a memory device and
other components of system 100, while an I/O Controller
Hub (ICH) 130 provides connections to /O devices via a
local 1/0 bus. In one embodiment, the logic of the memory
controller hub 116 is integrated within the processor.
[0062] Memory device 120 can be a dynamic random
access memory (DRAM) device, a static random access
memory (SRAM) device, flash memory device, phase-
change memory device, or some other memory device
having suitable performance to serve as process memory. In
one embodiment the memory device 120 can operate as
system memory for the system 100, to store data 122 and
instructions 121 for use when the one or more processors
102 executes an application or process. Memory controller
hub 116 also couples with an optional external graphics
processor 112, which may communicate with the one or
more graphics processors 108 in processors 102 to perform
graphics and media operations.

[0063] In some embodiments, ICH 130 enables peripher-
als to connect to memory device 120 and processor 102 via
a high-speed 1/O bus. The 1/O peripherals include, but are
not limited to, an audio controller 146, a firmware interface
128, a wireless transceiver 126 (e.g., Wi-Fi, Bluetooth), a
data storage device 124 (e.g., hard disk drive, flash memory,
etc.), and a legacy 1/O controller 140 for coupling legacy
(e.g., Personal System 2 (PS/2)) devices to the system. One

Aug. 20, 2020

or more Universal Serial Bus (USB) controllers 142 connect
input devices, such as keyboard and mouse 144 combina-
tions. A network controller 134 may also couple to ICH 130.
In some embodiments, a high-performance network control-
ler (not shown) couples to processor bus 110. It will be
appreciated that the system 100 shown is exemplary and not
limiting, as other types of data processing systems that are
differently configured may also be used. For example, the
1/O controller hub 130 may be integrated within the one or
more processor 102, or the memory controller hub 116 and
1/O controller hub 130 may be integrated into a discreet
external graphics processor, such as the external graphics
processor 112.

[0064] FIG. 9 is a block diagram of an embodiment of a
processor 200 having one or more processor cores 202A-
202N, an integrated memory controller 214, and an inte-
grated graphics processor 208. Those elements of FIG. 9
having the same reference numbers (or names) as the
elements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein, but
are not limited to such. Processor 200 can include additional
cores up to and including additional core 202N represented
by the dashed lined boxes. Each of processor cores 202A-
202N includes one or more internal cache units 204 A-204N.
In some embodiments each processor core also has access to
one or more shared cached units 206.

[0065] The internal cache units 204A-204N and shared
cache units 206 represent a cache memory hierarchy within
the processor 200. The cache memory hierarchy may include
at least one level of instruction and data cache within each
processor core and one or more levels of shared mid-level
cache, such as a Level 2 (1.2), Level 3 (L3), Level 4 (L4),
or other levels of cache, where the highest level of cache
before external memory is classified as the LLC. In some
embodiments, cache coherency logic maintains coherency
between the various cache units 206 and 204A-204N.
[0066] In some embodiments, processor 200 may also
include a set of one or more bus controller units 216 and a
system agent core 210. The one or more bus controller units
216 manage a set of peripheral buses, such as one or more
Peripheral Component Interconnect buses (e.g., PCI, PCI
Express). System agent core 210 provides management
functionality for the various processor components. In some
embodiments, system agent core 210 includes one or more
integrated memory controllers 214 to manage access to
various external memory devices (not shown).

[0067] In some embodiments, one or more of the proces-
sor cores 202A-202N include support for simultaneous
multi-threading. In such embodiment, the system agent core
210 includes components for coordinating and operating
cores 202A-202N during multi-threaded processing. System
agent core 210 may additionally include a power control unit
(PCU), which includes logic and components to regulate the
power state of processor cores 202A-202N and graphics
processor 208.

[0068] In some embodiments, processor 200 additionally
includes graphics processor 208 to execute graphics pro-
cessing operations. In some embodiments, the graphics
processor 208 couples with the set of shared cache units 206,
and the system agent core 210, including the one or more
integrated memory controllers 214. In some embodiments, a
display controller 211 is coupled with the graphics processor
208 to drive graphics processor output to one or more
coupled displays. In some embodiments, display controller

US 2020/0264698 Al

211 may be a separate module coupled with the graphics
processor via at least one interconnect, or may be integrated
within the graphics processor 208 or system agent core 210.
[0069] In some embodiments, a ring based interconnect
unit 212 is used to couple the internal components of the
processor 200. However, an alternative interconnect unit
may be used, such as a point-to-point interconnect, a
switched interconnect, or other techniques, including tech-
niques well known in the art. In some embodiments, graph-
ics processor 208 couples with the ring interconnect 212 via
an I/O link 213.

[0070] The exemplary I/O link 213 represents at least one
of multiple varieties of /O interconnects, including an on
package 1/O interconnect which facilitates communication
between various processor components and a high-perfor-
mance embedded memory module 218, such as an eDRAM
module. In some embodiments, each of the processor cores
202-202N and graphics processor 208 use embedded
memory modules 218 as a shared Last Level Cache.
[0071] Insome embodiments, processor cores 202A-202N
are homogenous cores executing the same instruction set
architecture. In another embodiment, processor cores 202A-
202N are heterogeneous in terms of instruction set archi-
tecture (ISA), where one or more of processor cores 202A-N
execute a first instruction set, while at least one of the other
cores executes a subset of the first instruction set or a
different instruction set. In one embodiment processor cores
202A-202N are heterogeneous in terms of microarchitec-
ture, where one or more cores having a relatively higher
power consumption couple with one or more power cores
having a lower power consumption. Additionally, processor
200 can be implemented on one or more chips or as an SoC
integrated circuit having the illustrated components, in addi-
tion to other components.

[0072] FIG. 10 is a block diagram of a graphics processor
300, which may be a discrete graphics processing unit, or
may be a graphics processor integrated with a plurality of
processing cores. In some embodiments, the graphics pro-
cessor communicates via a memory mapped /O interface to
registers on the graphics processor and with commands
placed into the processor memory. In some embodiments,
graphics processor 300 includes a memory interface 314 to
access memory. Memory interface 314 can be an interface to
local memory, one or more internal caches, one or more
shared external caches, and/or to system memory.

[0073] Insome embodiments, graphics processor 300 also
includes a display controller 302 to drive display output data
to a display device 320. Display controller 302 includes
hardware for one or more overlay planes for the display and
composition of multiple layers of video or user interface
elements. In some embodiments, graphics processor 300
includes a video codec engine 306 to encode, decode, or
transcode media to, from, or between one or more media
encoding formats, including, but not limited to Moving
Picture Experts Group (MPEG) formats such as MPEG-2,
Advanced Video Coding (AVC) formats such as H.264/
MPEG-4 AVC, as well as the Society of Motion Picture &
Television Engineers (SMPTE) 421M/VC-1, and Joint Pho-
tographic Experts Group (JPEG) formats such as JPEG, and
Motion JPEG (MJPEG) formats.

[0074] In some embodiments, graphics processor 300
includes a block image transfer (BLIT) engine 304 to
perform two-dimensional (2D) rasterizer operations includ-
ing, for example, bit-boundary block transfers. However, in

Aug. 20, 2020

one embodiment, 2D graphics operations are performed
using one or more components of graphics—processing
engine (GPE) 310. In some embodiments, graphics-process-
ing engine 310 is a compute engine for performing graphics
operations, including three-dimensional (3D) graphics
operations and media operations.

[0075] In some embodiments, GPE 310 includes a 3D
pipeline 312 for performing 3D operations, such as render-
ing three-dimensional images and scenes using processing
functions that act upon 3D primitive shapes (e.g., rectangle,
triangle, etc.). The 3D pipeline 312 includes programmable
and fixed function elements that perform various tasks
within the element and/or spawn execution threads to a
3D/Media sub-system 315. While 3D pipeline 312 can be
used to perform media operations, an embodiment of GPE
310 also includes a media pipeline 316 that is specifically
used to perform media operations, such as video post-
processing and image enhancement.

[0076] Insomeembodiments, media pipeline 316 includes
fixed function or programmable logic units to perform one
or more specialized media operations, such as video decode
acceleration, video de-interlacing, and video encode accel-
eration in place of, or on behalf of video codec engine 306.
In some embodiments, media pipeline 316 additionally
includes a thread spawning unit to spawn threads for execu-
tion on 3D/Media sub-system 315. The spawned threads
perform computations for the media operations on one or
more graphics execution units included in 3D/Media sub-
system 315.

[0077] In some embodiments, 3D/Media subsystem 315
includes logic for executing threads spawned by 3D pipeline
312 and media pipeline 316. In one embodiment, the pipe-
lines send thread execution requests to 3D/Media subsystem
315, which includes thread dispatch logic for arbitrating and
dispatching the various requests to available thread execu-
tion resources. The execution resources include an array of
graphics execution units to process the 3D and media
threads. In some embodiments, 3D/Media subsystem 315
includes one or more internal caches for thread instructions
and data. In some embodiments, the subsystem also includes
shared memory, including registers and addressable
memory, to share data between threads and to store output
data.

[0078] 3D/Media Processing

[0079] FIG. 11 is a block diagram of a graphics processing
engine 410 of a graphics processor in accordance with some
embodiments. In one embodiment, the GPE 410 is a version
of the GPE 310 shown in FIG. 10. Elements of FIG. 11
having the same reference numbers (or names) as the
elements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein, but
are not limited to such.

[0080] In some embodiments, GPE 410 couples with a
command streamer 403, which provides a command stream
to the GPE 3D and media pipelines 412, 416. In some
embodiments, command streamer 403 is coupled to
memory, which can be system memory, or one or more of
internal cache memory and shared cache memory. In some
embodiments, command streamer 403 receives commands
from the memory and sends the commands to 3D pipeline
412 and/or media pipeline 416. The commands are direc-
tives fetched from a ring buffer, which stores commands for
the 3D and media pipelines 412, 416. In one embodiment,
the ring buffer can additionally include batch command

US 2020/0264698 Al

buffers storing batches of multiple commands. The 3D and
media pipelines 412, 416 process the commands by per-
forming operations via logic within the respective pipelines
or by dispatching one or more execution threads to an
execution unit array 414. In some embodiments, execution
unit array 414 is scalable, such that the array includes a
variable number of execution units based on the target power
and performance level of GPE 410.

[0081] In some embodiments, a sampling engine 430
couples with memory (e.g., cache memory or system
memory) and execution unit array 414. In some embodi-
ments, sampling engine 430 provides a memory access
mechanism for execution unit array 414 that allows execu-
tion array 414 to read graphics and media data from
memory. In some embodiments, sampling engine 430
includes logic to perform specialized image sampling opera-
tions for media.

[0082] In some embodiments, the specialized media sam-
pling logic in sampling engine 430 includes a de-noise/de-
interlace module 432, a motion estimation module 434, and
an image scaling and filtering module 436. In some embodi-
ments, de-noise/de-interlace module 432 includes logic to
perform one or more of a de-noise or a de-interlace algo-
rithm on decoded video data. The de-interlace logic com-
bines alternating fields of interlaced video content into a
single fame of video. The de-noise logic reduces or removes
data noise from video and image data. In some embodi-
ments, the de-noise logic and de-interlace logic are motion
adaptive and use spatial or temporal filtering based on the
amount of motion detected in the video data. In some
embodiments, the de-noise/de-interlace module 432
includes dedicated motion detection logic (e.g., within the
motion estimation engine 434).

[0083] In some embodiments, motion estimation engine
434 provides hardware acceleration for video operations by
performing video acceleration functions such as motion
vector estimation and prediction on video data. The motion
estimation engine determines motion vectors that describe
the transformation of image data between successive video
frames. In some embodiments, a graphics processor media
codec uses video motion estimation engine 434 to perform
operations on video at the macro-block level that may
otherwise be too computationally intensive to perform with
a general-purpose processor. In some embodiments, motion
estimation engine 434 is generally available to graphics
processor components to assist with video decode and
processing functions that are sensitive or adaptive to the
direction or magnitude of the motion within video data.
[0084] In some embodiments, image scaling and filtering
module 436 performs image-processing operations to
enhance the visual quality of generated images and video. In
some embodiments, scaling and filtering module 436 pro-
cesses image and video data during the sampling operation
before providing the data to execution unit array 414.
[0085] Insome embodiments, the GPE 410 includes a data
port 444, which provides an additional mechanism for
graphics subsystems to access memory. In some embodi-
ments, data port 444 facilitates memory access for opera-
tions including render target writes, constant buffer reads,
scratch memory space reads/writes, and media surface
accesses. In some embodiments, data port 444 includes
cache memory space to cache accesses to memory. The
cache memory can be a single data cache or separated into
multiple caches for the multiple subsystems that access

Aug. 20, 2020

memory via the data port (e.g., a render buffer cache, a
constant buffer cache, etc.). In some embodiments, threads
executing on an execution unit in execution unit array 414
communicate with the data port by exchanging messages via
a data distribution interconnect that couples each of the
sub-systems of GPE 410.

[0086]

[0087] FIG. 12 is a block diagram of another embodiment
of'a graphics processor 500. Elements of FIG. 12 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

[0088] In some embodiments, graphics processor 500
includes a ring interconnect 502, a pipeline front-end 504, a
media engine 537, and graphics cores 580A-580N. In some
embodiments, ring interconnect 502 couples the graphics
processor to other processing units, including other graphics
processors or one or more general-purpose processor cores.
In some embodiments, the graphics processor is one of many
processors integrated within a multi-core processing system.

[0089] In some embodiments, graphics processor 500
receives batches of commands via ring interconnect 502.
The incoming commands are interpreted by a command
streamer 503 in the pipeline front-end 504. In some embodi-
ments, graphics processor 500 includes scalable execution
logic to perform 3D geometry processing and media pro-
cessing via the graphics core(s) 580A-580N. For 3D geom-
etry processing commands, command streamer 503 supplies
commands to geometry pipeline 536. For at least some
media processing commands, command streamer 503 sup-
plies the commands to a video front end 534, which couples
with a media engine 537. In some embodiments, media
engine 537 includes a Video Quality Engine (VQE) 530 for
video and image post-processing and a multi-format encode/
decode (MFX) 533 engine to provide hardware-accelerated
media data encode and decode. In some embodiments,
geometry pipeline 536 and media engine 537 each generate
execution threads for the thread execution resources pro-
vided by at least one graphics core 580A.

[0090] In some embodiments, graphics processor 500
includes scalable thread execution resources featuring
modular cores 580A-580N (sometimes referred to as core
slices), each having multiple sub-cores 550A-550N, 560A-
560N (sometimes referred to as core sub-slices). In some
embodiments, graphics processor 500 can have any number
of graphics cores 580A through 580N. In some embodi-
ments, graphics processor 500 includes a graphics core
580A having at least a first sub-core 550A and a second core
sub-core 560A. In other embodiments, the graphics proces-
sor is a low power processor with a single sub-core (e.g.,
550A). In some embodiments, graphics processor 500
includes multiple graphics cores 580A-580N, each including
a set of first sub-cores 550A-550N and a set of second
sub-cores 560A-560N. Each sub-core in the set of first
sub-cores 550A-550N includes at least a first set of execu-
tion units 552A-552N and media/texture samplers 554A-
554N. Each sub-core in the set of second sub-cores 560A-
560N includes at least a second set of execution units
562A-562N and samplers 564A-564N. In some embodi-
ments, each sub-core 550A-550N, 560A-560N shares a set
of shared resources 570A-570N. In some embodiments, the
shared resources include shared cache memory and pixel

Execution Units

US 2020/0264698 Al

operation logic. Other shared resources may also be
included in the various embodiments of the graphics pro-
Cessor.

[0091] FIG. 13 illustrates thread execution logic 600
including an array of processing elements employed in some
embodiments of a GPE. Elements of FIG. 13 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

[0092] In some embodiments, thread execution logic 600
includes a pixel shader 602, a thread dispatcher 604, instruc-
tion cache 606, a scalable execution unit array including a
plurality of execution units 608A-608N, a sampler 610, a
data cache 612, and a data port 614. In one embodiment the
included components are interconnected via an interconnect
fabric that links to each of the components. In some embodi-
ments, thread execution logic 600 includes one or more
connections to memory, such as system memory or cache
memory, through one or more of instruction cache 606, data
port 614, sampler 610, and execution unit array 608A-608N.
In some embodiments, each execution unit (e.g. 608A) is an
individual vector processor capable of executing multiple
simultaneous threads and processing multiple data elements
in parallel for each thread. In some embodiments, execution
unit array 608A-608N includes any number individual
execution units.

[0093] In some embodiments, execution unit array 608A-
608N is primarily used to execute “shader” programs. In
some embodiments, the execution units in array 608 A-608N
execute an instruction set that includes native support for
many standard 3D graphics shader instructions, such that
shader programs from graphics libraries (e.g., Direct 3D and
OpenGL) are executed with a minimal translation. The
execution units support vertex and geometry processing
(e.g., vertex programs, geometry programs, vertex shaders),
pixel processing (e.g., pixel shaders, fragment shaders) and
general-purpose processing (e.g., compute and media shad-
ers).

[0094] Each execution unit in execution unit array 608A-
608N operates on arrays of data elements. The number of
data elements is the “execution size,” or the number of
channels for the instruction. An execution channel is a
logical unit of execution for data element access, masking,
and flow control within instructions. The number of chan-
nels may be independent of the number of physical Arith-
metic Logic Units (ALUs) or Floating Point Units (FPUs)
for a particular graphics processor. In some embodiments,
execution units 608A-608N support integer and floating-
point data types.

[0095] The execution unit instruction set includes single
instruction multiple data (SIMD) instructions. The various
data elements can be stored as a packed data type in a
register and the execution unit will process the various
elements based on the data size of the elements. For
example, when operating on a 256-bit wide vector, the 256
bits of the vector are stored in a register and the execution
unit operates on the vector as four separate 64-bit packed
data elements (Quad-Word (QW) size data elements), eight
separate 32-bit packed data elements (Double Word (DW)
size data elements), sixteen separate 16-bit packed data
elements (Word (W) size data elements), or thirty-two

Aug. 20, 2020

separate 8-bit data elements (byte (B) size data elements).
However, different vector widths and register sizes are
possible.

[0096] One or more internal instruction caches (e.g., 606)
are included in the thread execution logic 600 to cache
thread instructions for the execution units. In some embodi-
ments, one or more data caches (e.g., 612) are included to
cache thread data during thread execution. In some embodi-
ments, sampler 610 is included to provide texture sampling
for 3D operations and media sampling for media operations.
In some embodiments, sampler 610 includes specialized
texture or media sampling functionality to process texture or
media data during the sampling process before providing the
sampled data to an execution unit.

[0097] During execution, the graphics and media pipelines
send thread initiation requests to thread execution logic 600
via thread spawning and dispatch logic. In some embodi-
ments, thread execution logic 600 includes a local thread
dispatcher 604 that arbitrates thread initiation requests from
the graphics and media pipelines and instantiates the
requested threads on one or more execution units 608A-
608N. For example, the geometry pipeline (e.g., 536 of FIG.
12) dispatches vertex processing, tessellation, or geometry
processing threads to thread execution logic 600 (FIG. 13).
In some embodiments, thread dispatcher 604 can also pro-
cess runtime thread spawning requests from the executing
shader programs.

[0098] Once a group of geometric objects has been pro-
cessed and rasterized into pixel data, pixel shader 602 is
invoked to further compute output information and cause
results to be written to output surfaces (e.g., color buffers,
depth buffers, stencil buffers, etc.). In some embodiments,
pixel shader 602 calculates the values of the various vertex
attributes that are to be interpolated across the rasterized
object. In some embodiments, pixel shader 602 then
executes an application programming interface (API)-sup-
plied pixel shader program. To execute the pixel shader
program, pixel shader 602 dispatches threads to an execu-
tion unit (e.g., 608A) via thread dispatcher 604. In some
embodiments, pixel shader 602 uses texture sampling logic
in sampler 610 to access texture data in texture maps stored
in memory. Arithmetic operations on the texture data and the
input geometry data compute pixel color data for each
geometric fragment, or discards one or more pixels from
further processing.

[0099] In some embodiments, the data port 614 provides
a memory access mechanism for the thread execution logic
600 output processed data to memory for processing on a
graphics processor output pipeline. In some embodiments,
the data port 614 includes or couples to one or more cache
memories (e.g., data cache 612) to cache data for memory
access via the data port.

[0100] FIG. 14 is a block diagram illustrating a graphics
processor instruction formats 700 according to some
embodiments. In one or more embodiment, the graphics
processor execution units support an instruction set having
instructions in multiple formats. The solid lined boxes
illustrate the components that are generally included in an
execution unit instruction, while the dashed lines include
components that are optional or that are only included in a
sub-set of the instructions. In some embodiments, instruc-
tion format 700 described and illustrated are macro-instruc-
tions, in that they are instructions supplied to the execution

US 2020/0264698 Al

unit, as opposed to micro-operations resulting from instruc-
tion decode once the instruction is processed.

[0101] In some embodiments, the graphics processor
execution units natively support instructions in a 128-bit
format 710. A 64-bit compacted instruction format 730 is
available for some instructions based on the selected instruc-
tion, instruction options, and number of operands. The
native 128-bit format 710 provides access to all instruction
options, while some options and operations are restricted in
the 64-bit format 730. The native instructions available in
the 64-bit format 730 vary by embodiment. In some embodi-
ments, the instruction is compacted in part using a set of
index values in an index field 713. The execution unit
hardware references a set of compaction tables based on the
index values and uses the compaction table outputs to
reconstruct a native instruction in the 128-bit format 710.
[0102] For each format, instruction opcode 712 defines the
operation that the execution unit is to perform. The execu-
tion units execute each instruction in parallel across the
multiple data elements of each operand. For example, in
response to an add instruction the execution unit performs a
simultaneous add operation across each color channel rep-
resenting a texture element or picture element. By default,
the execution unit performs each instruction across all data
channels of the operands. In some embodiments, instruction
control field 714 enables control over certain execution
options, such as channels selection (e.g., predication) and
data channel order (e.g., swizzle). For 128-bit instructions
710 an exec-size field 716 limits the number of data channels
that will be executed in parallel. In some embodiments,
exec-size field 716 is not available for use in the 64-bit
compact instruction format 730.

[0103] Some execution unit instructions have up to three
operands including two source operands, src0 722, srcl 722,
and one destination 718. In some embodiments, the execu-
tion units support dual destination instructions, where one of
the destinations is implied. Data manipulation instructions
can have a third source operand (e.g., SRC2 724), where the
instruction opcode 712 determines the number of source
operands. An instruction’s last source operand can be an
immediate (e.g., hard-coded) value passed with the instruc-
tion.

[0104] In some embodiments, the 128-bit instruction for-
mat 710 includes an access/address mode information 726
specifying, for example, whether direct register addressing
mode or indirect register addressing mode is used. When
direct register addressing mode is used, the register address
of one or more operands is directly provided by bits in the
instruction 710.

[0105] In some embodiments, the 128-bit instruction for-
mat 710 includes an access/address mode field 726, which
specifies an address mode and/or an access mode for the
instruction. In one embodiment the access mode to define a
data access alignment for the instruction. Some embodi-
ments support access modes including a 16-byte aligned
access mode and a 1-byte aligned access mode, where the
byte alignment of the access mode determines the access
alignment of the instruction operands. For example, when in
a first mode, the instruction 710 may use byte-aligned
addressing for source and destination operands and when in
a second mode, the instruction 710 may use 16-byte-aligned
addressing for all source and destination operands.

[0106] In one embodiment, the address mode portion of
the access/address mode field 726 determines whether the

Aug. 20, 2020

instruction is to use direct or indirect addressing. When
direct register addressing mode is used bits in the instruction
710 directly provide the register address of one or more
operands. When indirect register addressing mode is used,
the register address of one or more operands may be
computed based on an address register value and an address
immediate field in the instruction.

[0107] In some embodiments instructions are grouped
based on opcode 712 bit-fields to simplify Opcode decode
740. For an 8-bit opcode, bits 4, 5, and 6 allow the execution
unit to determine the type of opcode. The precise opcode
grouping shown is merely an example. In some embodi-
ments, a move and logic opcode group 742 includes data
movement and logic instructions (e.g., move (mov), com-
pare (cmp)). In some embodiments, move and logic group
742 shares the five most significant bits (MSB), where move
(mov) instructions are in the form of 0000xxxxb and logic
instructions are in the form of 0001xxxxb. A flow control
instruction group 744 (e.g., call, jump (jmp)) includes
instructions in the form of 0010xxxxb (e.g., 0x20). A
miscellaneous instruction group 746 includes a mix of
instructions, including synchronization instructions (e.g.,
wait, send) in the form of 0011xxxxb (e.g., 0x30). A parallel
math instruction group 748 includes component-wise arith-
metic instructions (e.g., add, multiply (mul)) in the form of
0100xxxxb (e.g., 0x40). The parallel math group 748 per-
forms the arithmetic operations in parallel across data chan-
nels. The vector math group 750 includes arithmetic instruc-
tions (e.g., dp4) in the form of 0101xxxxb (e.g., 0x50). The
vector math group performs arithmetic such as dot product
calculations on vector operands.

[0108]

[0109] FIG. 15 is a block diagram of another embodiment
of'a graphics processor 800. Elements of FIG. 15 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

[0110] In some embodiments, graphics processor 800
includes a graphics pipeline 820, a media pipeline 830, a
display engine 840, thread execution logic 850, and a render
output pipeline 870. In some embodiments, graphics pro-
cessor 800 is a graphics processor within a multi-core
processing system that includes one or more general purpose
processing cores. The graphics processor is controlled by
register writes to one or more control registers (not shown)
or via commands issued to graphics processor 800 via a ring
interconnect 802. In some embodiments, ring interconnect
802 couples graphics processor 800 to other processing
components, such as other graphics processors or general-
purpose processors. Commands from ring interconnect 802
are interpreted by a command streamer 803, which supplies
instructions to individual components of graphics pipeline
820 or media pipeline 830.

[0111] In some embodiments, command streamer 803
directs the operation of a vertex fetcher 805 that reads vertex
data from memory and executes vertex-processing com-
mands provided by command streamer 803. In some
embodiments, vertex fetcher 805 provides vertex data to a
vertex shader 807, which performs coordinate space trans-
formation and lighting operations to each vertex. In some
embodiments, vertex fetcher 805 and vertex shader 807

Graphics Pipeline

US 2020/0264698 Al

execute vertex-processing instructions by dispatching
execution threads to execution units 852A, 8528 via a thread
dispatcher 831.

[0112] In some embodiments, execution units 852A, 852B
are an array of vector processors having an instruction set for
performing graphics and media operations. In some embodi-
ments, execution units 852A, 852B have an attached L1
cache 851 that is specific for each array or shared between
the arrays. The cache can be configured as a data cache, an
instruction cache, or a single cache that is partitioned to
contain data and instructions in different partitions.

[0113] In some embodiments, graphics pipeline 820
includes tessellation components to perform hardware-ac-
celerated tessellation of 3D objects. In some embodiments,
a programmable hull shader 811 configures the tessellation
operations. A programmable domain shader 817 provides
back-end evaluation of tessellation output. A tessellator 813
operates at the direction of hull shader 811 and contains
special purpose logic to generate a set of detailed geometric
objects based on a coarse geometric model that is provided
as input to graphics pipeline 820. In some embodiments, if
tessellation is not used, tessellation components 811, 813,
817 can be bypassed.

[0114] In some embodiments, complete geometric objects
can be processed by a geometry shader 819 via one or more
threads dispatched to execution units 852A, 852B, or can
proceed directly to the clipper 829. In some embodiments,
the geometry shader operates on entire geometric objects,
rather than vertices or patches of vertices as in previous
stages of the graphics pipeline. If the tessellation is disabled
the geometry shader 819 receives input from the vertex
shader 807. In some embodiments, geometry shader 819 is
programmable by a geometry shader program to perform
geometry tessellation if the tessellation units are disabled.

[0115] Before rasterization, a clipper 829 processes vertex
data. The clipper 829 may be a fixed function clipper or a
programmable clipper having clipping and geometry shader
functions. In some embodiments, a rasterizer/depth 873 in
the render output pipeline 870 dispatches pixel shaders to
convert the geometric objects into their per pixel represen-
tations. In some embodiments, pixel shader logic is included
in thread execution logic 850. In some embodiments, an
application can bypass the rasterizer 873 and access un-
rasterized vertex data via a stream out unit 823.

[0116] The graphics processor 800 has an interconnect
bus, interconnect fabric, or some other interconnect mecha-
nism that allows data and message passing amongst the
major components of the processor. In some embodiments,
execution units 852A, 852B and associated cache(s) 851,
texture and media sampler 854, and texture/sampler cache
858 interconnect via a data port 856 to perform memory
access and communicate with render output pipeline com-
ponents of the processor. In some embodiments, sampler
854, caches 851, 858 and execution units 852A, 852B each
have separate memory access paths.

[0117] In some embodiments, render output pipeline 870
contains a rasterizer and depth test component 873 that
converts vertex-based objects into an associated pixel-based
representation. In some embodiments, the rasterizer logic
includes a windower/masker unit to perform fixed function
triangle and line rasterization. An associated render cache
878 and depth cache 879 are also available in some embodi-
ments. A pixel operations component 877 performs pixel-
based operations on the data, though in some instances, pixel

Aug. 20, 2020

operations associated with 2D operations (e.g. bit block
image transfers with blending) are performed by the 2D
engine 841, or substituted at display time by the display
controller 843 using overlay display planes. In some
embodiments, a shared L3 cache 875 is available to all
graphics components, allowing the sharing of data without
the use of main system memory.

[0118] In some embodiments, graphics processor media
pipeline 830 includes a media engine 837 and a video front
end 834. In some embodiments, video front end 834 receives
pipeline commands from the command streamer 803. In
some embodiments, media pipeline 830 includes a separate
command streamer. In some embodiments, video front-end
834 processes media commands before sending the com-
mand to the media engine 837. In some embodiments, media
engine 337 includes thread spawning functionality to spawn
threads for dispatch to thread execution logic 850 via thread
dispatcher 831.

[0119] In some embodiments, graphics processor 800
includes a display engine 840. In some embodiments, dis-
play engine 840 is external to processor 800 and couples
with the graphics processor via the ring interconnect 802, or
some other interconnect bus or fabric. In some embodi-
ments, display engine 840 includes a 2D engine 841 and a
display controller 843. In some embodiments, display
engine 840 contains special purpose logic capable of oper-
ating independently of the 3D pipeline. In some embodi-
ments, display controller 843 couples with a display device
(not shown), which may be a system integrated display
device, as in a laptop computer, or an external display device
attached via a display device connector.

[0120] In some embodiments, graphics pipeline 820 and
media pipeline 830 are configurable to perform operations
based on multiple graphics and media programming inter-
faces and are not specific to any one application program-
ming interface (API). In some embodiments, driver software
for the graphics processor translates API calls that are
specific to a particular graphics or media library into com-
mands that can be processed by the graphics processor. In
some embodiments, support is provided for the Open Graph-
ics Library (OpenGL) and Open Computing [anguage
(OpenCL) from the Khronos Group, the Direct3D library
from the Microsoft Corporation, or support may be provided
to both OpenGL and D3D. Support may also be provided for
the Open Source Computer Vision Library (OpenCV). A
future API with a compatible 3D pipeline would also be
supported if a mapping can be made from the pipeline of the
future API to the pipeline of the graphics processor.

[0121]

[0122] FIG. 16A is a block diagram illustrating a graphics
processor command format 900 according to some embodi-
ments. FIG. 16B is a block diagram illustrating a graphics
processor command sequence 910 according to an embodi-
ment. The solid lined boxes in FIG. 16A illustrate the
components that are generally included in a graphics com-
mand while the dashed lines include components that are
optional or that are only included in a sub-set of the graphics
commands. The exemplary graphics processor command
format 900 of FIG. 16A includes data fields to identify a
target client 902 of the command, a command operation
code (opcode) 904, and the relevant data 906 for the
command. A sub-opcode 905 and a command size 908 are
also included in some commands.

Graphics Pipeline Programming

US 2020/0264698 Al

[0123] In some embodiments, client 902 specifies the
client unit of the graphics device that processes the com-
mand data. In some embodiments, a graphics processor
command parser examines the client field of each command
to condition the further processing of the command and
route the command data to the appropriate client unit. In
some embodiments, the graphics processor client units
include a memory interface unit, a render unit, a 2D unit, a
3D unit, and a media unit. Each client unit has a correspond-
ing processing pipeline that processes the commands. Once
the command is received by the client unit, the client unit
reads the opcode 904 and, if present, sub-opcode 905 to
determine the operation to perform. The client unit performs
the command using information in data field 906. For some
commands an explicit command size 908 is expected to
specify the size of the command. In some embodiments, the
command parser automatically determines the size of at least
some of the commands based on the command opcode. In
some embodiments commands are aligned via multiples of
a double word.

[0124] The flow diagram in FIG. 16B shows an exemplary
graphics processor command sequence 910. In some
embodiments, software or firmware of a data processing
system that features an embodiment of a graphics processor
uses a version of the command sequence shown to set up,
execute, and terminate a set of graphics operations. A sample
command sequence is shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence. Moreover,
the commands may be issued as batch of commands in a
command sequence, such that the graphics processor will
process the sequence of commands in at least partially
concurrence.

[0125] Insome embodiments, the graphics processor com-
mand sequence 910 may begin with a pipeline flush com-
mand 912 to cause any active graphics pipeline to complete
the currently pending commands for the pipeline. In some
embodiments, the 3D pipeline 922 and the media pipeline
924 do not operate concurrently. The pipeline flush is
performed to cause the active graphics pipeline to complete
any pending commands. In response to a pipeline flush, the
command parser for the graphics processor will pause
command processing until the active drawing engines com-
plete pending operations and the relevant read caches are
invalidated. Optionally, any data in the render cache that is
marked ‘dirty’ can be flushed to memory. In some embodi-
ments, pipeline flush command 912 can be used for pipeline
synchronization or before placing the graphics processor
into a low power state.

[0126] In some embodiments, a pipeline select command
913 is used when a command sequence requires the graphics
processor to explicitly switch between pipelines. In some
embodiments, a pipeline select command 913 is required
only once within an execution context before issuing pipe-
line commands unless the context is to issue commands for
both pipelines. In some embodiments, a pipeline flush
command is 912 is required immediately before a pipeline
switch via the pipeline select command 913.

[0127] Insome embodiments, a pipeline control command
914 configures a graphics pipeline for operation and is used
to program the 3D pipeline 922 and the media pipeline 924.
In some embodiments, pipeline control command 914 con-
figures the pipeline state for the active pipeline. In one
embodiment, the pipeline control command 914 is used for

Aug. 20, 2020

pipeline synchronization and to clear data from one or more
cache memories within the active pipeline before processing
a batch of commands.

[0128] In some embodiments, return buffer state com-
mands 916 are used to configure a set of return buffers for
the respective pipelines to write data. Some pipeline opera-
tions require the allocation, selection, or configuration of
one or more return buffers into which the operations write
intermediate data during processing. In some embodiments,
the graphics processor also uses one or more return buffers
to store output data and to perform cross thread communi-
cation. In some embodiments, the return buffer state 916
includes selecting the size and number of return buffers to
use for a set of pipeline operations.

[0129] The remaining commands in the command
sequence differ based on the active pipeline for operations.
Based on a pipeline determination 920, the command
sequence is tailored to the 3D pipeline 922 beginning with
the 3D pipeline state 930, or the media pipeline 924 begin-
ning at the media pipeline state 940.

[0130] The commands for the 3D pipeline state 930
include 3D state setting commands for vertex buffer state,
vertex element state, constant color state, depth buffer state,
and other state variables that are to be configured before 3D
primitive commands are processed. The values of these
commands are determined at least in part based the particu-
lar 3D API in use. In some embodiments, 3D pipeline state
930 commands are also able to selectively disable or bypass
certain pipeline elements if those elements will not be used.
[0131] Insome embodiments, 3D primitive 932 command
is used to submit 3D primitives to be processed by the 3D
pipeline. Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 932
command are forwarded to the vertex fetch function in the
graphics pipeline. The vertex fetch function uses the 3D
primitive 932 command data to generate vertex data struc-
tures. The vertex data structures are stored in one or more
return buffers. In some embodiments, 3D primitive 932
command is used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D
pipeline 922 dispatches shader execution threads to graphics
processor execution units.

[0132] Insome embodiments, 3D pipeline 922 is triggered
via an execute 934 command or event. In some embodi-
ments, a register write triggers command execution. In some
embodiments execution is triggered via a ‘go’ or ‘kick’
command in the command sequence. In one embodiment
command execution is triggered using a pipeline synchro-
nization command to flush the command sequence through
the graphics pipeline. The 3D pipeline will perform geom-
etry processing for the 3D primitives. Once operations are
complete, the resulting geometric objects are rasterized and
the pixel engine colors the resulting pixels. Additional
commands to control pixel shading and pixel back end
operations may also be included for those operations.
[0133] Insome embodiments, the graphics processor com-
mand sequence 910 follows the media pipeline 924 path
when performing media operations. In general, the specific
use and manner of programming for the media pipeline 924
depends on the media or compute operations to be per-
formed. Specific media decode operations may be offloaded
to the media pipeline during media decode. In some embodi-
ments, the media pipeline can also be bypassed and media
decode can be performed in whole or in part using resources

US 2020/0264698 Al

provided by one or more general purpose processing cores.
In one embodiment, the media pipeline also includes ele-
ments for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor is used to perform
SIMD vector operations using computational shader pro-
grams that are not explicitly related to the rendering of
graphics primitives.

[0134] In some embodiments, media pipeline 924 is con-
figured in a similar manner as the 3D pipeline 922. A set of
media pipeline state commands 940 are dispatched or placed
into in a command queue before the media object commands
942. In some embodiments, media pipeline state commands
940 include data to configure the media pipeline elements
that will be used to process the media objects. This includes
data to configure the video decode and video encode logic
within the media pipeline, such as encode or decode format.
In some embodiments, media pipeline state commands 940
also support the use one or more pointers to “indirect” state
elements that contain a batch of state settings.

[0135] In some embodiments, media object commands
942 supply pointers to media objects for processing by the
media pipeline. The media objects include memory buffers
containing video data to be processed. In some embodi-
ments, all media pipeline states must be valid before issuing
a media object command 942. Once the pipeline state is
configured and media object commands 942 are queued, the
media pipeline 924 is triggered via an execute command 944
or an equivalent execute event (e.g., register write). Output
from media pipeline 924 may then be post processed by
operations provided by the 3D pipeline 922 or the media
pipeline 924. In some embodiments, GPGPU operations are
configured and executed in a similar manner as media
operations.

[0136] Graphics Software Architecture

[0137] FIG. 17 illustrates exemplary graphics software
architecture for a data processing system 1000 according to
some embodiments. In some embodiments, software archi-
tecture includes a 3D graphics application 1010, an operat-
ing system 1020, and at least one processor 1030. In some
embodiments, processor 1030 includes a graphics processor
1032 and one or more general-purpose processor core(s)
1034. The graphics application 1010 and operating system
1020 each execute in the system memory 1050 of the data
processing system.

[0138] In some embodiments, 3D graphics application
1010 contains one or more shader programs including
shader instructions 1012. The shader language instructions
may be in a high-level shader language, such as the High
Level Shader Language (HLSL) or the OpenGL Shader
Language (GLSL). The application also includes executable
instructions 1014 in a machine language suitable for execu-
tion by the general-purpose processor core 1034. The appli-
cation also includes graphics objects 1016 defined by vertex
data.

[0139] In some embodiments, operating system 1020 is a
Microsoft® Windows® operating system from the Micro-
soft Corporation, a proprietary UNIX-like operating system,
or an open source UNIX-like operating system using a
variant of the Linux kernel. When the Direct3D API is in
use, the operating system 1020 uses a front-end shader
compiler 1024 to compile any shader instructions 1012 in
HLSL into a lower-level shader language. The compilation
may be a just-in-time (JIT) compilation or the application
can perform shader pre-compilation. In some embodiments,

Aug. 20, 2020

high-level shaders are compiled into low-level shaders dur-
ing the compilation of the 3D graphics application 1010.
[0140] In some embodiments, user mode graphics driver
1026 contains a back-end shader compiler 1027 to convert
the shader instructions 1012 into a hardware specific repre-
sentation. When the OpenGL API is in use, shader instruc-
tions 1012 in the GLSL high-level language are passed to a
user mode graphics driver 1026 for compilation. In some
embodiments, user mode graphics driver 1026 uses operat-
ing system kernel mode functions 1028 to communicate
with a kernel mode graphics driver 1029. In some embodi-
ments, kernel mode graphics driver 1029 communicates
with graphics processor 1032 to dispatch commands and
instructions.

[0141] IP Core Implementations

[0142] One or more aspects of at least one embodiment
may be implemented by representative code stored on a
machine-readable medium which represents and/or defines
logic within an integrated circuit such as a processor. For
example, the machine-readable medium may include
instructions which represent various logic within the pro-
cessor. When read by a machine, the instructions may cause
the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,”
are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a
hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various
customers or manufacturing facilities, which load the hard-
ware model on fabrication machines that manufacture the
integrated circuit. The integrated circuit may be fabricated
such that the circuit performs operations described in asso-
ciation with any of the embodiments described herein.
[0143] FIG. 18 is a block diagram illustrating an IP core
development system 1100 that may be used to manufacture
an integrated circuit to perform operations according to an
embodiment. The IP core development system 1100 may be
used to generate modular, re-usable designs that can be
incorporated into a larger design or used to construct an
entire integrated circuit (e.g., an SOC integrated circuit). A
design facility 1130 can generate a software simulation 1110
of an IP core design in a high level programming language
(e.g., C/C++). The software simulation 1110 can be used to
design, test, and verify the behavior of the IP core. A register
transfer level (RTL) design can then be created or synthe-
sized from the simulation model 1100. The RTL design 1115
is an abstraction of the behavior of the integrated circuit that
models the flow of digital signals between hardware regis-
ters, including the associated logic performed using the
modeled digital signals. In addition to an RTL design 1115,
lower-level designs at the logic level or transistor level may
also be created, designed, or synthesized. Thus, the particu-
lar details of the initial design and simulation may vary.
[0144] The RTL design 1115 or equivalent may be further
synthesized by the design facility into a hardware model
1120, which may be in a hardware description language
(HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verify the IP
core design. The IP core design can be stored for delivery to
a 3rd party fabrication facility 1165 using non-volatile
memory 1140 (e.g., hard disk, flash memory, or any non-
volatile storage medium). Alternatively, the IP core design
may be transmitted (e.g., via the Internet) over a wired
connection 1150 or wireless connection 1160. The fabrica-

US 2020/0264698 Al

tion facility 1165 may then fabricate an integrated circuit
that is based at least in part on the IP core design. The
fabricated integrated circuit can be configured to perform
operations in accordance with at least one embodiment
described herein.

[0145] FIG. 19 is a block diagram illustrating an exem-
plary system on a chip integrated circuit 1200 that may be
fabricated using one or more IP cores, according to an
embodiment. The exemplary integrated circuit includes one
or more application processors 1205 (e.g., CPUs), at least
one graphics processor 1210, and may additionally include
an image processor 1215 and/or a video processor 1220, any
of which may be a modular IP core from the same or
multiple different design facilities. The integrated circuit
includes peripheral or bus logic including a USB controller
1225, universal asynchronous receiver/transmitter (UART)
controller 1230, a serial peripheral interface (SPI)/secure
digital input output (SDIO) controller 1235, and an inte-
grated interchip sound (I2S)/inter-integrated circuit (12C)
controller 1240. Additionally, the integrated circuit can
include a display device 1245 coupled to one or more of a
high-definition multimedia interface (HDMI) controller
1250 and a mobile industry processor interface (MIPI)
display interface 1255. Storage may be provided by a flash
memory subsystem 1260 including flash memory and a flash
memory controller. Memory interface may be provided via
a memory controller 1265 for access to SDRAM or SRAM
memory devices. Some integrated circuits additionally
include an embedded security engine 1270.

[0146] Additionally, other logic and circuits may be
included in the processor of integrated circuit 1200, includ-
ing additional graphics processors/cores, peripheral inter-
face controllers, or general purpose processor cores.
[0147] Advantageously, in some embodiments any of the
system 100, the processor 200, graphics processor 300,
graphics processing engine 410, graphics processor 500,
thread execution logic 600, graphics processor 800, data
processing system 1000, and/or the integrated circuit 1200
may be integrated or configured with any of the various
embodiments described herein (e.g. or portions thereof),
including, for example, those described in the following
Additional Notes and Examples.

[0148] Additional Notes and Examples:

[0149] Example 1 may include an electronic processing
system, comprising an application processor, persistent stor-
age media communicatively coupled to the application pro-
cessor, a graphics processor communicatively coupled to the
application processor, and a gesture tracker communica-
tively coupled to the application processor, wherein the
graphics processor is to generate an image of a virtual input
device, the gesture tracker is to determine a position of a
user’s finger relative to the virtual input device, and wherein
the graphics processor is further to generate an image of a
virtual finger based on the determined position of the user’s
finger relative to the virtual input device.

[0150] Example 2 may include the system of Example 1,
further comprising an input generator communicatively
coupled to the gesture tracker to generate input data based on
the determined position of the user’s finger relative to the
virtual input device.

[0151] Example 3 may include the system of any of
Examples 1 to 2, further comprising a device tracker com-
municatively coupled to the graphics processor to identify a
characteristic of a physical input device, wherein the graph-

Aug. 20, 2020

ics processor is further to generate the image of the virtual
input device based on the identified characteristic of the
physical input device.

[0152] Example 4 may include a graphics apparatus, com-
prising an image generator, and a gesture tracker commu-
nicatively coupled to the image generator, wherein the
image generator is to generate an image of a virtual input
device, the gesture tracker is to determine a position of a
user’s finger relative to the virtual input device, and wherein
the image generator is further to generate an image of a
virtual finger based on the determined position of the user’s
finger relative to the virtual input device.

[0153] Example 5 may include the apparatus of Example
4, wherein the gesture tracker is further to determine a
position of a user’s hand relative to the virtual input device,
and wherein the image generator is further to generate an
image of a virtual hand based on the determined position of
the user’s hand relative to the virtual input device.

[0154] Example 6 may include the apparatus of Example
4, further comprising an input generator communicatively
coupled to the gesture tracker to generate input data based on
the determined position of the user’s finger relative to the
virtual input device.

[0155] Example 7 may include the apparatus of Example
4, further comprising a device tracker communicatively
coupled to the image generator to identify a characteristic of
a physical input device, wherein the image generator is
further to generate the image of the virtual input device
based on the identified characteristic of the physical input
device.

[0156] Example 8 may include the apparatus of Example
7, wherein the device tracker is further to determine a
position of the physical input device relative to the user, the
gesture tracker is further to determine a position the user’s
hand relative to the position of the physical input device, the
image generator is further to generate an image of a virtual
representation of the physical input device based on the
position of the physical input device relative to the user and
wherein the image generator is further to generate an image
of a virtual hand based on the determined position of the
user’s hand relative to the physical input device.

[0157] Example 9 may include the apparatus of Example
7, wherein the image generator is further to load a three-
dimensional model of the virtual input device based on the
identified characteristic of the physical input device.
[0158] Example 10 may include the apparatus of any of
Examples 4 to 9, wherein the virtual input device comprises
one of a virtual keyboard, a virtual mouse, a virtual touch-
pad, a virtual stylus, and a virtual scroll wheel.

[0159] Example 11 may include a method of displaying
virtual objects, comprising generating an image of a virtual
input device, determining a position of a user’s finger
relative to the virtual input device, and generating an image
of a virtual finger based on the determined position of the
user’s finger relative to the virtual input device.

[0160] Example 12 may include the method of Example
11, further comprising determining a position of a user’s
hand relative to the virtual input device, and generating an
image of a virtual hand based on the determined position of
the user’s hand relative to the virtual input device.

[0161] Example 13 may include the method of Example
11, further comprising generating input data based on the
determined position of the user’s finger relative to the virtual
input device.

US 2020/0264698 Al

[0162] Example 14 may include the method of Example
13, further comprising generating a visual indication corre-
sponding to the generated input data.

[0163] Example 15 may include the method of Example
11, further comprising identifying a characteristic of a
physical input device, and generating the image of the
virtual input device based on the identified characteristic of
the physical input device.

[0164] Example 16 may include the method of Example
15, further comprising determining a position of the physical
input device relative to the user, determining a position the
user’s hand relative to the position of the physical input
device, generating an image of a virtual representation of the
physical input device based on the position of the physical
input device relative to the user, and generating an image of
a virtual hand based on the determined position of the user’s
hand relative to the physical input device.

[0165] Example 17 may include the method of Example
15, further comprising loading a three-dimensional model of
the virtual input device based on the identified characteristic
of the physical input device.

[0166] Example 18 may include the method of any of
Examples 11 to 17, wherein the virtual input device com-
prises one of a virtual keyboard, a virtual mouse, a virtual
touchpad, a virtual stylus, and a virtual scroll wheel.
[0167] Example 19 may include at least one computer
readable medium, comprising a set of instructions, which
when executed by a computing device, cause the computing
device to generate an image of a virtual input device,
determine a position of a user’s finger relative to the virtual
input device, and generate an image of a virtual finger based
on the determined position of the user’s finger relative to the
virtual input device.

[0168] Example 20 may include the at least one computer
readable medium of Example 19, comprising a further set of
instructions, which when executed by the computing device,
cause the computing device to determine a position of a
user’s hand relative to the virtual input device, and generate
an image of a virtual hand based on the determined position
of the user’s hand relative to the virtual input device.
[0169] Example 21 may include the at least one computer
readable medium of Example 19, comprising a further set of
instructions, which when executed by the computing device,
cause the computing device to generate input data based on
the determined position of the user’s finger relative to the
virtual input device.

[0170] Example 22 may include the at least one computer
readable medium of Example 19, comprising a further set of
instructions, which when executed by the computing device,
cause the computing device to identify a characteristic of a
physical input device, and generate the image of the virtual
input device based on the identified characteristic of the
physical input device.

[0171] Example 23 may include the at least one computer
readable medium of Example 22, comprising a further set of
instructions, which when executed by the computing device,
cause the computing device to determine a position of the
physical input device relative to the user, determine a
position the user’s hand relative to the position of the
physical input device, generate an image of a virtual repre-
sentation of the physical input device based on the position
of the physical input device relative to the user, and generate
an image of a virtual hand based on the determined position
of the user’s hand relative to the physical input device.

Aug. 20, 2020

[0172] Example 24 may include the at least one computer
readable medium of Example 22, comprising a further set of
instructions, which when executed by the computing device,
cause the computing device to load a three-dimensional
model of the virtual input device based on the identified
characteristic of the physical input device.

[0173] Example 25 may include the at least one computer
readable medium of any of Examples 19 to 24, wherein the
virtual input device comprises one of a virtual keyboard, a
virtual mouse, a virtual touchpad, a virtual stylus, and a
virtual scroll wheel.

[0174] Example 26 may include the at least one computer
readable medium of Example 21, comprising a further set of
instructions, which when executed by the computing device,
cause the computing device to generate a visual indication
corresponding to the generated input data.

[0175] Example 27 may include a graphics apparatus,
comprising means for generating an image of a virtual input
device, means for determining a position of a user’s finger
relative to the virtual input device, and means for generating
an image of a virtual finger based on the determined position
of the user’s finger relative to the virtual input device.

[0176] Example 28 may include the apparatus of Example
27, further comprising means for determining a position of
a user’s hand relative to the virtual input device, and means
for generating an image of a virtual hand based on the
determined position of the user’s hand relative to the virtual
input device.

[0177] Example 29 may include the apparatus of Example
27, further comprising means for generating input data
based on the determined position of the user’s finger relative
to the virtual input device.

[0178] Example 30 may include the apparatus of Example
27, further comprising means for identifying a characteristic
of a physical input device, and means for generating the
image of the virtual input device based on the identified
characteristic of the physical input device.

[0179] Example 31 may include the apparatus of Example
30, further comprising means for determining a position of
the physical input device relative to the user, means for
determining a position the user’s hand relative to the posi-
tion of the physical input device, means for generating an
image of a virtual representation of the physical input device
based on the position of the physical input device relative to
the user, and means for generating an image of a virtual hand
based on the determined position of the user’s hand relative
to the physical input device.

[0180] Example 32 may include the apparatus of Example
30, further comprising means for loading a three-dimen-
sional model of the virtual input device based on the
identified characteristic of the physical input device.

[0181] Example 33 may include the apparatus of any of
Examples 27 to 32, wherein the virtual input device com-
prises one of a virtual keyboard, a virtual mouse, a virtual
touchpad, a virtual stylus, and a virtual scroll wheel.

[0182] Example 34 may include the apparatus of Example
29, further comprising means generating a visual indication
corresponding to the generated input data.

[0183] Example 35 may include a method of displaying a
virtual object, comprising identifying a characteristic of a
physical input device, loading a three-dimensional (3D)
model of a virtual input device based on the identified

US 2020/0264698 Al

characteristic of the physical input device, and generating an
image of the virtual input device based on the loaded 3D
model.

[0184] Example 36 may include the method of Example
35, further comprising identifying a serial number of the
physical input device, and downloading the 3D model from
a cloud-based service based on the serial number of the
physical device.

[0185] Example 37 may include the method of Example
35, further comprising storing one or more 3D models in a
database, and loading the 3D model from the one or more
stored 3D models.

[0186] Example 38 may include the method of Example
35, further comprising identifying a physical layout of the
physical input device, and generating the 3D model on the
fly based on the identified physical layout of the physical
input device.

[0187] Example 39 may include the method of Example
35, further comprising visually mapping the physical input
device, and generating the 3D model on the fly based on the
visual map of the physical input device.

[0188] Embodiments are applicable for use with all types
of semiconductor integrated circuit (“IC”) chips. Examples
of these IC chips include but are not limited to processors,
controllers, chipset components, programmable logic arrays
(PLAs), memory chips, network chips, systems on chip
(SoCs), SSD/NAND controller ASICs, and the like. In
addition, in some of the drawings, signal conductor lines are
represented with lines. Some may be different, to indicate
more constituent signal paths, have a number label, to
indicate a number of constituent signal paths, and/or have
arrows at one or more ends, to indicate primary information
flow direction. This, however, should not be construed in a
limiting manner. Rather, such added detail may be used in
connection with one or more exemplary embodiments to
facilitate easier understanding of a circuit. Any represented
signal lines, whether or not having additional information,
may actually comprise one or more signals that may travel
in multiple directions and may be implemented with any
suitable type of signal scheme, e.g., digital or analog lines
implemented with differential pairs, optical fiber lines, and/
or single-ended lines.

[0189] Example sizes/models/values/ranges may have
been given, although embodiments are not limited to the
same. As manufacturing techniques (e.g., photolithography)
mature over time, it is expected that devices of smaller size
could be manufactured. In addition, well known power/
ground connections to IC chips and other components may
or may not be shown within the figures, for simplicity of
illustration and discussion, and so as not to obscure certain
aspects of the embodiments. Further, arrangements may be
shown in block diagram form in order to avoid obscuring

Aug. 20, 2020

embodiments, and also in view of the fact that specifics with
respect to implementation of such block diagram arrange-
ments are highly dependent upon the platform within which
the embodiment is to be implemented, i.e., such specifics
should be well within purview of one skilled in the art.
Where specific details (e.g., circuits) are set forth in order to
describe example embodiments, it should be apparent to one
skilled in the art that embodiments can be practiced without,
or with variation of, these specific details. The description is
thus to be regarded as illustrative instead of limiting.
[0190] The term “coupled” may be used herein to refer to
any type of relationship, direct or indirect, between the
components in question, and may apply to electrical,
mechanical, fluid, optical, electromagnetic, electromechani-
cal or other connections. In addition, the terms “first”,
“second”, etc. may be used herein only to facilitate discus-
sion, and carry no particular temporal or chronological
significance unless otherwise indicated.
[0191] As used in this application and in the claims, a list
of items joined by the term “one or more of” may mean any
combination of the listed terms. For example, the phrases
“one or more of A, B or C” may mean A; B; C; A and B; A
and C; B and C; or A, B and C.
[0192] Those skilled in the art will appreciate from the
foregoing description that the broad techniques of the
embodiments can be implemented in a variety of forms.
Therefore, while the embodiments have been described in
connection with particular examples thereof, the true scope
of the embodiments should not be so limited since other
modifications will become apparent to the skilled practitio-
ner upon a study of the drawings, specification, and follow-
ing claims.
We claim:
1. An electronic processing system, comprising:
an application processor;
persistent storage media communicatively coupled to the
application processor;
a graphics processor communicatively coupled to the
application processor; and
a gesture tracker communicatively coupled to the appli-
cation processor, wherein:
the graphics processor is to generate an image of a
virtual input device,
the gesture tracker is to determine a position of a user’s
finger relative to the virtual input device, and
wherein
the graphics processor is further to generate an image
of a virtual finger based on the determined position
of the user’s finger relative to the virtual input
device.

