a9y United States

US 20200258159A1

a2y Patent Application Publication o) Pub. No.: US 2020/0258159 A1
STRADLING et al.

(43) Pub. Date:

Aug. 13, 2020

(54)

(71)
(72)

@
(22)

(63)

CONTRACT-CREATOR APPLICATION
Applicant: ShapeShift AG, Zug, OT (CH)

Inventors: Adam STRADLING, Berlin (DE);
Erik VOORHEES, Denver, CO (US)

Appl. No.: 16/864,684

Filed:

May 1, 2020

Related U.S. Application Data

Continuation of application No. 15/715,746, filed on

Sep. 26, 2017.

SYSTEM AND METHOD OF PROVIDING A

G06Q 50/18 (2006.01)
GOGF 12/14 (2006.01)
G06Q 10/04 (2006.01)
G06Q 30/06 (2006.01)
G06Q 20/38 (2006.01)
(52) US.CL
CPC ... G06Q 10/06 (2013.01); GO6Q 30/018

(2013.01); HO4L 9/3236 (2013.01); HO4L
67/26 (2013.01); HO4L 637105 (2013.01);
GO6Q 50/188 (2013.01); HO4L 9/3297
(2013.01); HO4L 9/3268 (2013.01); GO6F
12/1408 (2013.01); GO6Q 40/04 (2013.01);
G06Q 30/0641 (2013.01); GO6Q 20/3829
(2013.01); GO6Q 2220/00 (2013.01); HOAL
2209/56 (2013.01); HO4L 2209/38 (2013.01);

(60) Provisional application No. 62/399,763, filed on Sep.
26, 2016, provisional application No. 62/453,416, (57)

filed on Feb. 1, 2017, provisional application No.
62/453,350, filed on Feb. 1, 2017, provisional appli-
cation No. 62/453,379, filed on Feb. 1, 2017, provi-
sional application No. 62/453,384, filed on Feb. 1,

2017.

Publication Classification

(51) Int. CL

G06Q 40/06
G06Q 40/00
HO4L 9/32

HO4L 29/08
HO4L 29/06

202 /

ACCESSED BY SENDING ETH

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

STEP 3. AGREEMENT

G06Q 40/00 (2013.01)

ABSTRACT

Disclosed is a system and method of creating a smart
contract on a blockchain. The approach includes receiving,
from a user, one or more parameters via a user interface,
each of the one or more parameters being associated with a
creation of a customized smart contract. The approach also
includes authenticating the one or more parameters via a
public/private key associated with the user, and deploying
the customized smart contract onto a blockchain in a prov-
ably honest fashion. The customized smart contract runs
without a custodial risk and can be established between a
first party and a second party with no third party holding
custody of any assets associated with the customized smart
contract.

200

{

STEP 2: SELLER

CALCULATES THE COST

PORTFOLIO
BUYER

208
2ETH S
4ETH
206
FIXED (" PORTFOLID \
SWAP SMART
__FLOATING CONTRACT

STEP 1: BUYER
CREATES THEIR
PORTFOLIO

ORACLE:

DATA FEED

FIXED

OF THE CONTRACT

(oo

FLOATING

PORTFOLIO
SELLER

204
=

214
<

Y

212 SELLER’s HEDGING
WALLETS

(o)

STEP 4: SELLER
HEDGES CONTRACT

US 2020/0258159 A1l

Aug. 13,2020 Sheet 1 of 16

Patent Application Publication

011~

40SS3004d

Y

JHIVD

~ (!

G0l

Sng

9¢1 —11_¢ G0N
¥el —t_C Q0N

A IO

EN)LE(l
JIVH0LS

)

0gl

AVY

NOY

AJONIN

JOVAYIINI
NOILLVOINNANOD

07l

ENJLE
1nd1N0

Gl

GCl

)

0cl

)

Gl

\

001

J1A30
1ndNI

Gyl

I ‘B

US 2020/0258159 A1l

Aug. 13,2020 Sheet 2 of 16

Patent Application Publication

¢ OId
1OV4INOD S3903H
ERREEAFETS o,_N
SLITIVM (334 V1V
INIOQIH syTIES [¢ T10V40 OM04L0d
MIFHL SLY3HO
ixl ¢ 43AN8 T dIIS
= | yImas ONIVOTd | LOVALNOD INILVOTA | ¥3ANG
71z
<2 | onoiwod | hw,_ﬂzow %bm . 01104140d
v07 R GENE)z
1OVHINOD HL 40 Hiar |= 20
1500 FHL SALYINOTVY HL3C S HL3Z
¥ITIS 7 d3IS 807
HL3 ONIONIS A8 03SSI00V
) ININIIIOY T daIS

00¢

US 2020/0258159 A1l

Aug. 13,2020 Sheet 3 of 16

Patent Application Publication

0l€—

90¢

\

HSYd ¥6°G6
HI3 11°/8L
diX 88°1L¥L
AT £29°C1

INNONY

¢ HI.
Al+ 13SSV aav
Al + 135Sy aav 08
80§ \
/ Al+ 13SSV aav s
%0 Al Hsva ,
%08 Al NNIYIHLI 0041804 ISYHOUNd
%01 Al T1ddi
%01 A|NI09LI HL3 |
INID¥3d S13SSY INNOWY INIWLSIANI

01041404 4noA aling

| [0 X =<

00¢

c0¢

US 2020/0258159 A1l

Aug. 13,2020 Sheet 4 of 16

Patent Application Publication

v BI.D

80¥

[>

90¥ -

<] l

NOA HOIHM

"J43H SWY4L

4n0 AviY¥ FYON Nuvial OL SS3yaav
SIHL 01 IN3S 38 71IM SNIOOLIE

~___3H1 01104140d dN0A 113S OL

3SOHO NOA N3HM °“INJNAVd JHL VA

NOY¥4 SSI¥AAV 3H1 40

SAIN 31VARd 3HL NIVLIY LSNA NOA

IONINYVM iONINYYM iONINYVM iONINYYM

DAuISbe MOYSE IVYIYEOANSET1AIDSAWIDS

‘01 HI3 | AN3S 3Svild
S1V13a ININAVd

_ VY / /S]
‘AVd 01 1437 SNIN GI:€1 3AVH NOA L~ y0o¥
HSVa 9/°¢8¢ %08 HSV(HSVa 0°})
HI3 11°/8L %0¢ |WN3Y¥3HII HI13 0°)
X 88LLVL| %01 | Ti4diy | 0SN 00°80%$
917 §59°71 | %01 NIOJL NIOJLIE 0}
¢ INNONY | INIO¥3d |G SLISSY | INTVA 0I104140d

01041404 dnOA ANd

AYVYANNS 3SYHOANd 0104180d ——~Z0¥

(9 |

| [0 X =<

00¥

US 2020/0258159 A1l

Aug. 13,2020 Sheet 5 of 16

Patent Application Publication

S HI.p

906 —

AN3S oliysedoys@yue | :(IYNOILJO) Ld3I03Y TIVAI -

1121¥0199/8P2(39/8P31997 | J9898398y /9707 100¢991690/969749¢TPALIBGILIDTIG | yIGNNN ONOILYOd HNOA -

3131dN0J LIN3NAVd

— 709

——¢06

(9 |

| [0 X =<

006

US 2020/0258159 A1l

Aug. 13,2020 Sheet 6 of 16

Patent Application Publication

9 51D
T3S
SpipogJspoat QL QQV
JVHS
A JONVIVE3Y | -SNOILIY 01041¥0d —r— 09
%001+ ——HSVA ¥6°G6 HSVa 9.°¢8¢| %0S HSY(HSVa | HSVa Z
%0+ H13 ££°79C LI TP I8 T—%6—NA3YIHI3] HIT | H13 |
%01+ diX 9¢°¢Ce8 ddX 88°LLYLl %0l T1ddiy | GSN 00°80%$ cm:do..#ﬁllv 709
%01- 17 0F'Ch1 217 ¢¢9:Z1| %01 NIOJLIT | NIOJLI8 0°} | NIOOlIE 05k T
% SSOT/NIV|4(018/) Lvd INFYUND | 4§ INNOWY |4 INIDY3d |4 SLISSY | INTYA TVILINI| INTVA INF¥IND

AYVNANS 011041804

(0 |

BV,

X =<

009

Patent Application Publication Aug. 13,2020 Sheet 7 of 16 US 2020/0258159 A1

RECEIVING, FROM AN INTERFACE ASSOCIATED WITH A USER, ONE
OR MORE PARAMETERS ASSOCIATED WITH A CREATION OF A | ~ 702
CUSTOMIZED SMART CONTRACT

Y

AUTHENTICATING THE ONE OR MORE PARAMETERS VIA A KEY
ASSOCIATED WITH THE USER — 704

Y

DEPLOYING THE CUSTOMIZED SMART CONTRACT ONTO A
BLOCKCHAIN

_~ 706

FIG. 7

RECEIVING, AT A MULTI-VALIDATOR ORACLE FROM A SMART

CONTRACT, A NOTIFICATION THAT REQUESTS DATA FROM THE | _ g4y

MULTI-VALIDATOR ORACLE TO BE PROVIDED TO THE SMART

CONTRACT ACCORDING TO A SET OF PARAMETERS TO YIELD
REQUESTED DATA

Yy

BASED ON THE NOTIFICATION, PROVIDING THE REQUESTED
DATA TO THE SMART CONTRACT — 804

Y

MULTI-VALIDATING THE REQUESTED DATA BASED ON A FIRST
VERIFICATION FROM A FIRST KEY AND A SECOND 806
VERIFICATION FROM A SECOND KEY

FIG. 8

US 2020/0258159 A1l

Aug. 13,2020 Sheet 8 of 16

Patent Application Publication

6 ‘HI.D

A+ 13SSV aav
%00 %0 ~Tanony AYOISIH JONVIVERY > —1— 106
%0 %08 A| HSVA
%08 %0¢ PANRLILENELTE JONVIVE3Y HSINIA 70
%01 %01 A| J1ddId
%01 %01 A|NIOJLN NI0D1I8 Q') |——1— 016

% MIN % IN3¥dNI S1ISSV INJ¥4NI INTVA INTNHND

wwm m%m Nwm

0110418404 JONVIvE3Y

(O |

|8 X =<

006

Patent Application Publication Aug. 13,2020 Sheet 9 of 16 US 2020/0258159 A1

ESTABLISHING A MULTI-ASSET BLOCKCHAIN BASED TRUSTLESS [_~ 1002
SMART CONTRACT FOR MANAGING A MULTI-ASSET PORTFOLIO

RECEIVING AN INDICATION, FROM AN INDIVIDUAL ASSOCIATED
WITH THE MULTI-ASSET PORTFOLIO, OF A DESIRE TO ~— 1004
REBALANCE THE MULTI-ASSET PORTFOLIO

Y

PRESENTING AN INTERFACE TO REBALANCE THE MULTI-ASSET
PORTFOLIO

.~ 1006

Y

RECEIVING, VIA THE INTERFACE OR SOME OTHER MEANS,
INPUT FROM THE INDIVIDUAL REQUESTING A REBALANCING OF | _~ 1008
THE MULTI-ASSET PORTFOLIO

Y

BASED ON THE INPUT, UPDATING THE MULTI-ASSET
BLOCKCHAIN BASED TRUSTLESS SMART CONTRACT TO YIELD A| - 1510
MODIFIED MULTI-ASSET BLOCKCHAIN BASED TRUSTLESS
SMART CONTRACT WHICH INCORPORATES THE REBALANCING

FIG. 10

US 2020/0258159 A1l

Aug. 13,2020 Sheet 10 of 16

Patent Application Publication

IT 517

cee 0l @ R X L

ulooaj# wnassyje# ulodjig# o1°dooulod b Joadip Sulod
doj a8y} ||p |18 40 Ang ‘malp ‘ADid ADJd usaq sjexdow Aouaiinoojdiiy
Uy - Q430 113

UOIDSIBAUOD MBI\ ces T O Y >

WO TTdNVX3/ /Ay eJay ‘i puly -buijgnop HSy(q
oy} Pa|IDN {eaMm Siy} sppog Joppa ay} jo do} ayj jp som oljopiod AW

Ur - 430 13
UOIJDSJOAUOD MBI\ ces | @ ¢ A3 L

S99YJ00AY14I@ 0! HIySedoys@Dla Jajiom sy} ulyim dox Ang
UsA® UDD Nnoj °Jo||bm 8|iqow Jno uo Aspa AjpaJ S| usxo} mau D Buypaiy
Yy — DSI@ DSl

Pajeamiay A3
SOapIA § Sojoyd sol|dey X} Sjoam]

]
Sjoam|

—— (01

!

0011

ARSI,

US 2020/0258159 A1l

S300 ¥INMO NIHM 0I104L40d JONVIVEIY ATIVOILYNOLNY (I~—1— ¥0C!

6
5 004140d INOTD ——20T!
= %001+ HSVQ ¥6°G6 %05 HSVa HSVQ | HSV(2

S %0+ HI3 11°£8L %0¢ |NNFWIHLI| HIT | HI3 |

o %04+ duX 88'1L¥L %01 Tlddiy | SN 00°80¥$ | ASN 00°7/9%

m.b 20701—71 %01 - 717 €€9°71 %01 NIOJLIN H13 001 H13 0GlI

“ % SSO1/NIV9|4(018/) LVY INI¥¥NI|4 INIO¥Id |4 SLISSY | INTVA TVILINI [INTVA LNIHMND

orjjiysedoys@iia Y04 0104140d 40 AYYWANS
C 9 | | i X o<

0021

Patent Application Publication

US 2020/0258159 A1l

Aug. 13,2020 Sheet 12 of 16

Patent Application Publication

™ 2051

cI 'Br.p
7161 0ls] 808! 901 v05| 01041404 3HL MmOT104
/ / / / ANV ANOT0 0L MIIT19
\ S
%Sy %28 %9 %6VT WY3L ONOT — Q3AVHL ATIAILOV 3 ¥ISN
%6/ wze | %1 %06 | NY3L LMOHS — QIAVL ATIAILOV 3 ¥ISN
ON %6 | %7z %011 0Z doL dpoyexop ISYIANI 413 a ¥asn
%y %8 | %I§ %9%T 0Z dOL HL9IIM dosesupp)3 a ¥3sn
%06 | %Sl | %6¢S %0SS SOLAYO dodjexipN LSO SR EN
ON %901 | %Iy %057 SOLdAY¥D 07 dOL AN g ¥Isn
ON ON %05 %08 SOLdA¥D JAI4 dOL AN ¥ ¥3sn
8 4YIA | S HINOW 2 YIIM |4 NYNLIY TVIOL & JNYN 0M04L40d YINMO
S0I704180d 21N8Nnd ¥04 SAY¥Yv0d ¥3aviT
C_ o | _ G X =><&

00¢1

Patent Application Publication Aug. 13, 2020 Sheet 13 of 16 US 2020/0258159 A1l

ESTABLISHING A MULTI-ASSET BLOCKCHAIN BASED TRUSTLESS 1402
SMART CONTRACT FOR MANAGING A MULTI-ASSET PORTFOLIO [~

Y
INSERTING, INTO THE MULTI-ASSET BLOCKCHAIN BASED
TRUSTLESS SMART CONTRACT, AN AUTHORIZATION FOR A

LEADER MULTI-ASSET BLOCKCHAIN BASED TRUSTLESS SMART

CONTRACT TO SEND MESSAGES FROM THE LEADER _~ 1404
MULTI-ASSET BLOCKCHAIN BASED TRUSTLESS SMART
CONTRACT TO THE TO MULTI-ASSET BLOCKCHAIN BASED
TRUSTLESS SMART CONTRACT REGARDING A LEADER
REBALANCING OF THE MULTI-ASSET BLOCKCHAIN BASED
TRUSTLESS SMART CONTRACT

l

MODIFYING THE MULTI-ASSET BLOCKCHAIN BASED TRUSTLESS

SMART CONTRACT BASED AT LEAST IN PART ON THE LEADER | - 1406

REBALANCING OF THE LEADER MULTI-ASSET BLOCKCHAIN
BASED TRUSTLESS SMART CONTRACT

FIG. 14

US 2020/0258159 A1l

Aug. 13,2020 Sheet 14 of 16

Patent Application Publication

¢0G1 —

SI *BI.p
80G) —— 011041404 3LvaINDIT DAUISbY MOYSSIVYIAYEOANS L TAbeAWpd |
:01 HI3 G'1 ON3S
906} — STIY13d NOILYQINON
%004+ HSYQ ¥6°G6 %06 HSYQ HSYQ 0} HSYQ 0'Z
%0+ HI3 }1°L8L %0¢ |[ANFYIHLI| HI3 S} HI3 6°1
%01+ d¥X 88'LLYL %01 T1ddiy | asn 00°80¥$ | asn 00°Z.9$
%01 - 217 ££9°71 %01 NIOJLN | NIODLIG 0°)} | NIOJLIE 0671
% SSOT/NIVO|4(218/) ILv¥ INI¥YND|S INIDY3d |4 SLISSY [INTVA TVILINI| INTVA INFHYUND
S S S) S S
N 7161 716} 716} 016} 7161 7161
01M1041L40d ¥NOA T113S AJYNNNS 01041¥0d
(9 | | [0 X =><=

00G1

y0S1

Patent Application Publication

Aug,

13,2020 Sheet 15 of 16

US 2020/0258159 A1l

RECEIVING, FROM A BUYER AN

D AT A SMART CONTRACT, AN

IDENTIFICATION OF A PORTFOLIO OF ASSETS

~ 1602

\

RECEIVING, FROM THE BUYER,

i
AN AMOUNT THAT THE BUYER

WILL INVEST IN THE PORTFOLIO OF ASSETS

~ 1604

\

i

RECEIVING, BASED ON PREV

AILING EXCHANGE RATES, A

NUMBER OF ASSETS IN THE PORTFOLIO OF ASSETS

~ 1606

i

\
RECEIVING A CONFIRMATION

FROM THE BUYER OF THE

PORTFOLIO OF ASSETS HAVING THE NUMBER OF ASSETS

~ 1608

\

i

CALCULATING, BY AN ENTITY, A COST OF THE PORTFOLIO OF
ASSETS TO YIELD A CONTRACT

1610

Yy

RECEIVING THE AMOUNT AND EXCESS COLLATERAL FROM THE
BUYER AS A BUYER ACCEPTANCE OF THE CONTRACT

~ 1612

Y

RECEIVING AN ENTITY ACCEPTANCE OF THE CONTRACT BY
RECEIVING AN ENTITY AMOUNT AT THE SMART CONTRACT

~ 1614

Y

RECEIVING, AT THE SMART CONTRACT, AN INDICATION THAT
THE BUYER WANTS TO CLOSE THE CONTRACT

~ 1616

i
SETTLING THE CONTRACT VIA THE SMART CONTRACT BASED
ON A CURRENT VALUE OF THE PORTFOLIO BASED ON PRICING
DATA RECEIVED FROM A TRUSTED VALUATION ENTITY

1618

FIG. 164

Patent Application Publication Aug. 13, 2020 Sheet 16 of 16 US 2020/0258159 A1l

RECEIVING, FROM_A BUYER, AN IDENTIFICATION OF A PORTFOLIO OF | 4e0
ASSETS ASSOCIATED WITH A BLOCKCHAIN-BASED SMART CONTRACT

/
RECEIVING, FROM THE BUYER, AN AMOUNT TO INVEST IN THE 1622
PORTFOLIO OF ASSETS

DETERMINING A NUMBER OF ASSETS IN THE PORTFOLIO OF ASSETS
BASED ON ONE OR MORE ASSET EXCHANGE RATES AND THE ~ 1624
AMOUNT TO INVEST RECEIVED FROM THE BUYER, TO YIELD A

COMPOSITION OF THE PORTFOLIO OF ASSETS

/

IN RESPONSE TO RECEIVING, FROM THE BUYER, A CONFIRMATION
FOR THE COMPOSITION OF THE PORTFOLIO OF ASSETS, CALCULATING | . {eoe
A COST OF THE PORTFOLIO OF ASSETS BASED ON THE COMPOSITION

OF THE PORTFOLIO OF ASSETS

Y

DETERMINING A PORTFOLIO CONTRACT BASED ON THE COST OF THE
PORTFOLIO OF ASSETS 1628

RECEIVING, FROM THE BUYER, A BUYER ACCEPTANCE OF THE
PORTFOLIO CONTRACT, THE BUYER ACCEPTANCE COMPRISING THE |~ 1630
AMOUNT TO INVEST AND EXCESS COLLATERAL

Y

IDENTIFYING AN ENTITY ACCEPTANCE OF THE PORTFOLIO CONTRACT
IN RESPONSE TO RECEIVING, AT THE BLOCKCHAIN-BASED SMART | . 1639
CONTRACT, AN ENTITY AMOUCNJN,TARSE((:)TCIATED WITH THE PORTFOLIO

Y

RECEIVING, AT THE BLOCKCHAIN-BASED SMART CONTRACT, AN
INDICATION THAT THE BUYER HAS REQUESTED TO CLOSE THE 1634
PORTFOLIO CONTRACT

IN RESPONSE TO THE INDICATION THAT THE BUYER HAS REQUESTED
TO CLOSE THE PORTFOLIO CONTRACT, SETTLING THE PORTFOLIO
CONTRACT VIA THE BLOCKCHAIN-BASED SMART CONTRACT BASED ON
A CURRENT VALUE OF THE PORTFOLIO OF ASSETS, THE CURRENT [~ 1636
VALUE OF THE PORTFOLIO OF ASSETS BEING BASED ON PRICING
DATA FROM A TRUSTED VALUATION ENTITY

FIG. 16B

US 2020/0258159 Al

SYSTEM AND METHOD OF PROVIDING A
CONTRACT-CREATOR APPLICATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of, and priority
to, U.S. Nonprovisional patent application Ser. No. 15/715,
746, filed on Sep. 26, 2017, which claims priority benefit to
U.S. Provisional Patent Application No. 62/399,763, filed on
Sep. 26, 2016, U.S. Provisional Patent Application No.
62/453,416, filed on Feb. 1, 2017, U.S. Provisional Patent
Application No. 62/453,350, filed on Feb. 1, 2017, U.S.
Provisional Patent Application No. 62/453,379, filed on Feb.
1, 2017, U.S. Provisional Patent Application No. 62/453,
384, filed on Feb. 1, 2017, the entire contents of each of
which are herein incorporated by reference in their entire-
ties.

TECHNICAL FIELD

[0002] The present disclosure relates to providing a con-
tract creator for management of multi-asset block-chain
based portfolios.

BACKGROUND

[0003] In traditional approaches to asset management,
assets are typically held by entities in a custodial manner.
This creates a risk to the buyer, as the buyer’s assets are
subject to any errors or improprieties by the entities in
custody of the assets, such as fraud, forged data, deleted
data, and so forth. An enormous legal and regulatory struc-
ture exists to prevent, detect, and dissuade such errors by
setting forth processes and rules for record keeping of
company data, such as documents, emails, transactions,
contracts, etc., and setting forth specific disclosure and
fiduciary requirements.

[0004] Financial institutions are also subject to frequent
audits designed to ensure those records and processes accu-
rately represent the firm’s assets, liabilities, and operations.
Despite the frequent audits and the legal and regulatory
structure that exists, fraud and insolvency cases occur across
the entire landscape of asset management with surprising
regularity. The continual failure to prevent these issues
highlights the risks inherent in using third parties to manage
assets. Current technologies similarly fail to prevent these
issues.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The disclosure will be readily understood by the
following detailed description in conjunction with the
accompanying drawings in which:

[0006] FIG. 1 illustrates example computing components
of' a computing device according to one or more aspects of
this disclosure;

[0007] FIG. 2 illustrates an example process for portfolio
swaps based on smart contracts and blockchain technolo-
gies;

[0008] FIG. 3 illustrates an example graphical interface
for building a portfolio of assets;

[0009] FIG. 4 illustrates an example graphical interface
for buying a portfolio of assets;

[0010] FIG. 5 illustrates an example graphical interface
for completing payment for a portfolio of assets;

Aug. 13,2020

[0011] FIG. 6 illustrates an example graphical interface for
viewing the current composition, status, and value of a
portfolio of assets selecting portfolio actions;

[0012] FIG. 7 illustrates a method aspect for a smart
contract creator;

[0013] FIG. 8 illustrates a method aspect for a multi-
validator oracle;

[0014] FIG. 9 illustrates an example graphical interface
for rebalancing a portfolio of assets;

[0015] FIG. 10 illustrates an example method aspect for a
rebalancing approach;

[0016] FIG. 11 illustrates an example graphical interface
for sharing a portfolio of assets with users on a network;
[0017] FIG. 12 illustrates an example graphical interface
for following a portfolio of assets;

[0018] FIG. 13 illustrates an example graphical interface
for providing leader boards based on various portfolios of
assets;

[0019] FIG. 14 illustrates a method for enabling a leader/
follower asset management approach;

[0020] FIG. 15 illustrates an example graphical interface
for liquidating a portfolio of assets; and

[0021] FIGS. 16A and 168 illustrate example methods of
managing a multi-asset portfolio.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

[0022] Blockchain technology can reduce or eliminate the
risks in asset management. Blockchain technologies depend
on the existence of various networks such as the Internet,
and allow users to exchange assets such as digital currency
using a decentralized verification system implemented and
deployed over multiple servers. The process for buying,
securing/storing and vetting blockchain assets has many
technical steps and challenges. For example, any investor
who wants to build a portfolio of blockchain assets should
(1) conduct in-depth research and analysis into which block-
chain assets to buy, (2) research and register at multiple asset
exchanges to purchase blockchain assets, (3) securely gen-
erate and store the private keys for each blockchain asset the
investor wants to purchase, and (4) manually buy or sell
assets when they want to change the composition of the
portfolio.

[0023] Previous solutions for trading assets allow users to
gain exposure to thousands of available tickers (like stocks,
bonds, currencies, etc.). Such applications are designed for
tickers to be traded on a “single asset basis”. That is, each
and every swap is for a single asset (i.e. Apple for IBM, or
USD for euros, etc.). The bitcoin blockchain system can be
used for blockchain assets and cryptocurrencies. However,
the bitcoin blockchain system requires a wallet for every
asset. The wallet stores the user’s private key and address for
that asset. For every different type of cryptocurrency, a user
must download the respective wallet that stores a private key
and an address for that user. This requirement for a separate
wallet, private key, etc. for each type of blockchain asset is
cumbersome, and creates significant technical limitations
and burdens pertaining to data storage, bandwidth, digital
security, computing efficiency, software and data compat-
ibility, etc.

[0024] The disclosed technologies provide a technical
solution to address the limitations and burdens pertaining to
data storage, bandwidth, digital security, computing effi-

US 2020/0258159 Al

ciency, software and data compatibility, and provides vari-
ous technical advantages which eliminate or reduce asset
management risks and other limitations. For example, the
concepts disclosed herein can reduce or eliminate such risks,
as well as other risks such as the risk of custodianship in the
blockchain asset trading world and beyond, including the
broader financial services and investment management
industries.

[0025] Disclosed herein are technologies and applications
for blockchain-based smart contract driven asset manage-
ment. The approaches disclosed herein allow users to: (1)
Build a portfolio of blockchain assets from a user-friendly
interface, (2) Purchase an entire portfolio in a single trans-
action (i.e., rather than a single asset basis transaction,
transactions can involve a plurality of assets being acquired
in a single step), (3) Secure the entire portfolio under a single
private key, which only the investor controls, from begin-
ning to end (i.e. no custodial or counterparty risk), (4)
Manage and maintain multiple blockchain assets and asset
types without storing and managing a different wallet for
each type of the blockchain assets, (5) Rebalance the port-
folio as desired through a single signed transaction, (6)
Leverage the collective knowledge of the crowd to
“socially” design a crypto portfolio, (7) Manage a portfolio
of assets and “follow” top blockchain asset portfolio man-
agers and traders without giving up custody of their
assets—a new type of asset management process), and (8)
Store, trade, and manage an entire group of assets using a
single private key.

[0026] Blockchain technologies provide significant
improvements over traditional asset management and data
recording procedures. Blockchain represent an evolution in
web and database technology. Leveraging blockchain tech-
nology enables new services and service improvements not
previously feasible or even possible. For example, the
approaches herein can implement blockchain technologies
to provide a new service and technical environment for
portfolio management with reduced/eliminated custodial
risk, such as the leader/follower concepts further described
herein, which allows a leader to direct the follower’s invest-
ments without taking custody of the assets.

[0027] The approaches set forth herein can provide secure
and efficient technologies and procedures for managing a
portfolio of blockchain assets and implementing various
asset management functionalities such as portfolio rebalanc-
ing. The approaches herein can implement a distributed
architecture for hosting a blockchain and distributed infor-
mation which together can enhance asset and portfolio
information, asset and information security, and user control
and flexibility. The process outlined herein can also reduce
costs.

[0028] With this technology, users can own and manage
portfolios of blockchain (or any digital) assets using the
blockchain, smart contracts, and related infrastructure dis-
closed herein. Users do not need to keep coins on an
exchange or even interface with an exchange. Users do not
need to download the wallets/clients of any specific block-
chain asset which they want to purchase and store. Instead,
users can own and manage portfolios of blockchain assets
using the blockchain, smart contracts, and related infrastruc-
ture disclosed herein.

[0029] While the description herein focuses on blockchain
assets, it should be noted that the technologies herein can
also be used to manage non-blockchain assets and build

Aug. 13,2020

portfolios with non-blockchain assets, such as stocks, bonds,
real estate, contracts, leases, and other types of assets. The
technologies herein can be used to build portfolios of any
assets having pricing data-feeds. The benefits and use cases
for building non-blockchain asset portfolios can vary from
those associated with building blockchain asset portfolios.
This is due at least in part to the differences in the infra-
structure and industry associated with these types of assets.
[0030] The approaches disclosed herein provide signifi-
cant advantages of transparency and auditability. In the
present disclosure, “the contract is the code,” which means
that using blockchain technology and smart contracts, every-
thing is transparent and secured by cryptography. Individu-
als cannot forge, erase, or add data inappropriately. The
system provides complete transparency in view of who owns
the assets and their providence over time. This new system
provides a new infrastructure with greater cyber security and
overall security, and eliminates the need to trust others and
rely on third parties to be honest. One non-limiting example
of a platform for developing and deploying smart contracts
on the blockchain is the Ethereum Virtual Machine.
[0031] The computer code or code referenced herein rep-
resents the intent of parties to the smart contract. The smart
contract as implemented herein reduces the amount of
interpretation with respect to the contract by establishing
that the code is a literal manifestation of the intent of the
parties, thus avoiding ambiguity.

[0032] A multi-asset swap option disclosed herein limits
or eliminates the risk inherent in the use of financial swap
arrangements which require trusting one or more parties to
deliver or otherwise satisfy obligations upon settlement,
known as performance. Every swap has counterparty risk,
and this risk will be priced and paid ultimately by one or
more parties in the arrangement. Not having mathematical
certainty of performance in the swap contract is an unnec-
essary loss to all involved in the contract.

[0033] The problems outlined above, among others, are
addressed by the concepts disclosed herein. For example, the
approaches disclosed herein can implement a blockchain-
based smart contract paired with an oracle data feed in which
the performance and settlement of the swap arrangement
occurs autonomously and without risk to either party. Both
parties, when they enter in the contract, know with math-
ematical certainty that the other side does not need to
perform anything. With the approaches herein, there is no
counterparty risk and no need for a clearing house. The
blockchain-based smart contract creates an auditable, trans-
parent trail and the code executes the intent of the parties.
The use of the smart contract herein reduces the likelihood
of failure to perform, eliminates non-performance risks, and
reduces the cost of entering, managing, and executing a
swap agreement.

[0034] The use of the smart contract herein can also
reduce the cost of dealing with such failures to perform and
eliminates the need for a central clearing house. In the
derivatives world, there are over-the-counter (OTC) deriva-
tives which can be an agreement directly between the two
parties. In that case, the parties have counterparty risk
should one or the other party not fulfill their obligations. In
the case where both parties employ the services of a clearing
house as a trusted third party, there is always a risk that the
trusted third party may not manage and enforce the swap.
The approaches herein eliminate the risks in both scenarios
above, as well as their associated costs. Again, in the

US 2020/0258159 Al

disclosed solution, there is no need for a clearing house, and
in the OTC scenario, both parties do not have trust each
other thus eliminating counterparty risk.

[0035] Non-limiting examples and aspects of the tech-
nologies disclosed herein include, without limitation, a
trustless blockchain multi-asset ‘swaption” mechanism, a
multi-asset trustless swap rebalance mechanism, a trustless
multi-asset leader-follower mechanism, a contract creator
mechanism and a multi-validator oracle. One or more of
these individual examples or features can be combined
and/or otherwise function together with other examples or
features disclosed herein, to form a specific application or
configuration. For example, one or more of the components
disclosed herein can be combined together to create a
portfolio index swap marketplace (herein called a
“PRISM”). “PRISM” is a working product name and refers
to an application and service that enables buying and selling
of multi-asset portfolios based on blockchain technology
and smart contracts.

[0036] A number of examples will be provided related to
blockchain assets or cryptocurrencies, such as Bitcoins,
Ethereum, and other digital currencies and assets. However,
it is noted that the concepts herein apply to portfolios of any
type of blockchain asset, digital currency or asset, and/or
non-blockchain assets such as stock equities, bonds, com-
modities, real estate, contracts, currencies (e.g., dollars), etc.
[0037] As previously noted, users do not have to keep
assets on an exchange, or interface with an exchange, third
party or counterparty. This eliminates significant risks such
as fraud, non-performance, breach of duty, theft, etc. More-
over, users do not have to download the specific wallets or
clients for respective blockchain assets that users want to
purchase and store securely. Instead, users can own and
manage one or more portfolios of assets, each of which can
include a variety of assets such as blockchain assets and/or
“traditional assets” (e.g., equities, bonds, etc.) using a block-
chain and associated security features like public/private key
infrastructure. Each individual portfolio is secured using the
public/private key infrastructure and transactions are veri-
fied using the blockchain.

[0038] In this respect, the present technologies provide a
new computing infrastructure, environment, and procedure
for managing digital assets and multi-asset portfolios, with
significant improvements over existing technologies and
procedures, including technologies and procedures for data
storage, security, management, communication, efficiency,
etc. The new computing infrastructure, environment, and
procedure provide distributed data storage, enhancement,
security, control, processing, verification, etc., and enhance
the information and functionality of data and systems across
the distributed environment. The new process disclosed
herein allows value creators (the portfolio managers or
traders) to connect directly with consumers (those users who
need their assets managed professionally) without numerous
intermediaries like clearing houses, custodians, banks, etc.
This is accomplished at least partly by collapsing the infra-
structure costs of such intermediaries onto the blockchain
and associated technologies (smart contracts, PKI infrastruc-
ture, modern cryptography, etc.).

[0039] Blockchain technologies are designed for trading
single assets and are incapable of performing multi asset
transactions or managing portfolios of different types of
assets, such as blockchain assets and non-blockchain assets
(e.g., real-world assets). However, the technologies dis-

Aug. 13,2020

closed herein address these limitations and provide various
other improvements to blockchain and non-blockchain tech-
nologies, including flexibility, security, and performance
improvements. For example, the technologies provide a
multi-asset solution which allows portfolios to be built with
different types of assets and enables swaps of entire port-
folios as opposed to merely single asset transactions.
[0040] The disclosed technologies also implement a smart
contract based oracle through which the smart contract can
receive and validate pricing data, including multi-sig, multi-
validation, or fully decentralized.

[0041] in a multi-signature context, rather than using a
single private key to authorize the transaction, the system
uses multiple private keys to sign the transaction together
before the transaction happens. The system can require a
number of keys which can vary in different configurations,
such as 2 out of 3 possible private keys to verify the
transaction or 99 out of 100, or 3 out of 8, and so forth. The
mufti-signature arrangement removes a point of failure from
the process and provides a safer transaction. This can apply
to the oracle disclosed herein and/or to other components.
[0042] The present technologies also provide a unique
leader-follower functionality along with various benefits
including mitigation of custodial risk. Unlike current solu-
tions, the present technologies also provide the architecture
and functionality for enabling in-contract rebalancing of a
portfolio of assets, which can be performed for the entire
portfolio without opening and closing every single asset
swap every time the user wants to rebalance the portfolio.
The technologies also provide an architecture and environ-
ment that integrates a social networking component. For
example, with the disclosed technologies, users can share
their portfolio with other users on one or more networks,
such as a social network. Users can also view and select
portfolios of other users to follow selected portfolio(s) from
the other users.

[0043] The disclosed technologies can be deployed using
different platforms and environments, including desktop
applications, browser applications, etc., and are not limited
to a specific platform. The present technologies also provide
an array of smart contract security features, such as the
ability to “pause contracts”, “manually override contracts”,
etc., as well as a “training wheels” method as further
described herein. In some aspects of the present disclosure,
only the buyer can initiate settlement, which can prevent
settlements being triggered without the buyer’s consent,
such as based on margin calls, the expiration of time, or by
the seller. The buyer has the option to settle a swap at any
time and the seller can be prevented from triggering a
settlement. This can provide significant security and usabil-
ity implications.

[0044] The technologies disclosed herein also provide a
new architecture and code-base which allows for a unique
“leader and follower utility.” This functionality allows a
“leader” to invest/allocate digital assets corresponding to
“followers”, without taking custody of those assets. This
feature and functionality eliminates typical custodial
arrangements and their associated risks. With the disclosed
technologies, a third party does not have to take custody of
client assets. Instead, users retain possession of their assets,
which can be aggregated into “portfolios™ stored and/or
verified using a blockchain network. Portfolios can include
various types of blockchain assets (e.g., cryptocurrencies,
etc.), as well as other non-blockchain assets.

US 2020/0258159 Al

[0045] A uniquely implemented blockchain-based oracle,
which can provide current pricing information and can be
used as a data feed in the present application. This oracle and
its configuration in the present application can include a
number of security features, such as a “manual override”,

2 <

“contract-pause”, “training wheels” processes, and others.

[0046] The present disclosure includes systems, methods,
and computer-readable storage devices for implementing
blockchain-based smart contracts for asset management,
including trustless blockchain swaption contracts of multi-
asset portfolios for example. In some examples, a system or
method can include receiving, from a buyer and at a smart
contract, an identification of a portfolio of blockchain assets
(e.g., digital currencies such as Bitcoin or Ethereum), receiv-
ing, from the buyer, an amount that the buyer will invest in
the portfolio of blockchain assets and receiving, based on
prevailing exchange rates, a number of blockchain assets in
the portfolio.

[0047] The system or method further includes receiving a
confirmation from the buyer of the portfolio having the
number of blockchain assets, calculating, by an entity, a cost
of the portfolio of blockchain assets to yield a contract,
receiving the amount and excess collateral from the buyer as
a buyer acceptance of the contract, and receiving an entity
acceptance of the contract by receiving an amount from the
seller or other entity (i.e., an asset value amount such as a
value in dollars or value of cryptocurrency) at the smart
contract. Private keys of a sending address associated with
the entity can be used as an entity signature key for the
contract.

[0048] The system or method further includes receiving, at
the smart contract, an indication that the buyer wants to
close the contract. This indication can be associated with a
signed message from a buyer private key. The system or
method can also include settling the arrangement via the
smart contract based on a current value of the portfolio,
which can be calculated based on pricing data received from
a trusted valuation entity, such as the oracle or another
source.

[0049] Also disclosed is an approach for rebalancing
multi-asset smart contracts. In some examples, a system or
method includes establishing a multi-asset blockchain-based
trustless smart contract for managing a multi-asset portfolio,
receiving an indication, from an individual associated with
the multi-asset portfolio, of a desire to rebalance the multi-
asset portfolio, presenting the individual with an interface to
rebalance the multi-asset portfolio, receiving, through the
interface, input from the individual including a rebalancing
of the multi-asset portfolio and updating the multi-asset
blockchain-based trustless smart contract to yield a modified
multi-asset blockchain-based trustless smart contract which
incorporates the rebalancing.

[0050] The smart contract can be the same contract, exist-
ing in the same place on the blockchain but with a new
“state”. The new state reflects the new composition of the
portfolio which is recorded in the blockchain. The block-
chain is the transparent and relatively immutable record of
state changes which the contract undergoes. The system
writes a new entry in the blockchain that reflects the new
portfolio composition. In another aspect, the system can
create a new contract but with different parameters (asset
allocations). The old contract can be discarded, deleted or
made inactive.

Aug. 13,2020

[0051] The indication of the desire to rebalance the multi-
asset portfolio can include a request to rebalance one or
more assets in the multi-asset portfolio or add/delete one or
more assets in the multi-asset portfolio.

Description

[0052] The present disclosure addresses the various issues
and limitations in the art outlined above, such as security
limitations, performance limitations, inefficiencies, control
limitations, flexibility limitations, lack of transparency,
infrastructure limitations, etc. Example features and func-
tionalities of the present disclosure include trustless block-
chain multi-asset swaption mechanisms, trustless multi-
asset rebalance mechanisms, trustless multi-asset leader-
follower mechanisms, smart-contract creator mechanisms,
multi-validator oracle systems, etc. These example features
and functionalities can be implemented in a distributed
network and computing environment which can provide
various advantages in security, storage, efficiency, band-
width, computation, control, flexibility, performance, etc.,
and can support a variety of software application and
computing platforms. One or more of these individual
components can be combined and work together with any
other one or more of the components in various configura-
tions.

[0053] The disclosure first turns to FIG. 1 which illustrates
example hardware components for a computing system that
can be implemented for various aspects of the present
disclosure. The disclosure will then turn to a description of
example multi-asset management mechanisms, architec-
tures, and concepts.

[0054] With reference to FIG. 1, an exemplary system
and/or computing device 100 includes a processing unit
(CPU or processor) 110 and a system bus 105 that couples
various system components including the system memory
115 such as read only memory (ROM) 120 and random
access memory (RAM) 125 to the processor 110. The system
100 can include a cache 112 of high-speed memory con-
nected directly with, in close proximity to, or integrated as
part of the processor 110. The system 100 copies data from
the memory 115, 120, and/or 125 and/or the storage device
130 to the cache 112 for quick access by the processor 110.
In this way, the cache provides a performance boost that
avoids processor 110 delays while waiting for data. These
and other modules can control or be configured to control the
processor 110 to perform various operations or actions.
Other system memory 115 may be available for use as well.
The memory 115 can include multiple different types of
memory with different performance characteristics. It can be
appreciated that the disclosure may operate on a computing
device 100 with more than one processor 110 or on a group
or cluster of computing devices networked together to
provide greater processing capability. The processor 110 can
include any general purpose processor and a hardware
module or software module, such as module 1 132, module
2 134, and module 3 136 stored in storage device 130,
configured to control the processor 110 as well as a special-
purpose processor where software instructions are incorpo-
rated into the processor. The processor 110 may be a
self-contained computing system, containing multiple cores
or processors, a bus, memory controller, cache, etc. A
multi-core processor may be symmetric or asymmetric. The
processor 110 can include multiple processors, such as a
system having multiple, physically separate processors in

US 2020/0258159 Al

different sockets, or a system having multiple processor
cores on a single physical chip. Similarly, the processor 110
can include multiple distributed processors located in mul-
tiple separate computing devices, but working together such
as via a communications network. Multiple processors or
processor cores can share resources such as memory 115 or
the cache 112, or can operate using independent resources.
The processor 110 can include one or more of a state
machine, an application specific integrated circuit (ASIC),
or a programmable gate array (PGA) including a field PGA.

[0055] The system bus 105 may be any of several types of
bus structures including a memory bus or memory control-
ler, a peripheral bus, and a local bus using any of a variety
of bus architectures. A basic input/output system (BIOS)
stored in ROM 120 or the like, may provide the basic routine
that helps to transfer information between elements within
the computing device 100, such as during start-up. The
computing device 100 further includes storage devices 130
or computer-readable storage media such as a hard disk
drive, a magnetic disk drive, an optical disk drive, tape drive,
solid-state drive, RAM drive, removable storage devices, a
redundant array of inexpensive disks (RAID), hybrid storage
device, or the like. The storage device 130 is connected to
the system bus 105 by a drive interface. The drives and the
associated computer-readable storage devices provide non-
volatile storage of computer-readable instructions, data
structures, program modules and other data for the comput-
ing device 100. In one aspect, a hardware module that
performs a particular function includes the software com-
ponent stored in a tangible computer-readable storage device
in connection with the necessary hardware components,
such as the processor 110, bus 105, an output device such as
a display 135, and so forth, to carry out a particular function.
In another aspect, the system can use a processor and
computer-readable storage device to store instructions
which, when executed by the processor, cause the processor
to perform operations, a method or other specific actions.
The basic components and appropriate variations can be
modified depending on the type of device, such as whether
the computing device 100 is a small, handheld computing
device, a desktop computer, or a computer server. When the
processor 110 executes instructions to perform “operations”,
the processor 110 can perform the operations directly and/or
facilitate, direct, or cooperate with another device or com-
ponent to perform the operations.

[0056] Although the exemplary embodiment(s) described
herein employs a storage device such as a hard disk 130,
other types of computer-readable storage devices which can
store data that are accessible by a computer, such as mag-
netic cassettes, flash memory cards, digital versatile disks
(DVDs), cartridges, random access memories (RAMs) 125,
read only memory (ROM) 120, a cable containing a bit
stream and the like, may also be used in the exemplary
operating environment. According to this disclosure, tan-
gible computer-readable storage media, computer-readable
storage devices, computer-readable storage media, and com-
puter-readable memory devices, expressly exclude media
such as transitory waves, energy, carrier signals, electro-
magnetic waves, and signals per se.

[0057] To enable user interaction with the computing
device 100, an input device 145 represents any number of
input mechanisms, such as a microphone for speech, a
touch-sensitive screen for gesture or graphical input, key-
board, mouse, motion input, speech and so forth. An output

Aug. 13,2020

device 135 can also be one or more of a number of output
mechanisms known to those of skill in the art. In some
instances, multimodal systems enable a user to provide
multiple types of input to communicate with the computing
device 100. The communications interface 140 generally
governs and manages the user input and system output.
There is no restriction on operating on any particular hard-
ware arrangement and therefore the basic hardware depicted
may easily be substituted for improved hardware or firm-
ware arrangements as they are developed.

[0058] For clarity of explanation, the illustrative system
embodiment is presented as including individual functional
blocks including functional blocks labeled as a “processor”
or processor 110. The functions these blocks represent may
be provided through the use of either shared or dedicated
hardware, including, but not limited to, hardware capable of
executing software and hardware, such as a processor 110,
that is purpose-built to operate as an equivalent to software
executing on a general purpose processor. For example the
functions of one or more processors presented in FIG. 1 can
be provided by a single shared processor or multiple pro-
cessors. (Use of the term “processor” should not be con-
strued to refer exclusively to hardware capable of executing
software.) Illustrative embodiments may include micropro-
cessor and/or digital signal processor (DSP) hardware, read-
only memory (ROM) 120 for storing software performing
the operations described below, and random access memory
(RAM) 125 for storing results. Very large scale integration
(VLSI) hardware embodiments, as well as custom VLSI
circuitry in combination with a general purpose DSP circuit,
may also be provided.

[0059] The logical operations of the various embodiments
are implemented as: (1) a sequence of computer imple-
mented steps, operations, or procedures running on a pro-
grammable circuit within a general use computer; (2) a
sequence of computer implemented steps, operations, or
procedures running on a specific-use programmable circuit;
and/or (3) interconnected machine modules or program
engines within the programmable circuits. The system 100
shown in FIG. 1 can practice all or part of the recited
methods, can be a part of the recited systems, and/or can
operate according to instructions in the recited tangible
computer-readable storage devices. Such logical operations
can be implemented as modules configured to control the
processor 110 to perform particular functions according to
the programming of the module. For example, FIG. 1
illustrates three modules Mod1 132, Mod2 134 and Mod3
136 which are modules configured to control the processor
110. These modules may be stored on the storage device 130
and loaded into RAM 125 or memory 115 at runtime or may
be stored in other computer-readable memory locations.

[0060] One or more parts of the example computing
device 100, up to and including the entire computing device
100, can be virtualized. For example, a virtual processor can
be a software object that executes according to a particular
instruction set, even when a physical processor of the same
type as the virtual processor is unavailable. A virtualization
layer or a virtual “host” can enable virtualized components
of one or more different computing devices or device types
by translating virtualized operations to actual operations.
Ultimately however, virtualized hardware of every type is
implemented or executed by some underlying physical hard-
ware. Thus, a virtualization compute layer can operate on
top of a physical compute layer. The virtualization compute

US 2020/0258159 Al

layer can include one or more of a virtual machine, an
overlay network, a hypervisor, virtual switching, and any
other virtualization application.

[0061] The processor 110 can include all types of proces-
sors disclosed herein, including a virtual processor. How-
ever, when referring to a virtual processor, the processor 110
includes the software components associated with executing
the virtual processor in a virtualization layer and underlying
hardware necessary to execute the virtualization layer. The
system 100 can include a physical or virtual processor 110
that receive instructions stored in a computer-readable stor-
age device, which cause the processor 110 to perform certain
operations. When referring to a virtual processor 110, the
system also includes the underlying physical hardware
executing the virtual processor 110.

[0062] The disclosure now turns to a description of
example multi-asset management mechanisms, architec-
tures, and related concepts in accordance with various
aspects of the disclosed technologies.

[0063] FIG. 2 illustrates an example application and ser-
vice 200 for managing the buying and selling of asset
groups. In this example, the application uses financial
swaps, implemented via a smart contract. The swap can be
“secured” and “enforced” through smart contracts. In some
examples, the smart contract can be written in one or more
computing languages, such as Solidity, the Turing Complete
language of Ethereum (or any other blockchain-operable
language that would result in the same or similar function-
ality as disclosed herein). Swaps can be a promise or
agreement for each party (the Buyer and the Seller) to swap
asset exposures for some amount of time. With swaps, the
underlying assets are never exchanged—all that is
exchanged is a contract that binds each party to pay one
another based on the change in value of the underlying assets
as recorded by an agreed upon external data, such as the
oracle 210.

[0064] The application can run smart contracts, which can
include autonomous applications or code that run as pro-
grammed without downtime, censorship, fraud or third party
interference. The application can run on a custom built
blockchain architecture, which provides a powerful shared
global infrastructure that can move values around and rep-
resent ownership of property. This infrastructure enables
developers manage records, transactions, and values in a
distributed fashion according to instructions, all without a
middle man or counterparty and custodial risk. For clarity
and explanation purposes, the example application will be
described herein with reference to a smart contract on a
platform like Ethereum.

[0065] Financial swaps like index swaps and swaptions
are financial engineering tools for both trading and risk
management. Billions of dollars of these types of swaps are
traded daily through the traditional banking system. How-
ever, the present disclosure creates an entirely new process
for creating, securing, and delivering these swaps to both
consumers and institutional users (buyers or sellers). The
following discussion outlines various aspects of the dis-
closed solution.

[0066] The disclosed approaches provide novel technolo-
gies for multi-asset portfolio management. In some aspects,
the disclosed approaches can use blockchain technology to
create, enforce, and secure swaps without counterparty,
custodial, and other risks, and cryptocurrency or blockchain
assets to collateralize swaps. The disclosed technologies can

Aug. 13,2020

also provide a new type of swap, which can be referred to
as “a custom portfolio swap”, and differs significantly from
an index swap in various ways.

[0067] For example, an index swap has fixed components
which are usually based on a large public index calculated
and created by a third party, e.g. the Dow Jones Industrial
Index or the S&P 500 index. The buyer of an index swap
receives that index and cannot customize it. These indexes
represent an “investment strategy”. By contrast, the “custom
portfolio swap” disclosed herein, which a user can create
using the disclosed application, is not limited to an index
with fixed components, and can be customized by the user.
Thus, the “custom portfolio swap” can represent the user’s
own investment strategies, unique from any single index
swap on the market today.

[0068] Index swaps are further limited to certain assets
based on the indexes available. However, many assets do not
have an index. For example, crypto-currencies and real
world assets do not have an index or exchange traded funds
(ETF) available. Moreover, index swaps (as well as all
swaps) rely on data from trusted third-parties. On the other
hand, the data used in a “custom portfolio swap” comes from
trustless oracles, which differ from trusted third-parties.
[0069] Other differences between the disclosed swaps and
other swaps include that the disclosed swaps will always be
“over-collateralized”, as opposed to other swaps which
typically require fractional margin to enter a swap (vastly
under-collateralized). As a result, the disclosed swaps have
no counterparty risk and swaps are immune to insolvency
for either party. Further, almost all swaps in their current
form are designed to be traded on an institutional level, as
opposed to a direct-to-consumer product. By contrast, the
disclosed technology provides swaps designed as a con-
sumer product, and include significant differences in archi-
tecture in order to support this consumer level design.
[0070] Swaps are a form of financial derivative. The
interest rate swap business has 300+trillion dollars in out-
standing notional value. In the current financial system,
swaps provide limited security through: (1) a legally binding
contract between the parties to the swap; (2) collateral,
margin, and other requirements imposed by clearing houses
and brokers around the globe; and (3) the perceived credit-
worthiness of the two parties to the swap (this is the source
of counterparty risk). The new swap disclosed herein can be
“secured” and “enforced” through smart contracts written in
a blockchain-operable language.

[0071] In the context of blockchains and cryptocurrencies,
smart contracts are: (1) pre-written logic (computer code);
(2) stored and replicated on a distributed storage platform
(e.g. a blockchain); (3) executed/run by a network of com-
puters (usually the same ones running the blockchain); and
(4) can result in ledger updates (cryptocurrency payments,
etc.).

[0072] In other words, smart contracts are programs that
execute “if this happens then do that” that are run on, and are
verified by, many computers to ensure trustworthiness. If
blockchains provide distributed trustworthy storage, then
smart contracts provide distributed trustworthy calculations.
Below are three examples illustrating use of smart contracts
in the disclosed technologies. The first example illustrates
use or replacement of bank accounts with embedded instruc-
tions, the second example illustrates replacement of legalese
with computer code and the third example provides an actual
smart contract example.

US 2020/0258159 Al

Replacement of Bank Accounts with Embedded Instructions
[0073] Bank accounts typically have specific instructions
and parameters that define the account’s behavior and pref-
erences. For example, bank accounts maintain a balance
which indicates the funds available for that bank account.
The bank accounts can have instructions defining basic
payment and balance management operations for the
account. Suppose a user configures the user’s bank account
to deduct automatic payments to a particular entity (e.g.,
landlady, utility companies, etc.) for a fixed amount every
month, and send the deducted payments to the particular
entity. If the balance of the account falls below the amount
of an automatic payment configured, the account would not
have sufficient funds to cover the amount for the automatic
payment. In this scenario, the automatic payment will typi-
cally fail, causing the user to possibly receive a fine for
insufficient funds and another workflow to be triggered.
There are instructions that the user can have set up for the
user’s bank account, which can define basic conditions or
operations for the bank account.

[0074] However, in the context of bank accounts, this
process is managed by the bank or institution associated
with the bank account. By contrast, a smart contract runs on
a blockchain and is therefore managed by many parties
rather than a single entity. The distributed control and
management of smart contracts provides many advantages
as previously explained, such as, without limitation security,
reliability, and transparency. Moreover, as further explained
herein, smart contracts provide more granular control and a
significantly greater degree of flexibility and functionality.
Replacing Legalese with Computer Code

[0075] A smart contract provides code which automates
the “if this happens, then do that” part of contracts. Com-
puter code behaves in expected ways and does not have the
linguistic nuances of human languages. Code has less poten-
tial points of contention or ambiguity. In the case of smart
contracts, the computer code is replicated on many comput-
ers and distributed or decentralized on a blockchain. The
computer code is executed by the various computers, which
together agree on the results of the code execution. In some
cases, a user can have a paper contract with all the “whereas”
clauses that lawyers employ, and a clause that points to a
smart contract on a blockchain. The smart contract can
provide, for example, “both parties to the smart contract
agree to run code x and we will abide by the results of the
code.”

Example Smart Contract

[0076] Below is an example smart contract illustrating
example computer code written for use on the Ethereum
blockchain:
contract tokenRecipient {function receiveApproval(ad-
dress_from, uint256_value, address_token, bytes_extra-
Data); }
contract MyToken{

[0077] /*Public variables of the token*/

[0078] string public standard="Token 0.1”;

[0079] string public name;

[0080] string public symbol;

[0081] wint8 public decimals;

[0082] wint256 public total Supply;

[0083] /*This creates an array with all balances™/

[0084] mapping (address=>uint256) public balanceOf;

Aug. 13,2020

[0085] mapping (address=>mapping
(address=>uint256)) public allowance;
[0086] /*This generates a public event on the block-
chain that will notify clients*/event
[0087] Transfer(address indexed from, address indexed
to, uint256 value);
[0088] /*Initializes contract with initial supply tokens to
the creator of the contract®/
[0089] function MyToken(
[0090] wint256 initial Supply,
[0091] string tokenName,
[0092] wuint8 decimalUnits,
[0093] string tokenSymbol)
[0094] H){
[0095] balanceOf[msg.sender|=initial ~ Supply; //
Give the creator all initial tokens
[0096] total Supply=initial Supply; // Update total
supply
[0097] name=tokenName;// Set the name for display
purposes
[0098] symbol=tokenSymbol; // Set the symbol for
display purposes
[0099] decimals=decimalUnits; / Amount of deci-
mals for display purposes
[0100] msg.sender.send(msg.value); // Send back any
ether sent accidentally
[0o101] }
[0102] /*Send coins*/
[0103] function transfer(address_to, uint256_value)
[0104] if (balanceOflmsg.sender|<_value) throw; //
Check if the sender has enough
[0105] if (balanceOf]_to]+_value<balanceOf]_to])
throw; // Check for overflows
[0106] balanceOf[msg.sender|-=_value; // Subtract
from the sender
[0107] balanceOf]_to]+=_value; // Add the same to
the recipient
[0108] Transfer(msg.sender, _to, _value); // Notify
anyone listening that this transfer took place
[0109] }
[0110] /*Allow another contract to spend some tokens
in your behalf*/
[0111] function approve(address spender, uint256
value)
[0112] returns (bool success)
[0113] allowance[msg.sender]|[_spender|=_value;
[0114] return true;
[0115] }
[0116] /*Approve and then communicate the approved
contract in a single tx*/
[0117] function approveAndCall(address_spender,
uint256_value, bytes_extraData)
[0118] returns (bool success) {
[0119] tokenRecipient spender=tokenRecipient(_
spender);
[0120] if (approve(_spender, _value)) {
[0121] spender.receiveApproval(msg.sender,
_value, this, _extraData);
[0122] return true;
[0123] }
[0124] }
[0125] /*A contract attempts to get the coins*/
[0126] function transferFrom(address_from, address_
to, uint256_value) returns (bool success) {

US 2020/0258159 Al

[0127] if (balanceOf]_from]<_value) throw; // Check
if the sender has enough

[0128] if (balanceOf]_to]+_value<balanceOf]_to])
throw; // Check for overflows

[0129] if (_value>allowance|_from]|[msg.sender])
throw; // Check allowance

[0130] balanceOf]_from]-=_value; // Subtract from
the sender
[0131] balanceOf]_to]+=_value; // Add the same to

the recipient

[0132] allowance[_from|[msg.sender]-=_value;
[0133] Transfer(from, _to, _value);
[0134] return true;

[0135] }

[0136] /*This unnamed function is called whenever

someone tries to send ether to it*/
[0137] function () {

[0138] throw; // Prevents accidental sending of ether
[0139] }

[0140] The example contract generates 10 thousand
tokens to the creator of the contract, and then allows anyone
with enough balance to send it to others. These tokens are
the minimum tradeable unit and cannot be subdivided, but
for the final users could be presented as a 100 units subdi-
vidable by 100 subunits, so owning a single token would
represent having 0.01% of the total.

[0141] The above example contract provides unique con-
trol and flexibilities that automated banking payments lack.
For example, a user’s bank is the ultimate guardian of the
user’s bank account. The bank has complete control, and can
arbitrarily add money to the account or subtract it. In a
blockchain ecosystem, there should be no single source of
control. The distributed layout with consensus mechanisms
in blockchain allows multiple parties to check and re-check
and update the ledgers. Anything in the blockchain that does
not conform to pre-agreed rules, can be rejected by any of
the participants.

[0142] The above example contract also provides code
control and validation as opposed to automated banking
accounts. With a bank account, there is some logic creating
transactions on a monthly basis. That code resides on a
computer and is executed by a party (the bank). The bank
has full possession and control. In the banking context, there
are no external validations. With smart contracts running on
a blockchain, the logic runs in parallel on all participating
computers, and the results are compared by all participants.
Participants only change their own version of the ledger if
they agree with the results. Thus, each participant has code
control and validation capabilities.

[0143] In addition, the above example contract provides a
level of transparency that is not available in the banking
context. For example, for all participants in a blockchain
ecosystem to run the same code, each verifying the others,
the logic of the smart contract is available and visible to all.
This allows any participant to review a smart contract, and
decide whether to use the logic after first reviewing the
logic. If the participant does not like or approve of the logic,
that participant has the option to reject the logic (i.e., not to
use it). There can be smart contracts for general usage, as
well as specific smart contracts. The transparency is useful
to stakeholders of the contract to agree on what happens.
[0144] The above example contract provides significant
flexibility to make adjustments and customizations that are

Aug. 13,2020

not otherwise available in banking systems. For example,
the logic that a user can run within their bank account is
limited to recurring payments, and possibly a few other basic
options. A user cannot, for example, automate a payment
from their salary account to their savings account every day
it is sunny, then have it all sent back when there is a storm
(the ‘saving up for a rainy day” smart contract). By contrast,
a “Turing complete” smart contract can do anything that a
normal computer can do, including numerous operations and
customizations.

[0145] Smart contracts are useful when there are multiple
parties who may not trust each other fully, as each party can
compare their version of events with each other. For
example, when two banks do a complex derivative trade
with each other that does not go through a clearing house, it
is called an “Over The Counter” or OTC trade. These are
agreements between the two banks, without third party
validation. These trades are usually bets—i.e. variations of
“if this happens before the end of the year then you pay me,
else I pay you”. Both parties have a copy of the original trade
documents (the terms and conditions of the trade), and they
both have a view on the external dependencies of the trade.
The parties should both therefore agree on the outcome of
the trade i.e. who wins the bet. However, parties may not
always agree on the outcome of the trade.

[0146] A mismatch or “break” can occur in the dependen-
cies, where parties do not agree on the outcome of the trade,
due to a number of things. For example, problems can
include: (1) A mutual misunderstanding of the initial trade
terms; (2) Confusion due to multiple copies of the original
trade terms (usually there is back-and-forth on the wording
of'the documents, with in-house lawyers on both sides trying
to protect their interests); or (3) A disagreement with what
actually happened in the external dependencies.

[0147] With a smart contract, there is only one set of trade
terms, written in computer code, which is more precise than
a contract written in legal terms, and agreed upon up-front.
The external dependencies (price of oil, share price of a
stock, etc.) can be fed in via a mutually agreed feed. The
contract will live on a blockchain, and run when a condition
occurs (e.g., when an event happens or the bet expires). The
bet payout can be stored in the smart contract itself. The
contract can be “primed” by both parties funding the account
with their maximum loss, and the payout is made when the
condition occurs (e.g., the event). Also, a lot of trades in
financial services are currently done on credit and margined
or collateralized; the necessity to pre-fund the total payout
with the full value of the potential payout, in the currency/
asset of the payout may not be attractive for some use cases.
In another aspect of the application, concepts such as margin
considerations can be implemented as well in institutional
cases where collateralization may be too costly.

[0148] A further description of smart contract offerings in
accordance with various aspects of the disclosed technolo-
gies is provided in the following discussion.

[0149] Blockchains (e.g., Bitcoin, Ethereum, etc.) have
varying degrees of effectiveness in running smart contracts.
Bitcoin’s platform is great for processing bitcoin transac-
tions, but otherwise limited in compute ability. Within the
scripts of bitcoin transactions, there is a very limited ability
to implement rich logic. An example of what is possible in
bitcoin is logic requiring multiple signatories to sign a
transaction before a payment is made, like needing two
signatories in a check. However, major changes would need

US 2020/0258159 Al

to be made to both the mining functions and the mining
incentive schemes to enable smart contracts properly on
Bitcoin’s blockchain.

[0150] Sidechains (i.e. blockchains connected to Bitcoin’s
main blockchain) can enable smart contract functionality by
having different blockchains running in parallel to Bitcoin.
These sidechains can be programmed with an ability to jump
value between Bitcoin’s main chain and the side chains,
such that side chains could be used to execute logic.

[0151] NXT is a public blockchain platform which
includes a selection of smart contracts that are currently live.
However it is not Turing Complete, meaning that a person
cannot customize it as desired. Instead, the user must use the
existing templates. Ethereum, introduced above, is a public
blockchain platform which is currently the most advanced
smart contract enabled blockchain. With a “Turing Com-
plete” coding system, theoretically a user can put any logic
into an Ethereum smart contract, and it will be run by the
whole network. There are mechanisms in place to prevent
abuse, and users need to pay for compute power by passing
in “ETH” tokens, which act as payment for the miners who
run the code.

[0152] There are some questions and challenges with
respect to the structure described above. For example,
decentralization is expensive. The more computers that run
code, the more expensive things get for the end users. A
system that has 10,000 computers running the user’s code
can incur significant costs: the computer operators are likely
not going to provide their computer infrastructure and run
the code on their computer infrastructure free of charge. In
apublic network, the users pay to run all the machines on the
network. Having every computer (“node”) in a system stores
data (e.g. a copy of the blockchain, or a portion of the
blockchain corresponding to specific assets/portfolios) and
run the smart contract code embedded within the blockchain
is more expensive than having one or two participants run
the code on individual computers.

[0153] It is typically sufficient to have the code written on
a blockchain so the parties can see the smart contract they
are committing to. In this case, the code can be run privately,
perhaps by the very parties to the transaction. This would
save on compute costs, but increase risk because only the
transaction parties would be verifying the transaction/con-
tract action (whereas normal blockchain interactions are
verified by anonymous servers).

[0154] Another factor in contracts is optionality. In many
contracts, clauses are written into things to create a channel
for arbitration. For example in a flat rental agreement,
wear-and-tear from tenants is acceptable, but major damage
needs to be repaired. How does code define these things?
Force majeure is present in many contracts to allow for
wiggle-room for the parties involved. In a smart contract
environment, how does one party call that without abusing
it or referring to a human arbitrator? These issues can be
addressed through smart contracts. Ultimately, shared led-
gers will have a role to play in removing the need for trust
among multi-party agreements. Smart contracts make sense
for all parties by reducing operational risk, and can provide
automated trustworthy workflow between parties without a
central specific coordinator. However, in the disclosed appli-
cation, there is no need for any type of subjective arbitration
since crypto-currencies pricing and trading data is highly
public, replicated, and simple to understand. Any two

Aug. 13,2020

observers can easily agree on the pricing data coming from
the API of a public crypto-asset exchange.

[0155] The following description provides details of an
application from a user’s perspective. FIG. 2 illustrates the
overall process 200 for an example application in accor-
dance with various aspects of the disclosure. By way of
example, FIG. 2 shows a series of steps implemented by a
portfolio index swap marketplace (PRISM) to create a
portfolio of assets. Every portfolio index swap marketplace
created can be a swap of one or more assets. In the
marketplace, there are at least two parties to the trade and a
smart contract 206. The parties are the portfolio buyer 202
and the portfolio seller 204. For clarity, throughout the rest
of this document, the portfolio buyer may be referred to as
the portfolio buyer, the buyer, the PB, or the user collec-
tively; and the portfolio seller may be referred to as the
portfolio seller, the seller, the PS, or a business entity.
[0156] Solidity, the Ethereum Virtual Machine and the
Ethereum blockchain collectively work to enforce the smart
contract that allows a single trustless portfolio to exist and
execute. Swaps represent a type of promise, or agreement,
for each party (the buyer and the seller) to swap asset
exposures for some amount of time. With swaps, the under-
lying assets are not exchanged. All that is exchanged is a
contract that binds each party to pay one another based on
the change in value of the underlying assets as recorded by
some agreed upon external data, like a benchmark, price
feed, or in this case, the multi-validator oracle 210.

[0157] The multi-validator oracle 210 is an ensemble of
blockchain-based smart-contracts and a set of applications
(e.g., JavaScript based applications) that enable the valida-
tion and authentication of data sourced from the public APIs
of any website in the world. This data is pushed to a
blockchain-based smart-contract called the oracle (or any
other name with similar functionality) 210. The oracle 210
is used to provide information to decentralized applications.
More specifically, the oracle 210 can provide a data feed to
the smart contract 206.

[0158] The trade can be explained in the context of a
contract for difference (or CFD) example. Assume Alice
wants to bet on the change in next quarter’s US GDP. She
creates the buyer portfolio 202 and the terms of the smart
contract 206. For example, she creates a smart contract that
includes a formula like PAYOUT=((ALICE_PREDIC-
TION-GDP1Q2014/GDP4Q2013-1)*GEARING) and
funds it with 10,000 ETH. The script in the contract specifies
that anyone who sends 10,000 ETH to this contract 206 will
take the other side of this trade. Say Bob creates a seller
portfolio 204 and accepts the offer. The script also contains
the public key of an “oracle” 210, e.g. a trusted website that
publishes economic statistics for the purpose of authorita-
tively fixing the settlement value of CFD’s. After X days, the
script in the contract 206 consults the oracle 210, pays a
small fee to the oracle 210, and gets signed value for
GDP1Q2014, which the script checks against the oracle’s
public key. Script then computes the formula and sends
Alice max(10000+PAYOUT,0) ETH and Bob max(10000-
PAYOUT,0) ETH.

[0159] The smart contract 206 swap mechanism enables
two parties, a “buyer” and a ‘seller,” to establish opposite
positions in a trustless swap arrangement for exposure to a
set of arbitrary assets. One of the problems addressed by the
smart contract structure is that financial swap arrangements
require trusting one or more parties to deliver or satisfy

US 2020/0258159 Al

obligations upon settlement (performance). Every swap thus
has counter-party risk, and this risk must be priced and paid
ultimately by one or more parties in the arrangement.

[0160] The smart contract herein provides a technical
solution to this issue. The following is a brief summary of
the process with reference to FIG. 2. The blockchain-based
smart contract 206 is a trustless multi-asset swap mechanism
(TMASM) paired with a data-feed oracle 210, in which
performance and settlement of a swap arrangement occurs
automatically and without risk to either party. The swap is
established by the buyer 202, who selects one or several
assets to which the buyer seeks exposure. The swap is
accepted by the seller 204, who agrees to hold the other side
of the same position. Stated in another way, the buyer 202
offers a contract to the seller 204, in which buyer 202
promises to pay the seller 204 the “fixed leg” of the swap,
in return for the seller 204 paying the value of the portfolio
(the “floating leg”) when, and only when, the contract is
closed by the buyer 202. The buyer is making a promise to
the seller to pay them a certain amount which is the
portfolio’s value at the time of the purchase. The time of the
payment will be in the future. Assume, at the time of the
purchase, the portfolio value is 100 ETH. The fixed amount
is therefore 100 ETH that the buyer promises to pay the
seller upon closing out the contract in the future. In swaps
language, the buyer 202 has offered a contract to the seller
204 wherein the buyer 202 promises to pay the seller 204
100 ETH (aka, the “Fixed Leg”™), in return for the seller 204
paying the buyer 202 the value of the portfolio (aka, the
“Floating Leg”), when—and only when—the contract is
closed by the buyer 202. The buyer 202 can choose to close
the contract at any time, but the seller 204 cannot. Terms
such as “close”, “settle”, or “liquidate” can mean that the
buyer 202 has elected to close the contract and retrieve their
portion of the settlement funds from the contract.

[0161] The seller 204 receives the buyer’s 202 request/
offer and calculates the price of the contract and sends that
information back to the buyer 202. The calculation can be
considered a service fee or commission charged by the seller
204 for entering the contract with the buyer 202. The service
fee (say 1 ETH) will need to be calculated for each portfolio
which any user wants to purchase, since portfolios can be
different in terms of their respective coins, the total invest-
ment amount, and other variables.

[0162] The buyer 202 accepts the terms of the swap
contract by sending 125 ETH to the smart contract. 100 ETH
pays for the investment in the portfolio, while the other 25
ETH can be the excess collateral required for the trade. In
one aspect, if there is a service fee of 1 ETH, 24 ETH can
be the collateral and 1 ETH can represent the service fee, for
a total of 125 ETH. The buyer 202 effectively signs the
contract using the private keys of the Ethereum address from
which the 125 ETH were sent. The seller 204 is notified that
the contract has been ‘accepted’ by the buyer 202. The seller
204 also accepts the contract by sending 125 ETH to the
smart contract. The smart contract is now holding 250 ETH,
and will continue to hold the 250 ETH until the buyer 202
chooses to close the contract, at which time the contract will
be settled.

[0163] Upon acceptance by both parties, both the buyer
202 and seller 204 submit a blockchain transaction into the
smart contract 206, which includes the sum of a principal
amount (derived from a value of the selected assets) and a

Aug. 13,2020

collateral amount (derived from the preferences of the buyer
and/or seller). In one aspect, the transaction is the accep-
tance.

[0164] Upon receipt of both transactions, the swap con-
tract 206 is activated, existing solely on the blockchain (for
example, Ethereum’s blockchain). The smart contract 206
utilizes a data feed (oracle 210) to periodically calculate the
value of each party’s position. The buyer 202 may close the
swap contract at any time, at which point the smart-contract
will transact proportionate assets to the buyer 202 and the
seller 204 (divided from among the principle and collateral
deposited by both parties), based on the rise or fall of the
underlying portfolio.

[0165] The portfolio buyer 202 has been able to enter that
entire portfolio of assets without actually having to go out
and purchase them and take physical custody of the assets.
The process reduces the exposure of risk to the buyer 202,
and increases the convenience and speed of obtaining expo-
sure to those assets. On the back end, the portfolio seller 204,
which can be an individual or a business entity, will act like
a clearinghouse, but without taking custodial ownership of
the assets. The portfolio seller can design and implement the
smart contracts which anybody can see. The seller can take
a fee for creating and managing the smart contract and
participating in the selling process.

[0166] As noted in the example above, the portfolio buyer
202 contributed 100 ETH into the smart contract 206 as
principal, plus 25 ETH as excess collateral. The seller 204
contributes 125 ETH at the same time. This is the seller’s
acceptance of 100 ETH plus 25 ETH collateral. The contract
206 then holds 250 ETH 208.

[0167] The seller 204 can hedge its position in the contract
by purchasing the underlying coins that make up buyer
202’s portfolio from an array of crypto-asset exchanges and
then holds them in their own wallets. In this case, the seller
204 would go and purchase X litecoins, Y ripples, and Z
dash, and hold them until the contract is closed by the buyer
202, at which time the seller 204 can sell them on the open
market. As a result, the seller 204’s exposure to this contract
is perfectly hedged at all times in the future.

[0168] Now, fast forward to the time when the buyer 202
decides to close the contract or ‘rebalance’ the portfolio.
Assume that the time (T) is 7 days. For simplicity, the
disclosure will assume that the buyer 202 wants to close the
contract and not rebalance. When the buyer 202 chooses to
close the contract, the closure is initiated via a signed
message from the buyer 202’s private key, which the smart
contract 206 recognizes as the only signal that can initiate
settlement of the trade. The smart contract 206 then settles
the contract as follows. The smart contract 206 calculates the
current value of the portfolio based on crypto-asset pricing
data from the Oracle 210. In this example, at T=7, let’s
assume the value of the buyer’s portfolio is 150 ETH. That
means the value of the portfolio went up 50% from its initial
value of 100 ETH. The smart contract 206 calculates the
amount of collateral and resulting proceeds to be sent to the
buyer 202, while subtracting the seller’s 204 commission for
the trade (which, in this example, will be 1 ETH). The
settlement calculation can be: at T=7 the buyer 202 will
receive 174 ETH, while the seller 204 will receive 76 ETH.
The buyer gets 174 ETH=100 ETH (original investment
amount)+50 ETH (profit from portfolio appreciation)+25
ETH (original excess collateral amount)-1 ETH (the seller’s
commission). The seller gets 76 ETH=50 ETH (difference

US 2020/0258159 Al

from original investment and loss on the trade)+25 ETH
(original excess collateral amount)+1 ETH (the seller’s
commission) Once this calculation is finished, the smart
contract 206 allows the buyer 202 and the seller 204 to
withdraw their settlement amounts from the contract. This
contract has now been settled.

[0169] Next, the seller 204 lifts the contract hedge by
selling underlying coins or assets. Based on this example,
the seller 204 lost 50 ETH as the result of its bet on the price
movement of the buyer’s 202 portfolio of assets. However,
since the seller 204 purchased an exact mirror image of that
portfolio of assets when the trade was initiated, when the
trade is closed and settled, the seller 204 will sell that exact
portfolio of assets for which it has earned a profit of 50 ETH.
Therefore, the seller 204 has not lost any value on the trade,
but has gained 1 ETH (the commission). This is why the
seller 204 was perfectly hedged 212 at the start of the trade.

[0170] The process is “trustless” because it is executed
automatically by smart-contract code on a blockchain. There
is no entity or group of individuals that can alter the terms
of the contract or manipulate its settlement. The smart
contract always meets its obligations. The disclosed con-
cepts herein bring the marketplace directly to the consumer
in an entirely unique and novel way.

[0171] Normally, with a mortgage or a credit card, there
are a number of different entities involved, including a bank.
There are different processors, counterparties, etc. that can
be holding the money at some point. By contrast, the
approaches disclosed herein transform the financial system
into a blockchain smart contract that is packaged in a
consumer product that delivers to the consumer what the
consumer wants—which is the ability to own a portfolio of
assets and then also have the assets managed. In one aspect,
a user can develop such a portfolio (for example, a portfolio
of several blockchain assets or cryptocurrencies) without
having to download an individual wallet for each blockchain
asset currency to buy that currency or leave the asset on
deposit with a counterparty. Consequently, the user can
develop a portfolio of assets without requiring multiple
private keys, multiple applications, and multiple counter-
parties. The user does not have to send money to each
exchange to buy blockchain assets in that type of currency.

[0172] Thus, the concepts disclosed herein allow a user to
create a multi-asset portfolio (e.g., a portfolio of multiple
blockchain assets and/or any other type of asset). For
example, the concepts disclosed herein can aggregate the
process so the user can, in simple, fast, and efficient way
obtain a portfolio of blockchain assets without downloading
an individual wallet for each type of asset or leaving assets
on deposit with a counterparty. In some examples, the
management component can be accomplished through a
leader-follower functionality, as further described herein.
The end users can access such a service through a user
interface, an application, a website, an API, or any other
means.

[0173] FIG. 2 in connection with other figures, referenced
throughout the disclosure, further demonstrates an example
process. In the figure, reference to ETH is representative of
any value/type of currency (including Bitcoin) depending on
the platform desired. As noted above, in the first step, the
user (buyer) creates their portfolio 202 of blockchain assets.
The user can create the buyer portfolio 202 via an interface,
such as web interface 300 shown in FIG. 3.

Aug. 13,2020

[0174] The web interface 300 can include a portfolio
settings area 310 that allows a user to enter various param-
eters for building the buyer portfolio 202. The user can enter
various parameters in the portfolio settings area 310 of the
web interface 300 to create a portfolio. For example, the user
can select blockchain asset components and respective asset
percentages, such as A % Litecoin, B % Ripple, and C %
DASH, from an assets area 304 and a percentages arca 308.
The user can provide an investment amount 302, such as 1
ETH, for the portfolio. The system can then calculate
respective assets amounts based on the prevailing rates from
the exchanges 214 coming from the blockchain asset data
feed (the Oracle) 210 at that point in time, such as X number
of litecoins, Y number of ripples, and Z number of dash, and
provide the respective asset amounts in an asset amounts
area 306. The user can then select a control element 312 to
create or purchase the portfolio. For example, the user can
click on the control element 312 to build the portfolio. In
some cases, the control element 312 can include one or more
labels, such as “create portfolio” or “purchase portfolio”.

[0175] The system can summarize the portfolio with an
asset value, a collateral value, a creation fee and a monthly
fee as well. Any combination of this data can be presented.
The user can then enter their ETH address to continue,
which should be the same address used to send funds to the
multi-asset portfolio. If the currency used for payment is
ETH, the user could send the number of ETH to the ETH
address. A QR code could also be used to summarize the
transaction. A bar can be included in the graphical interface
to instruct the user of their progress in how many ETH have
been sent and how many are owed to complete the payment.
Once payment is complete, a summary page can show the
amount paid, an email address for a receipt, and a link to
enable the user to view the portfolio they just created and
purchased. In some example interfaces, the system can
present a listing of portfolios created by a particular owner
(ETH address). Data can include a starting value in ETH (or
other currency) and dollars, a current value, a listing of the
portfolios by name, date created, rank, a graphic like a pie
chart for example, a Prism ID, a starting value, a current
value, a rate of return, and/or a total value.

[0176] A further graphic can be presented which includes
a left-to-right graphic of value in dollars or ETH that shows
an initial value in one color and another increase in value in
another color. In some examples, the interface can enable the
owner of the portfolio to rebalance, sell or make the asset
group public.

[0177] FIG. 4 illustrates an example interface 400 provid-
ing a purchase summary for the user and information for
finalizing the purchase. The interface 400 includes a pur-
chase summary 402 indicating various details of the pur-
chase, such as a respective portfolio value, a respective
asset, a respective asset percentage, and a respective asset
amount. The interface 400 can also include a timer 404,
which can indicate an amount of time left to pay. The
interface 400 can also include a payment amount and
location 406 identifying a payment amount and location
(e.g., how much to send for payment and where to send the
payment), in order to complete the purchase. Based on the
interface 400, the user can determine the amount of payment
necessary and address for sending the payment, which can
be provided via the payment amount and location 406, as
well as the amount of time left for transmitting the payment,
as indicated in the timer 404

US 2020/0258159 Al

[0178] The interface 400 can also provide additional infor-
mation for the user. For example, the interface 400 can
include a notes and/or warnings area 408, which can present
any notes, details, or warnings for the user which pertain to
the purchase. In some cases, the interface 400 can also
include a reference to other payments to complete the
contract, such as 1 ETH for collateral or other fees or
charges.

[0179] Once the portfolio is paid for and in an “active/
open” state, the buyer can choose to close the contract at any
time, but the seller cannot. The terms “close”, ‘settle®,
“liquidate”, or “exit” each generally mean that the buyer has
elected to close the contract and retrieve their funds from the
contract. In one example, the buyer may commit to close
within a specific period of time such that the seller is not held
to the contract indefinitely. Notices can be provided to the
buyer if they do not act within a predetermined period of
time such as 6 months. In cases where a buyer passes away,
procedures would be put in place to handle an estate or other
entity closing the contract. In another aspect, the seller can
have the right to initiate the close of the contract, purchase
an option to close the contract or to suggest closing the
contract which can be accepted by the buyer.

[0180] Referring back to FIG. 2, in step 2, the seller
calculates and quotes a portfolio price to buyer. The seller
calculates the cost of the asset group based on the buyer’s
offer and sends that information back to the buyer. Addi-
tional details of this calculation will be discussed below.
This calculation can be considered a ‘service fee” charged
by the seller and can be calculated for each portfolio which
any user wants to purchase.

[0181] In step 3, the buyer accepts seller’s quote and
enters the contract. In this example, the buyer accepts the
terms of the swap contract by sending 125 ETH (or other
value or currency) to the smart contract 206. In once
example, 1 ETH pays for the investment in the portfolio,
while the other 24 ETH is the excess collateral required for
the trade. These numbers are purely exemplary—however,
most transactions can require one or more of the following
portions: (1) the trade itself, (2) the cost of performing the
trade, and/or (3) the excess collateral required for the trade.
The buyer 202 “signs” the contract using the private keys of
the address from which the 125 ETH were sent.

[0182] Referring to FIG. 5, an interface 500 can be pre-
sented to provide payment details and receipt information.
The interface 500 can provide a portfolio number label 502
with the number 506 for the portfolio, as well as an email
receipt input field 504 to allow the user to enter an email
address for receiving a receipt of the purchase.

[0183] Turning back to FIG. 2, the seller is notified that the
contract has been “accepted” by buyer 202. The seller 204
also “accepts” the contract by sending the seller’s corre-
sponding amount to the smart contract 206. In this example,
the seller 204 accepts the contract by sending 125 ETH to
the smart contract 206. Again, the private keys of the
sending address are seller’s signature keys for the contract.
The address for an Ethereum contract can be deterministi-
cally computed from the address of its creator (sender) and
how many transactions the creator has sent (nonce). The
nonce can be an arbitrary number that is used once for a
cryptographic communication. The sender and nonce are
RLP (recursive length prefix) encoded and then hashed with
Keccak-256. Below is an example pyethereum code:

Aug. 13,2020

[0184] def mk_contract_address(sender, nonce):
[0185] return sha3(rlp.encode([normalize address
(sender), nonce]))[12:].
[0186] Below is a specific example with some discussion:
[0187] For sender
Ox6ac7ea3318831ea9%dcc53393aaa88b25a785db10, the con-
tract addresses that it will create are the following:

[0188] nonce0="0xcd234a471b72ba2f1ccf0a70fcaba6
48a5eecd8d”

[0189] noncel="0x343c43a37d37dff08ae8c4allS544c7
18abb4fct8”

[0190] nonce2="0xf778b86fa74e846c4{0alfbd1335fe8
1c00a0c91”

[0191] nonce3="0x{tfd933a0bc612844eaflc6fe3eS5h8e
9b6c1d19¢”

[0192] The smart contract 206 is at this stage holding 4

ETH, indicated by the amount 208 in FIG. 2. The smart
contract 206 will continue to hold the amount 208 until the
buyer chooses to close the contract, at which time the
contract will be settled.

[0193] In optional step 4, the seller 204 can hedge the
contract 212. This is an optional choice as part of the process
and is not required to manage the portfolio. The seller can
“hedge” its position in the contract by purchasing the
underlying assets or currency that make up the seller’s
portfolio from an array of blockchain asset exchanges 214,
and then holding the purchased assets or currency in the
seller’s own wallet(s). In this case, the seller 204 would
purchase X litecoins, Y ripples, and Z dash, and hold them
until the contract is closed by buyer 202, at which time they
will sell them on the market. As a result, seller’s exposure to
this contract is perfectly hedged (or nearly perfectly hedged)
at all times in the future.

[0194] FIG. 6 illustrates a summary of the portfolio with
an interface 600 providing a summary of the portfolio. The
interface 600 includes a current value 602 and data such as
the percentage of gain or loss. Feature 604 provides options
for the buyer to sell, rebalance, share, or add to leaderboards.
At some point, the buyer will decide to close the trade or
rebalance the portfolio using the interface 600. Assume this
is time (T)=7 days.

[0195] FIG. 7 illustrates an example method for creating a
customized smart contract. In this example, the method
includes receiving one or more parameters input by a user
via a user interface for a customized smart contract (702).
For example, the one or more parameters can include a first
parameter and a second parameter associated with a creation
of a customized smart contract. The method can include
authenticating the one or more parameters via a public/
private key associated with the user (704) and deploying the
customized smart contract onto a blockchain (706).

[0196] The method can include generating the customized
smart contract to implement the one or more parameters.
Using an intermediary smart contract (which can be a
contract creator), the process can be transparent and trust-
less, as the final smart contract (which varies per user)
holding the funds or assets is, itself, created by a preceding
contract that is the same for all users.

[0197] The customized smart contract can be deployed on
a blockchain. The smart contract can run without a custodial
risk, such as a risk of loss of securities held in custody
occasioned by the insolvency, negligence or fraudulent
action of the custodian or a sub-custodian. The reduction/

US 2020/0258159 Al

elimination of custodial risk can apply to other aspects of
this application and not just the contract creator.

[0198] The smart contract is between a first party and a
second party. In this example, no third party holds custody
of the assets associated with the smart contract or the smart
contract itself. Non-limiting examples of the one or more
parameters include parameters associated with one or more
auctions, wallets, real estate transactions, stock trades, alt-
coin trades, crowdfunding, contracts, legal services, curren-
cies, and so forth. The customized smart contract can be
coded, stored and replicated and a distributed platform.
[0199] FIG. 8 illustrates an example method for providing
a multi-validator oracle similar to oracle 210 shown in FIG.
2. The example method can include receiving a notification,
at a multi-validator oracle, from an external smart contract,
requesting data from the multi-validator oracle to be pro-
vided to the external smart contract according to a set of
parameters to yield requested data (802). The notification or
call from the external smart contract can be based on a
trigger, such as a rebalancing notice, a message, market data,
a user request, a market condition or threshold, an event, and
so forth.

[0200] Based on the notification, the method includes
providing the requested data to the external smart contract
(804). Here, the multi-validator oracle can gather the
requested data from at least one public application program-
ming interface for a website that provides information
associated with the requested data. In some examples, the
multi-validator oracle can also gather at least a portion of the
requested data from one or more other sources, such as
databases, via respective calls for example.

[0201] In one implementation, two validators are used.
However, in a generalized version of the multi-validator
oracle, the system can add or subtract validators. An
example of M of N validators can produce the same result
for the oracle data to be considered “truth”. The method can
also include multi-validating the requested data based on a
first verification from a first private key and a second
verification from a second private key (806).

[0202] The multi-validation can include requiring at least
two validations from three or more possible validations. The
multi-validation can include requiring a subset of validations
from a superset of validations, where the superset of vali-
dations is larger than the subset of validations. In one
example, each validator can pull the raw source data from
the public APIs of each exchange, perform one or more
calculations on it, and return the result(s). The data, and
calculation result, is validated (which means it can be used
for settlement) when both validators produce the same result
and agree that the result is the “truth”. The reason why the
system uses this process is that smart contracts themselves
can’t make calls to public APIs and so they operate in a
“walled garden”. Smart contracts can only receive informa-
tion via messages from a public blockchain address or
another smart contract. Thus, the owner of that address has
to first get the data from the public APIs and then push that
data to the oracle smart contract. The issue is trust in the
person who pushes the data to the oracle as they would be
able to push false results.

[0203] In one aspect, the smart contract runs on a public
blockchain for the smart contract. The multi-validator oracle
can also include or be a blockchain based smart contract.
The requested data can relate to a benchmark, a price feed,
an exchange rate, etc. In one aspect, the method includes

Aug. 13,2020

validating and authenticating the information received from
the public application programming interface.

[0204] The buyer, in addition to being able to close out the
contract, can also perform a rebalancing. An example inter-
face 900 for implementing an example rebalancing option is
presented in FIG. 9. The need for rebalancing arises in the
context of a multi-asset portfolio in which the user may
desire to change at least one asset’s percentage or amount in
the portfolio after it is created. When a user wants to change
the composition of their portfolio, like adding or removing
a coin, or changing the weightings/percentages of a coin in
their portfolio, the user is able to use the same asset group
to do so.

[0205] Interface 900 of FIG. 9 shows a current value 910,
the current assets 912, an option to change percentages 906,
908, and an option 902 to complete the rebalancing. An
option 904 for accessing a rebalancing history can also be
provided. When a rebalance occurs, a similar set of calcu-
lations takes place as when the user created the portfolio or
wants to settle the portfolio (e.g., a calculation of respective
assets amounts based on the prevailing rates from the
exchanges coming from the blockchain asset data feed at
that point in time, etc.).

[0206] A trustless multi-asset swap rebalancer is a set of
functions programmed into the blockchain-based smart con-
tract 206 which allows for the rebalancing of a portfolio of
assets in accordance with the requirements and demands of
the owner of that portfolio. These assets exist via the
trustless multi-asset swap mechanism technology and the
trustless multi-asset swap rebalancer is a component of that
technology.

[0207] An example trustless multi-asset swap rebalancer
process using interface 900 can be as follows.

[0208] The buyer 202 decides which coins it would like to
change in the interface 900, and sends the new portfolio
composition to the smart contract as a signed message. The
smart contract 206 calculates the new portfolio value, col-
lateral, etc. based on oracle data 210 at that point in time.
The seller 204 takes a rebalancing fee to process this change
and accepts the new portfolio. The seller and buyer do not
have to send more collateral if the rebalance is within the
collateral limits for the contract. If the user 202 rebalances
to a large portfolio, the user would need to add collateral to
the contract. This is one of the reasons why in the afore-
mentioned example, the system asks the user to send “excess
collateral” to the smart contract at the creation of the
contract. This excess collateral can be used for future
rebalances as well as other purposes.

[0209] Both parties can confirm the rebalance data via a
signed message, after which the state of the portfolio is
updated. The seller can change its underlying hedging
portfolio accordingly to maintain the seller’s perfect hedge
by buying or selling the mirror image of what the user
bought and sold during the rebalancing of the contract.
[0210] The contract is written into the blockchain and thus
onto the public ledger which may not be manipulated by any
single party. When the user decides to rebalance the contract,
or the percentage of one or more assets in the portfolio, that
results in a state change. The new state change is going to
also be written into the blockchain. The new state change
cannot be erased or changed by any participant, and every
participant can see it.

[0211] When a user rebalances the portfolio, the rebalanc-
ing can result in various scenarios. For example, if a user

US 2020/0258159 Al

rebalances the portfolio to have a higher value than its
current portfolio value, then the user would have to add
incremental funds to the smart contract. In one example,
assume a portfolio that started out as a 100 ETH valued
portfolio is rebalanced and in the rebalancing becomes
worth 200 ETH. The buyer must put in an additional 100
ETH. The seller also must put in an additional 100 ETH. The
amount added at the time of the rebalancing is that value
above the current value of the portfolio (not the original
value).

[0212] The portfolio is fully collateralized. One of the
risks in derivatives is that every participant is buying them
on margin. If that margin gets exhausted, then problems
arise. By contrast, the contracts disclosed herein are fully
collateralized, which reduces the entire counterparty risk or
trust in the system.

[0213] If the seller does not want to add more collateral,
then the rebalancing would not be established. If the user
wants to change the allocation of cryptocurrency and the
value of the portfolio does not change, the rebalancing can
occur without additional collateral or approval from the
seller. However, there could be mechanisms where if thresh-
olds are met, then the seller would have to approve the
rebalancing. For example, if more than 20% change in any
asset is made, then the seller can be required to approve. In
another scenario, if the seller does not want to add collateral,
the buyer could go back to the marketplace and a different
seller could buy into the rebalanced portfolio and the port-
folio could end up with two sellers, each having a propor-
tional share of the portfolio. However, if the seller is a
business entity that is servicing the portfolio sale requests,
then those rebalancing requests can always be met (within
limits). Thus, such a business entity could create the entire
marketplace for such trades. The sellers can be more like
hedge funds and larger players or can provide a means for
such players to get access to the smart contracts disclosed
herein. After the user rebalances the portfolio, the process
goes back to normal until the user closes out the contract.
The user can rebalance any number of times before closing.
At closing, as instructed by the buyer, the smart contract
calculates the result and sends the right amount to each
party.

[0214] FIG. 10 illustrates an example method for rebal-
ancing a multi-asset portfolio. The method includes estab-
lishing a multi-asset blockchain-based trustless smart con-
tract for managing a multi-asset portfolio (1002), receiving
an indication from an individual associated with the multi-
asset portfolio of a desire to rebalance the multi-asset
portfolio (1004), presenting the individual with an interface
to rebalance the multi-asset portfolio (1006), receiving, via
the interface or some other means, input from the individual
requesting a rebalancing of the multi-asset portfolio (1008),
and updating the multi-asset blockchain-based trustless
smart contract to yield a modified multi-asset blockchain-
based trustless smart contract which incorporates the rebal-
ancing (1010).

[0215] Technically, the smart contract could be the same
contract, existing in the same place on the blockchain, but
with a new “state”. That new state reflects the new compo-
sition of the portfolio which is recorded in the blockchain
and is based on the rebalancing. The blockchain is the
transparent and relatively immutable record of state changes
which the contract undergoes. The system writes a new entry
in the blockchain that reflects the new portfolio composition.

Aug. 13,2020

In another aspect, the system could create a new contract but
with different parameters (asset allocations). The old con-
tract can be discarded, deleted or made inactive.

[0216] The indication of the desire to rebalance the multi-
asset portfolio can include a request to rebalance one or
more assets in the multi-asset portfolio or add/delete one or
more assets in the multi-asset portfolio. The rebalancing of
assets can involve a modification in a percentage or an actual
number of coins (or real estate, or other asset). The interface
allows the user to enter a number of coins or percentages
with one or the other updated instantly based on the pre-
vailing exchange rates and the current value of the portfolio.
A user cannot rebalance to a greater amount of value than the
current contract contains unless the user posts additional
collateral. Depending on what the rebalancing structure is,
the method can include receiving additional collateral asso-
ciated with the multi-asset blockchain-based trustless smart
contract to create the modified (or new) multi-asset block-
chain-based trustless smart contract.

[0217] Typically, the individual is the buyer of the multi-
asset portfolio. However, the individual could also be, in
some scenarios, the seller, the management entity, some
other third-party, or a combination of individuals or entities
that, through some mechanism, agreed to a rebalancing. The
method can include receiving an authorization from a seller
of the multi-asset portfolio for the rebalancing prior to
creating the modified/new multi-asset blockchain based
trustless smart contract.

[0218] The method can further include calculating at the
multi-asset blockchain-based trustless smart contract an
updated value to apply to the new multi-asset blockchain-
based trustless smart contract based on data received from
an oracle which provides real-time valuation data. The
authorization received from the seller can include a signed
message which results in a change in state of the multi-asset
blockchain-based trustless smart contract to yield the modi-
fied multi-asset blockchain-based trustless smart contract.
As noted above, the modified multi-asset blockchain-based
trustless smart contract can be the same contract but with the
new data or parameters.

[0219] Referring to FIG. 11, an interface 1100 can enable
social trading. The interface 1100 allows users to share their
“portfolio” with their connections/friends in a social net-
work. As illustrated, users can post messages 1102 via
interface 1100 which include links, addresses, and/or other
information for sharing assets and/or portfolios between
users in the network. The user interface 1100 can be graphi-
cal, multimodal, speech-based, text based, graffiti based, or
any combination of input modalities to achieve any function
disclosed herein.

[0220] The social or social media aspect of this disclosure
can also relate to the leader-follower feature. The leader-
follower mechanism is to reduce and eliminate the risk
associated with any individual giving up custody of one’s
wealth to another person or corporation who acts as a trusted
third party and whose goal is to make investments on behalf
of the individual. The system can insert or include certain
authorizations into a smart contract. Prior to the present
disclosure, if people wanted someone to manage their
investments, they go send their money to a financial advisor
or entity. Such entities have infrastructure to keep their
investments safe. The follower-leader function allows one
portfolio buyer, who essentially has a contract, which is their
portfolio, to authorize another contract to do a specific

US 2020/0258159 Al

thing—to send messages to their portfolio that tell it how to
rebalance and tell it the exact percentages and the weight-
ings. The leader contract, however, cannot instruct the
follower contract to settle, or sell collateral, etc. It is only
allowed to send a message to the follower of portfolio
saying, for example: “I just rebalanced my portfolio and here
are my new weightings and assets.” And then the follower
portfolio automatically rebalances based on the leader
adjustments. The leader portfolio never has to take custody
of funds. This approach removes all the custodial risk
aspects. The messages can be delivered to one or more
destinations, including other smart contracts, or any social
media outlet.

[0221] Signed messages relate to data that is transmitted
from one key to another. The message is the data and the
data can be anything (an instruction to rebalance, for
example, or an instruction to settle the portfolio). It is a
signed message because the data is signed with the private
key of the public key from which it is sent. In this case, the
follower portfolio has authorized the leader portfolio to send
it messages (e.g., the data of the new portfolio weightings
and coins) and as long as the message is signed with the
leader’s private key, the follower portfolio will change its
own allocations to that of the leader. Thus, as a security
feature, smart contracts which interact with each other or
with their users can do so through signed messages to
provided authenticated data transmission.

[0222] The example above discusses implementation of
asymmetrical cryptography (i.e., Public key cryptograpy)
for secure or authenticated data transmissions. This example
cryptography implementation is provided as a non-limiting
example for the purpose of clarity and explanation. It should
be noted that other encryption/cryptography configurations
and techniques, such as symmetric-key algorithms, can also
be implemented and are contemplated herein.

[0223] Thereference in FIG. 11 is to Twitter. However, the
principles disclosed can apply to any social media environ-
ment. For example, Facebook, Pinterest, Instagram, Snap-
Chat, blogs, and so forth, are social networks through which
individuals can share their portfolios. The individual func-
tionality of these and any other social media are incorpo-
rated herein and applicable to the general concept of receiv-
ing a posting of a social media object from a user which
includes a button, a hyperlink, or other type of interactive
feature which points recipients of the posting to a portfolio
of the user. Steps which must be implemented in order to
enable recipients of the posting to interact with the posting
and thus initiate a following within a recipient portfolio of
the posting entities leader portfolio can occur in various
ways.

[0224] Posting to social media can allow people to “find”
a smart contract, and authorize that smart contract to serve
it rebalancing instructions. The interface 1100 for such a
process can be implemented in a variety of platforms and
computer programming languages, such as web-based (e.g.,
HTTP or HTTPS), mobile or native applications, etc. Fol-
lowing a portfolio allows the user to create their own
marketplace (PRISM) but also allow the leader to do port-
folio allocation decisions for the user. In some cases, this can
involve two aspects or processes, which can run simultane-
ously. One is the front-end process which displays the
contract data for the user, which can reside on the blockchain
in what is called bytecode, and the second is the actual smart
contract itself, which can rely on other technologies. In some

Aug. 13,2020

examples, the front-end can be “read-only” for a smart
contract data runs on the blockchain.

[0225] For example, a social media site may communicate
via APIs or other means with portfolio management entities
in such a way as the posting entity and the recipients can
remain within the social media site to confirm a transaction
associated with one portfolio following another portfolio.
Transaction confirmations happen via the blockchain. The
social platform can generate or hold keys for users to initiate
a transaction securely. In some cases, a social media site can
be modified to function as a client-side encrypted wallet
(e.g., ETH wallet) and support such functionality.

[0226] Insome aspects, a posting to a social media site can
include a hyperlink which opens a new webpage when
activated by the user, such as the marketplace webpage.
Users of the marketplace can initiate transactions using a
wallet (e.g., ETH wallet), such as Mist, MyEtherWallet.org,
or any other wallet. In some configurations, when a user uses
the marketplace, the client device of the user may have a
separate window or tab open which can be the user’s wallet.
The wallet can store the private keys the signed message(s)
can thus originate from that wallet. In this regard, another
aspect of this disclosure can be a blending of an interface
with a wallet interface which stores, presents, and/or pro-
vides access to the necessary private keys within a social
media network site or environment. Thus, from a user’s
perspective, the user appears to remain within the social
media site, but will also have access to the services available
through the user’s wallet.

[0227] Third-party entities can also aid in the integration
between the social media site and the portfolios of the
posting entity and the following entity. This disclosure
covers processing from the standpoint of any of these
entities including the portfolios themselves. Thus, the trans-
mitting, data, and/or coordination of data or information can
be claimed herein from the standpoint of a social networking
site, a third party, a portfolio, etc. Individual entities can also
provide particular steps to affect at least a part of the process
as well.

[0228] In some respects, the leader/follower functionality
can function like programmed money. It is money that
cannot be told to do bad things. In the hedge fund world,
there can be solvency issues and audits, and there is no way
around these issues as of now because of how investments
are handled: Hedge funds need to take the custodianship of
the funds. With the leader/follower approach disclosed
herein, the user (1) Never gives ownership of the funds to the
seller, (2) Never has to worry about the settlement calcula-
tion, and (3) Can get the information directly from a
professional, the leader in this case. The program in the
smart contract only is allowed to give the instructions of
rebalancing.

[0229] The follower in some cases could be given options
to accept the leader’s rebalancing, or to further adjust the
rebalancing and then apply it to the follower’s own portfolio.
Market research could be provided at this point to the
follower. For example, the 1 year or 1 month percentages of
the performance of the assets in the rebalancing could be
presented to the follower before accepting the rebalancing.
Followers could also program or require certain parameters
or triggers that are automatically implemented. These can
relate to performance, performance history, boundaries on
variation in the rebalancing, thresholds on additional collat-
eral needed, limits on percentages of certain assets in their

US 2020/0258159 Al

portfolio, a percentage of how much of the rebalancing to
accept (e.g., | will follow 50% of the changes of the leader)
and/or the like. The parameters may involve timing, such as
implementing the rebalancing 1 week after the leader rebal-
ances and with the authorization of the follower. In this way,
the follower could see the performance of the rebalancing
before following.

[0230] The use of blockchain and smart contracts herein
can provide significant advantages over a robot-type advisor.
For example, with a robot advisor, the user is still giving
their money to a third party to manage. Use of a third-party
custodian of the money can create various risks as previ-
ously explained. However, the smart contracts and rebal-
ancing performed on the blockchain herein eliminates the
risks of using a third-party custodian of the money.

[0231] The use of blockchain and smart contracts herein
also provide significant advantages over use of brokers, and
reduces risks associated with using brokers. For example,
assume a broker has an algorithmic trading system that is a
computer program that buys or sells assets. With the broker,
the algorithmic trading system, and thus the computer pro-
gram, is hosted and/or owned by the broker. The computer
program instructs the broker’s system to make trades on
specific market(s) based on funds that the broker has taken
custody of By contrast, in the approaches herein, the block-
chain is a computer program that is not hosted on systems
owned by the broker or any single entity. Moreover, the
smart contract algorithm is provided by computer code in
the blockchain (e.g., Ethereum blockchain or any other
blockchain). The blockchain is not owned by any single
entity. The blockchain does not take custody of the funds, as
the funds “exist” on the blockchain. Thus, it separates the
custodial aspects from the investment manager. The fol-
lower still has to trust the leader’s investment decisions, but
the follower does not have to trust the leader’s custodianship
of the money.

[0232] FIG. 12 illustrates an example interface 1200 for
accessing portfolio information and features. In this
example, the interface 1200 can provide a summary section
1206 with a summary of the portfolio for the user. The
interface 1200 can include a clone option 1202 to allow
cloning of the portfolio. For example, the clone option 1202
can trigger a cloning operation, which can provide an
opportunity for a user, such as a friend or acquaintance, to
clone the portfolio.

[0233] The interface 1200 can also include a follow option
1204. The follow option 1204 can be selectable to allow a
user to automatically rebalance when the owner rebalances
the portfolio. The follow option 1204 can allow a user to
follow changes made to another portfolio of choice. Thus,
users can copy, clone, and/or follow one or more portfolios
via interface 1200. A trustless leader-follower application
enables a mechanism which automatically “copies” or
“mimics” the actions of one trustless portfolio onto another,
without the former taking custody of the latter.

[0234] One of the challenges addressed by the leader-
follower application involves the issue that many investors
either lack the ability or time to determine what assets are
good investments. Such assets could include stocks, bonds,
digital currencies, blockchain assets, commodities, and
many other types of assets. Therefore, many individual
investors outsource the management of their investment
decisions (and the execution of investments) to the profes-
sional asset management industry. This can include financial

Aug. 13,2020

advisors, hedge funds, mutual fund managers, and many
other types of investment managers.

[0235] Here is a simple example of where that will be
helpful with basically non-digital assets, stocks or bonds. A
lot of the regulation that exists on a national basis does not
allow people to buy foreign stocks unless they are listed on
a certain exchange using an ADR, or American Depository
Receipt. This is essentially a reflection or a listing of that
stock in the American markets. If a person wants to buy
small or mid-cap stocks or some other esoteric asset in
another country or jurisdiction, the amount of inefficiency
and cost that the person is going to face in doing so is large.
There are also limits on the amount that the person can buy.
However, with the blockchain-based smart contract
approaches and concepts disclosed herein, the technology
could enable an easy purchase of such foreign assets. The
disclosed concepts can enable micro payments with great
fluidity of value transfer on a global basis, as well as
significant freedom, lower costs, and higher security.
[0236] When individuals deposit their money with finan-
cial firms, they are exposed to a well-known set of risks. One
of those risks is custodial risk, defined by the fact that the
individual is no longer in possession of their own funds and
has elected another legal entity—the firm—to be the custo-
dian of those funds. This decision creates a risk for the
customer because the custodian could intentionally or unin-
tentionally lose/steal those funds. Historically, some of the
ways custodians have lost customer funds include but are
not limited to: (1) fraud; (2) negligence of the custodians; (3)
improper or erroneous accounting (either intentional or
unintentional); and/or (4) domiciling of those funds in high
risk country which seizes those funds for political reasons.
This is why a firm’s reputation, track record, physical
location, type of fund, and other factors play an important
role in the asset management and investment industry.
[0237] Individuals must choose whom to “trust” as the
custodian of their funds. Often, it can take decades for a firm
to build trust and develop a “good reputation”. However, this
trust comes with a cost. The cost is an entire array of
infrastructural processes designed to prove to others (clients,
regulators, employees, etc.) that they are acting in good faith
as custodians of their clients’ money. Some of those infra-
structural items include but are not limited to: (1) regular
accounting and audits by reputable firms, (2) a corporate
governance and legal structure designed to both adhere to
local regulations and properly incentive the management,
and/or (3) building up a track-record within the industry of
competence, integrity, and good will. Reducing and even
eliminating the cost of this trust is achieved with the
leader-follower aspect of this disclosure.

[0238] When one user follows another user’s portfolio,
that user authorizes the user’s portfolio to receive “rebal-
ancing” instructions from the other user’s portfolio; that is,
one user is the follower and the other user is the leader. The
leader portfolio is only authorized to send rebalancing
instructions to the follower portfolio and not, for example,
ask the contract to settle, remove the collateral from the
contract, change the settlement address, or a whole number
of other actions that are reserved just for the follower. There
may be any number of parameters or functions that can be
programmed into the contract that the followers can follow.
Functions can include, for example, when to close the
contract based on the leader functions performed. The
leader-follower functionality can be a feature programmed

US 2020/0258159 Al

into the smart contract 206. The leader-follower mechanism
is a set of functions programmed into a blockchain-based
smart-contract that allow the follower portfolio to receive
instructions from the leader portfolio. One example of
instructions can include cryptographically secure messages
sent via a blockchain network from the leader’s portfolio to
the follower’s portfolio. These messages contain the infor-
mation for the follower’s portfolio to rebalance to match that
of the leader’s portfolio, without the leader ever taking
custody or being able to seize the funds of the follower. In
other aspect, the leader could be enabled with the ability to
not just send messages but also change follower portfolios.
For example, once the leader has made a change, the market
conditions might not be exactly the same when the follower
wants to make the similar adjustment. The leader could
cause the follower to make a less risky change than per-
forming the exact mirror adjustment as the leader did. The
leader’s change might adjust the marketplace immediately
which might put the followers in a less advantageous
position than the leader.

[0239] Blockchain asset portfolio information from vari-
ous users can be used to create leadership tables and
rankings. For example, the system can use portfolio perfor-
mance information to post leaderboards on a daily, weekly,
monthly and/or yearly basis. FIG. 13 illustrates an example
interface 1300 of a leaderboard. Leaderboards can allow
users to “follow” specific “portfolio managers” with just a
few clicks as described above.

[0240] Interface 1300 can display portfolio owners 1302
and portfolio data 1304, 1306, 1308, 1310, 1312 for corre-
sponding portfolios. The portfolio data 1304, 1306, 1308,
1310, 1312 can include, for example, one or more portfolios
or portfolio descriptions, a portfolio return value, a portfolio
weekly return value, a portfolio monthly return value, a
portfolio yearly return value, etc. The portfolio data 1304,
1306, 1308, 1310, 1312 can pertain to a single portfolio
associated with a respective owner or a group of portfolios
associated with the respective owner. Moreover, a portfolio
associated with the portfolio data 1304, 1306, 1308, 1310,
1312 can include multiple assets, which can be homoge-
neous assets (i.e., same type of assets) or heterogeneous
assets (i.e., different types of assets).

[0241] In some cases, the portfolio data 1304, 1306, 1308,
1310, 1312 can include more or less information, such as
asset information, portfolio parameters, etc. The portfolio
owners 1302 and/or portfolio data 1304, 1306, 1308, 1310,
1312 can be user-selectable. Thus, users can select a par-
ticular field or value to interact with that field or value. For
example, in some cases, users can select a user from the
portfolio owners 1302 to clone or follow the portfolio
associated with that user. Thus, a user can review the
portfolio owners 1302 and portfolio data 1304, 1306, 1308,
1310, 1312 and select portfolios to follow or clone based on
the data provided in the interface 1300.

[0242] The portfolio data 1304, 1306, 1308, 1310, 1312
can also be selected by a user to drill down on the associated
data. For example, portfolio data 1304 can display a port-
folio or portfolio description of a respective owner. The user
can select the portfolio data 1304 to view additional details
about that particular portfolio, such as portfolio parameters,
user preferences, portfolio statistics, portfolio assets, fol-
lowing information (e.g., how many users are following that
particular portfolio, which users are following that particular
portfolio, comments provided by users regarding that par-

Aug. 13,2020

ticular portfolio, etc.), notes from one or more users per-
taining to that particular portfolio, portfolio historical data,
etc.

[0243] The portfolios presented in the interface 1300 can
be ranked or organized based on one or more factors, such
as performance statistics, ratings, number of followers,
consistency, type of assets, averages, or values associated
with the portfolio data 1304, 1306, 1308, 1310, 1312. For
example, the portfolios can be listed in order of performance
based on one or more performance factors. As another
example, the portfolios can be listed according to user
rankings. In some cases, users can filter which portfolio
owners 1302, portfolios, and/or portfolio data 1304, 1306,
1308, 1310, 1312 to view on interface 1300. For example, a
user can filter interface 1300 to only display friends of the
user (e.g., other users having a relationship or contact with
the user), a selected list of users, a top number of users, users
associated with a particular organization, users in a particu-
lar geographic location, etc. The user can also filter the
interface 1300 based on other parameters or factors. For
example, the user can filter the interface 1300 to only display
portfolios having certain assets, portfolios that are older than
a specific period of time.

[0244] The leader/follower feature enabled by interface
1300 can allow users to apply different investment research
processes to portfolio design and construction. For example,
a user could create the following exchange traded fund
(ETF)-like blockchain asset product: A market cap weighted
portfolio of the top ten blockchain assets by market cap.
Such a portfolio is like the Dow Jones of blockchain asset
investments. It would automatically rebalance over some
period for which a user could choose. The user could also
create a version with the top twenty coins or the top 50 coins.
Users could back-test and publish results of different port-
folio compositions. This could also work for an inverse
market cap ETF or for making a portfolio allocation that
optimizes return vs volatility using modern portfolio man-
agement techniques. A leaderboard can present one or more
of the following data: a pie chart (or other graphic) illus-
trating a distribution of assets, an owner, a portfolio name,
a percentage of returns on a lifetime basis, weekly basis,
monthly basis, yearly basis, or user-selectable basis. A user
interaction with one of the portfolios (such as on a pie chart
graphic) can return a detailed accounting of the assets and
the percentage of the portfolio that has that respective asset.

[0245] In this way, users could create investment strate-
gies and publish research which supports their portfolio
composition, and share their portfolios for other users to
follow. The leader/follower feature also enables other appli-
cations. For example, a user can employ a specific pattern to
significantly reduce the chance of a hack on the private key
of the user’s portfolio while maintaining the flexibility to
trade that portfolio from an “insecure” computer or network.
The user can create a “hot” leader portfolio which has a
negligible amount of value in it, for which the private key
can be exposed carelessly. That “hot” portfolio would be the
leader to the same user’s “cold” portfolio which holds the
main value of the portfolio, say $30 k or 40 k worth of digital
assets. The private key to this “cold” portfolio would be
generated in a secure environment and put in cold storage for
the life of the portfolio. Since the hot/leader portfolio is only
authorized to rebalance the cold/follower portfolio then if
the “hot” key was compromised, the worst that an attacker

US 2020/0258159 Al

could do is simply rebalance the user’s hot portfolio but
never steal the funds in the user’s cold portfolio.

[0246] In other examples, active trading of portfolios can
be provided by those skilled in such endeavors on behalf of
those with limited skills. For example, assume a user has a
friend who has had a lot of success trading and asset
management. However, the user is wary to let the friend
trade a large number of coins due to legal, custodial, and/or
accounting risks. With this approach herein, the user can just
follow that the friend’s portfolio without any of those risks,
as the user retains control and does not relinquish custody of
assets to the friend or any other third party.

[0247] In some cases, non-crypto assets can be provi-
sioned by adding new oracle data feeds. For example, by
connecting this technology to a Bloomberg terminal and
corresponding execution infrastructure at a broker-dealer,
hedge fund, investment bank, etc., different types of non-
crypto assets can be provisioned as or for portfolios. To
illustrate, users can add gold or other precious metals to their
trustless portfolios. In such an example, those real-world
assets could act as a trustless entry and exit mechanism for
selling off entire exposures of blockchain assets should the
user choose to do so. For example, the user liquidates an
entire portfolio and moves to gold directly within their
trustless portfolio on the blockchain. All of this is profound
in that the system can have “fully reserved” digital assets
collateralized with blockchain assets such as Ethereum.
[0248] The global derivatives industry is vast with over a
quadrillion dollars in outstanding contracts and hundreds of
different types of derivatives like swaps, options, CDS,
exotics and many more. In the traditional financial system,
almost all consumer and business financing activities are in
some way attached to a financial derivative, whether that be
a credit card or mortgage (CDS and interest rate swaps),
activities in the CFO’s office of a fortune 500 (FX currency
swaps and futures), or the trading operations at a large
exchange (risk management and hedging). This branch of
financial engineering can be combined with the disclosed
blockchain technologies and smart contracts to produce
consumer financial products that cost less, eliminate inter-
mediaries, increase security, and provide entirely new ser-
vices, such as the trustless portfolio service described herein.
[0249] The smart contract disclosed herein can apply to
any contracts (e.g., legal contracts, insurance contracts, etc.).
For example, the smart contract described herein can be
applied to insurance contracts, business contracts, intellec-
tual property licenses, specific performance contracts,
assignments, buying or selling a product or services, and so
forth. Indeed, the procedures, components and systems
disclosed herein could apply to any kind of contract. Any
kind of blockchain technology can also be implemented or
combined with the concepts disclosed herein. In fact, the
technologies disclosed herein are blockchain agnostic and
can be implemented with any future blockchain technolo-
gies.

[0250] FIG. 14 illustrates an example method for leader/
follower approach. A method includes establishing a multi-
asset blockchain-based trustless smart contract for managing
a multi-asset portfolio (1402), inserting into the multi-asset
blockchain-based trustless smart contract an authorization
for a leader multi-asset blockchain-based trustless smart
contract to send messages from the leader multi-asset block-
chain-based trustless smart contract to a follower multi-asset
blockchain-based trustless smart contract regarding a leader

Aug. 13,2020

rebalancing of the follower multi-asset blockchain-based
trustless smart contract (1404), and modifying the follower
multi-asset blockchain-based trustless smart contract based
at least in part on the leader rebalancing of the leader
multi-asset blockchain-based trustless smart contract
(1406). The modifying of the multi-asset blockchain-based
trustless smart contract can include an automatic follower
rebalancing of the multi-asset blockchain-based trustless
smart contract that matches the leader rebalancing.

[0251] The modifying of the leader multi-asset block-
chain-based trustless smart contract can include a follower
rebalancing of the multi-asset blockchain-based trustless
smart contract that follows a portion or a subset of the leader
rebalancing. For example, the system could include various
rules, policies, constraints, and so forth, which a follower
could implement such that upon a leader rebalancing a
leader portfolio, a policy could be implemented which
compares the rebalancing to the policy. In some cases, the
policy may require that there is no change to one particular
asset in the follower portfolio. If the leader portfolio
changed the percentage of that particular asset in the leader
portfolio, then the follower portfolio can evaluate the
changes, apply the policy, and implement a rebalancing that
is not exactly the same as the leader portfolio but imple-
ments aspects or principles set forth in the leader portfolio.
In other cases, however, the follower may have the option to
apply the rebalancing with the change to the particular asset.
For example, the follower can approve such modification or
include one or more policies or conditions for approving
such modification.

[0252] To illustrate, the leader portfolio may have doubled
a percentage of a second asset in the portfolio, as well as
doubled a first asset. The policy may require no change in
the allocation of the first asset. Thus, the follower portfolio
may increase the balance of the second asset by 150%, rather
than the doubling as occurred in the leader portfolio. The
policy may require that the rebalanced follower portfolio
have the same overall market value is the leader rebalanced
portfolio and thus implement similar changes to those of the
leader, although in different proportions, to arrive at the
same overall market value. There are other scenarios which
can be contemplated in how to structure a policy which
would be evaluated against a leader portfolio change.
Parameters which can be implemented in such a policy can
include an overall portfolio value, percentages above or
below and overall rebalanced portfolio value, parameters
associated with individual assets, parameters associated with
timing, such as when to implement a rebalancing, or how to
implement portions of a rebalancing over time, parameters
associated with external data which can be accessed and
evaluated to confirm whether to follow a leader portfolio or
whether to decline to follow, personal profile data, social
networking data from individuals and/or social networking
connections, a level of a social networking connection, and
so forth. The embodiments in this regard can be claimed
from a leader perspective of transmitting the leader changes
to one or more followers, or could be claimed from the
follower perspective in terms of receiving the leader infor-
mation, and making adjustments accordingly.

[0253] The leader multi-asset blockchain-based trustless
smart contract can send rebalancing messages to the fol-
lower multi-asset blockchain-based trustless smart contract.
The method can include receiving market data at the multi-
asset blockchain-based trustless smart contract prior to

US 2020/0258159 Al

modifying the multi-asset blockchain-based trustless smart
contract such that the modifying takes into account both the
market data and the leader rebalancing. In one aspect, the
multi-asset blockchain-based trustless smart contract is
modified for a percentage of the leader rebalancing. Further,
there can be timing variations to the process. The method
can include modifying immediately or in a predetermined
time after receiving the leader rebalancing. There can also be
events and conditions implemented in the process. For
example, the method can include modifying the smart con-
tract upon occurrence of a specific event, such as a user input
or a triggering condition. In another example, if the follower
receives the data late, such that the market has adjusted to a
large leader modification, then the follower can take into
account the current market conditions, the timing, and so
forth to implement the same change or a variation thereof.
[0254] FIG. 15 illustrates an example interface 1500 for
selling a portfolio of assets. The interface 1500 can include
a summary view 1502 which can display assets 1510 and
corresponding asset data 1512. Example assets 1510 can
include, without limitation, Litcoin, Ripple, Ethereum,
Dash, Bitcoin, and/or any other crypto and non-crypto
assets. The asset data 1512 can include an initial value (e.g.,
value at time of purchase), a current value, a percent of the
total portfolio investment or value, a current rate, a perfor-
mance (e.g., gain, loss, etc.), and so forth.

[0255] The interface 1510 can also include a liquidation
details area 1506 which can indicate one or more assets from
the assets 1510 being sold, purchased, traded, etc., an
amount of the one or more assets being sold, purchased,
traded, etc., an address or party involved in the liquidation
transaction (e.g., buyer, seller, etc.), as well as other infor-
mation associated with the transaction, such as comments or
preferences. The interface 1510 can an address 1504 asso-
ciated with the liquidation details. For example, the address
1504 can identitfy the address where the smart contract
should send the assets.

[0256] The interface 1510 can include a control element
1508 configured to trigger or execute the liquidation when
activated by a user. For example, the control element 1508
can be a button that the user can select to liquidate the
portfolio presented or selected, initiate the liquidation opera-
tion, accept the liquidation operation, and/or otherwise com-
plete the liquidation operation. The smart contract, upon the
buyer liquidating the portfolio, calculates the various
amounts that are to go to the respective buyer and seller and
carries out the liquidation operation based on the calculated
amounts and the smart contract instructions.

[0257] The interface 1510 can allow a user to liquidate an
entire portfolio or a selected subset of assets in the portfolio.
In some cases, the interface 1510 can also allow the user to
liquidate a group of portfolios. The user’s specific prefer-
ences vis-a-vis which assets and/or portfolio(s) to liquidate
can be specified via the liquidation details area 1506, for
example.

[0258] FIG. 16A illustrates an example method for asset
management in accordance with various aspects of the
present technologies. The example method in FIG. 16A
focuses on the operations of the smart contract, as opposed
to the separate operations of the oracle, rebalancing com-
ponent, leader/follower component, and so forth.

[0259] In this example, the method includes receiving,
from a buyer and at a smart contract, an identification of a
portfolio of assets (1602). Blockchain assets are one

Aug. 13,2020

example of such assets. Insurance contract, stocks, bonds,
commodities, real estate, intellectual property, legal con-
tracts, etc., are examples of other types of assets. The
portfolio can include various types of assets, including
various types of blockchain and/or non-blockchain assets.
Moreover, the smart contract can be implemented in a
blockchain, as previously described. The identification of
the portfolio of assets can include a respective percentage of
each type of asset to enter into the portfolio of assets.
[0260] The method includes receiving, from the buyer, an
amount that the buyer will invest in the portfolio of assets
(1604). The amount can be any amount specified by the
buyer for investing in the portfolio. The amount the buyer
will invest can include the current value of the assets. In
some cases, the amount can be in cryptocurrency, such as
Bitcoin or Ethereum.

[0261] The method includes receiving, based on one or
more exchange rates (e.g., prevailing rates) and the amount
being invested by the buyer, a number of assets in the
portfolio of assets (1606). The number of assets can be the
number of assets in the portfolio as calculated based on the
amount the buyer is investing and the one or more exchange
rates.

[0262] The method includes receiving a confirmation from
the buyer of the portfolio of assets having the number of
assets (1608). The confirmation can indicate that the buyer
agrees with or validates the portfolio with the number of
assets. The method includes and calculating, by an entity, a
cost of the portfolio of assets to yield a contract (1610). The
entity can be, for example a seller of the portfolio of assets.
[0263] The method further includes receiving the amount
and/or excess collateral from the buyer as a buyer accep-
tance of the contract (1612). For example, the method can
include receiving the amount invested by the buyer and
excess collateral as a buyer acceptance of the contract.
Moreover, the method includes receiving an entity accep-
tance of the contract by receiving an entity amount at the
smart contract (1614). The entity can sign the entity accep-
tance using one or more entity signature keys for the
contract, which can include, for example, private keys of a
sending address associated with the entity.

[0264] In some cases, after receiving the entity accep-
tance, the method can include the entity purchasing the
underlying assets that make up the portfolio of assets from
one or more exchanges and holding the underlying assets.
[0265] The method includes receiving, at the smart con-
tract, an indication that the buyer wants to close the contract
(1616). The buyer can send the indication to the smart
contract to initiate the closing of the contract. In some cases,
the buyer can sign the indication or a message including the
indication. For example, the buyer can send the indication
via a message signed by the buyer using a buyer private key.
The method then includes settling the contract via the smart
contract based on a current value of the portfolio based on
pricing data received from a trusted valuation entity (1618).
The settling of the contract can be triggered by the indication
that the buyer wants to close the contract. Thus, the buyer
can control the settlement of the contract and request the
settling when desired by the buyer. The current value of the
portfolio can be calculated based on pricing data received
from a trusted valuation entity. The contract can also be
closed by other triggers besides just the buyer decision.
[0266] In some cases, a private key can hold the entire
portfolio through the smart contract. Moreover, there is no

US 2020/0258159 Al

need for multiple wallets to manage multiple blockchain
assets. Thus, the buyer can manage the portfolio containing
various types of blockchain assets without having to main-
tain a respective wallet for each type of blockchain asset.

[0267] Settling the contract via the smart contract can
include calculating, via the smart contracts, the current value
of the portfolio and calculating a collateral amount and
resulting proceeds to be sent to the buyer and the entity. The
method can include sending a first resulting value from the
resulting proceeds to the buyer and a second resulting value
from the resulting proceeds to the entity. In some examples,
the first resulting value can represent an original investment
amount, plus a profit, plus an original excess collateral
amount, and/or minus a commission. The second resulting
value can include a difference from the original investment
amount, minus a loss, plus the original excess collateral
amount, and/or plus the commission.

[0268] Insome cases, after receiving, at the smart contract,
the indication that the buyer wants to close the contract, the
entity can sell the portfolio of assets on an exchange.
Moreover, in some cases, prior to receiving, at the smart
contract, the indication that the buyer wants to close the
contract, the method can include receiving a rebalancing
request which indicates that the buyer wants to rebalance the
portfolio of assets. The method can include receiving a new
portfolio composition from the buyer based on the rebal-
ancing request, calculating a new portfolio value and a new
collateral value based on the new portfolio composition and
data from the trusted valuation entity and accepting the new
portfolio composition by the entity.

[0269] As part of this process, the method can include
determining whether additional collateral is needed accord-
ing to a collateral limit for the contract and receiving a
confirmation of the new portfolio composition by the buyer
and the entity. In some examples, the confirmation can be
received via a buyer signed message from the buyer and an
entity signed message from the entity. In some cases, the
entity can buy or sell a mirror image of what the buyer
bought and sold during a rebalancing of the contract.

[0270] FIG. 16B illustrates another example method for
asset management in accordance with various aspects of the
present technologies. The method includes receiving, from a
buyer, an identification of a portfolio of assets associated
with a blockchain-based smart contract (1620), receiving,
from the buyer, an amount to invest in the portfolio of assets
(1622) and determining a number of assets in the portfolio
of assets based on one or more asset exchange rates and the
amount to invest received from the buyer, to yield a com-
position of the portfolio of assets (1624).

[0271] In response to receiving, from the buyer, a confir-
mation for the composition of the portfolio of assets, the
method includes calculating a cost of the portfolio of assets
based on the composition of the portfolio of assets (1626),
determining a portfolio contract based on the cost of the
portfolio of assets (1628), receiving, from the buyer, a buyer
acceptance of the portfolio contract, the buyer acceptance
comprising the amount to invest and excess collateral
(1630), identifying an entity acceptance of the portfolio
contract in response to receiving, at the blockchain-based
smart contract, an entity amount associated with the port-
folio contract (1632) and receiving, at the blockchain-based
smart contract, an indication that the buyer has requested to
close the portfolio contract (1634).

Aug. 13,2020

[0272] In response to the indication that the buyer has
requested to close the portfolio contract, the method can
include settling the portfolio contract via the blockchain-
based smart contract based on a current value of the portfolio
of assets, the current value of the portfolio of assets being
based on pricing data from a trusted valuation entity (1636).
The portfolio of assets can include blockchain assets to yield
a portfolio of blockchain assets. The identification of the
portfolio of blockchain assets can include a respective
percentage of each type of blockchain asset to enter into the
portfolio of blockchain assets. The amount to invest can
include an amount of at least one of Bitcoins, Ethereum, a
cryptocurrency, and another blockchain asset. The amount to
invest can also include a first amount in a currency or a
second amount representing a physical asset. The accep-
tance can be associated with an entity, the entity being a
seller of the portfolio of assets. Settling the portfolio contract
can include calculating, via the blockchain-based smart
contract, the current value of the portfolio of assets, a
collateral amount, and resulting proceeds to be sent to the
buyer and an entity associated with the entity acceptance.
The resulting proceeds can include a first resulting value and
a second resulting value. In this regard, the method can
further include sending the first resulting value to the buyer
and the second resulting value to the entity, the first resulting
value including an original investment amount, plus a profit,
plus an original excess collateral amount, and minus a
commission, and the second resulting value including a
difference from the original investment amount, minus a
loss, plus the original excess collateral amount plus the
commission.

[0273] The method can further include, after receiving the
indication that the buyer has requested to close the portfolio
contract, selling the portfolio of assets on an exchange. The
method can also include, prior to receiving the indication
that the buyer has requested to close the portfolio contract,
receiving a rebalancing request indicating that the buyer has
requested to rebalance the portfolio of assets, receiving a
new portfolio composition from the buyer based on the
rebalancing request, calculating a new portfolio value and a
new collateral value based on the new portfolio composition
and data from the trusted valuation entity, accepting the new
portfolio composition by an entity associated with the entity
acceptance of the portfolio contract, determining whether
additional collateral is needed according to a collateral limit
for the portfolio contract and receiving a second confirma-
tion of the new portfolio composition by the buyer and the
entity via a buyer signed message from the buyer and an
entity signed message from the entity.

[0274] The method can further include providing, to the
entity, a rebalancing fee prior to the accepting of the new
portfolio composition by the entity. The entity can buy or
sell a mirror image of assets bought and sold by the buyer
during a rebalancing of the portfolio contract.

[0275] The indication that the buyer wants to close the
contract can be received via a signed message from a buyer
private key, and wherein the entity acceptance is received
along with entity signature keys comprising private keys of
a sending address of an entity associated with the entity
acceptance.

[0276] The disclosure turns to a discussion of various
security aspects of the application and approaches herein, an
example history of attacks on decentralized approaches and
example remedies and improvements included herein.

US 2020/0258159 Al

[0277] The disclosure will reference code documentation
as well as information about smart contract security and best
practices. After the well-known attack on the decentralized
autonomous organization (DAO) on the Ethereum block
chain in June 2016, many Ethereum users both old and new
will have an increased skepticism about the security of
decentralized applications built using smart contracts. Smart
Contract technology is in its early days and the DAO hack,
although unfortunate and difficult, was a wake-up call for
smart contract developers to approach application design
from a new perspective. It also showed that the underlying
protocol did not experience a game-ending failure during
this time of distress; an observation that should be comfort-
ing to those making investments in this platform.

[0278] In many ways the product and technology dis-
closed herein (PRISM) is the opposite of the DAO. The
DAO had a very large amount of Ether in a single contract;
whereas in PRISM, the product can hold small amounts of
Ether (1 k to 50 k USD) in a single contract. In the DAO,
there were thousands of individuals authorized to interact
with a single smart contract; in contrast, with PRISM, there
are two individuals (the buyer and the seller) and the oracle
that are authorized to interact with each contract (and there
will likely be thousands of contracts rather than just one). In
the DAO, the contract was supposed to have a considerable
life span (many years); whereas in PRISM, the product for
each contract can be short-lived and disposable (e.g., from
weeks to months for example). These considerations and
others create a significantly different risk profile for the
PRISM product when compared to the DAO. The risk
profile and risk management approaches herein provide
significant security checks and safeguards.

[0279] In one example remedy, a risk analysis can be
applied to a contract in which steps are taken over time as
a risk of a DAO type of attack increases to encourage
completion of the contract with increasing intensity. For
example, reminders could be sent to the seller with single
click types of interactions to encourage the seller to close out
the contract. Initial reminders could include more interac-
tions to complete the process (such as three clicks in the
security code) and later prompts to provide a more simpli-
fied interaction to close out the contract inasmuch as the risk
factor has increased to a certain threshold.

[0280] The disclosure next addresses a risk assessment
framework and methodology for decentralized applications.
In this security analysis, the disclosure will separate the
different sources of risk along the technology stack based on
the root causes of those risks. This will help develop a
framework for identifying, discussing, and managing these
risks throughout the document. There are risks associated
with using the Solidity Language. This includes risks
derived from known and unknown bugs, faults, and/or issues
with the Solidity programming language.

[0281] For example, it is the goal of PRISM to reduce
Solidity risks by changing the code-base to reflect new smart
contract development. There is a risk associated with using
the Ethereum blockchain. This is the risk derived from the
attributes of the Ethereum blockchain itself. This includes
potential attacks on the protocol, hard-forks, community
disagreements, consensus algorithm weaknesses, and more.
There is a risk associated with Crypto Primitives. This is the
risk derived from potential weaknesses in the fundamental
hard-cryptographic primitives that secure such protocols.
Things like any known or unknown weaknesses/attacks/

Aug. 13,2020

constraints in SHA256, ECDSA, TLS, etc. There is a risk
associated with Business and Operations. This is the risk
derived from the interaction of a centralized organization
with the PRISM application and service. There’s also risk
associated with markets and volatility. This is the risk
derived from rapid changes in the market value of either a
single digital asset or a portfolio of digital assets. This risk
is derived from the unpredictable nature of blockchain asset
trading and includes the aforementioned Black Swan risks.
Further risks relate to an Exchange Custodial risk. This is the
risk derived from the observation that almost every
exchange in the blockchain asset trading world is largely a
centralized custodian of funds with almost no transparency
into their solvency, audits, operational processes, etc.
Finally, there is an Application Architecture Risk. This is the
risk derived from how the application is fundamentally
architected in terms of what actions parties are authorized to
take via contract rules. For example, in PRISM, if the leader
is authorized to change the settlement address of the fol-
lower’s portfolio, this could create a security risk and
vulnerability in the application.

[0282] The application next addresses remedies for some
of'these risks. The disclosure will begin with the Application
Architecture Risk. One of the most common attacks results
when an entity managing the contracts assumes the role of
both portfolio seller and oracle. Creating “trustless™ oracles
is a topic in Ethereum and the overall discussion of smart
contracts, so this discussion goes hand-in-hand. In a con-
figuration where the managing entity is both the seller and
the oracle, there are a number of attacks which could be
launched by either a nefarious party or a hacker that gains
control over the entity’s private keys to the portfolio seller
contract or the oracle. Below is an example attack which
could be launched.

[0283] A fraudulent settlement attack which would push
false data to the oracle is possible. In the case of a nefarious
party, when the portfolio buyer asks to settle a contract, the
nefarious party would push erroneous data to the oracle (like
coin prices equal to zero) so that the portfolio value is zero,
and subsequently all the collateral gets pushed to the nefari-
ous party (the portfolio seller address in the contract). This
equates to nefarious party stealing the user’s funds.

[0284] The minimum viable product (MVP) was con-
structed under the assumption that since token pricing data
is so public and transparent that if the nefarious party did this
attack, it would be detected very quickly, and subsequently
word would spread quickly, and consequently the nefarious
party’s business would be ruined. As previously noted, in the
approaches herein, only the portfolio buyer can initiate
settlement and so the nefarious party would have to wait for
each portfolio buyer to ask to settle the contract before
pushing false data. Such an attack would be detected
quickly. In this scenario, the nefarious party could deceive a
handful of customers and earn double their initial collateral
deposit, but subsequently discourage any future users of the
product. With smaller portfolios ranging from 1 k to 50 k
dollars or ETH, the expected value of this attack is relatively
low considering the upfront investment by the management
entity to build the product in the first place (larger than
multiples of 50 k). A nefarious party would be much wiser
attempting to settle all outstanding contracts simultaneously
based upon fraudulent settlement data rather than a handful
of customers one-by-one as they come in to settle their
portfolios. In this way, the nefarious party would be making

US 2020/0258159 Al

“one big grab” for all users’ funds existing in all outstanding
contracts simultaneously. However, with the approaches
herein, the nefarious party cannot settle all outstanding
contracts simultaneously since only the buyer can initiate
settlement.

[0285] In one example of the MVP (Prism.sol), the only
time the portfolio seller is authorized to initiate settlement is
when the collateral is all used; that is, the Current Portfolio
Value (CPV) is zero.

[0286] This authorization is included to allow the man-
agement entity the ability to recoup its collateral in the event
of a lethargic, unmotivated user who does not request
settlement once their portfolio fails to produce returns
(essentially, a portfolio dust account). In this case, the
management entity is left unable to settle the contract and
their collateral is subsequently tied up until the user finally
initiates settlement of the contract or the life of the contract
expires. However, a sellerSettle function can create the
aforementioned attack, which is called The Big Grab Attack.
It could be executed as follows: (1) Both the buyer and seller
can call the portfolio. Value() function and this will trigger
a request with the oracle for pricing data. At this point, the
nefarious party would push data to the oracle with all coin
prices equal to zero; (2) The contract would then read the
value of the portfolio as “zero” based on the nefarious
party’s erroneous data, and subsequently this would autho-
rize the management entity to call sellerSettle, a function
that forces the contract into settlement; and (3) The contract
would attempt to settle the contract by reading data from the
oracle; erroneous data pushed by the nefarious party that
values the portfolio at zero, thereby settling the contract in
the portfolio seller’s favor and subsequently pushing all
collateral to the portfolio seller.

[0287] In this way, the nefarious party could quickly force
all outstanding contracts into fraudulent settlement based on
fraudulent oracle data, thus the name, The Big Grab Attack.
Since management entity will be valuing every contract at
least once per day (by calling the portfolio.Value() function)
then this attack could be executed somewhat quickly.
[0288] There are various solutions to this attack. The first
is to remove the sellerSettle function while the management
entity is the only oracle provider. Another solution is to
secure the oracle so that its functioning is not solely depen-
dent on the management entity. In some cases, the system
can do both in order to increase the application security on
both fronts. However, simply removing sellerSettle would
defend against this attack, since the nefarious party would
have to wait for the user to request settlement and this by its
very nature does not happen all at once. Thus, the nefarious
party would be back in the same situation where it would
have to settle each customer one-by-one with erroneous
data; again, a tactic which would be detected very quickly,
thus reducing the expected value of such an attack (espe-
cially since the user will be able to “pause” the contract if
they suspect fowl play). If for some reason the nefarious
party tried to do this to every customer, then customers
would pause their contract for up to x days and there would
be a long line of angry users outside of the management
entity’s office requesting “fair settlement” to get their money
back.

[0289] Regarding the oracle, there is an entire section
dedicated to how to implement a secure oracle that will
significantly reduce the risk of the oracle outputting false
data or getting hacked itself. If the sellerSettle function

Aug. 13,2020

removed, how than does the system avoid the languishing
portfolios problem? Efficient collateral management is
important to the management entity’s approach.

[0290] In one example, each user was required to send
‘excess collateral’ to the contract. In the example, it was 25
ETH when the initial portfolio value was 100 ETH, and
therefore, the collateral ratio was 1.25. If a portfolio’s value
goes to zero, then the contract will still be holding 25 ETH
of excess collateral. Instead of allowing the seller to force
settlement of the portfolio at that point in time, the system
will allow the seller to take a time-based subscription fee on
a daily or weekly basis whenever the contract is valued. For
example, the management entity would charge 1% per
month of the total value of the contract for however long the
contract is open. This is represented in the sellerWithdraw
function. When this “excess collateral” goes to zero, then the
contract would settle automatically. This is represented as a
conditional inside the sellerWithdraw function. By “auto-
matically”, this disclosure means that when contracts are
evaluated via the portfolio.Value() function, the system
would add a conditional which checks the buyer’s excess
collateral, and if that number equals zero, then the portfolio
will settle based on the prevailing rates from the oracle.
[0291] By taking a fee on a weekly or daily basis, and with
a collateral ratio of 1.25, the user would be motivated to only
use the wallet for its trading, portfolio management, and
follow-leader functions, rather than as a MyEtherWallet type
solution. Additionally, if a user decided to let a contract
“languish™, it would not matter to management entity since
management entity is earning fees from that contract at the
same rate as any other contract which may be more “active”.
The other benefit of this fee structure is that it scales in
proportion to the Total Notional Value of all Outstanding
Contracts (TNVOC); important because management entity
infrastructure costs also scale with the total notional value
(i.e. more contracts=more collateral=more hedging=etc.).
Again, the contract would simply settle automatically when
all the buyer’s excess collateral was spent; there is no need
to give the seller any additional powers or authorizations.
[0292] Thus, the system will not authorize the manage-
ment entity to force settlement of the contract as it opens up
The Big Grab Attack which increases custodial risks for the
users. A time-based fee hard-coded into the contract can
make the contract automatically settle, motivates the user to
use the service for its main features, and aligns the man-
agement entities incentives and costs with the user’s likely
behavior. Designing the oracle to produce correct results is
further discussed below.

[0293] Next, this disclosure discusses an Attack Surface
Mapping and Scenario Analysis. In this section, the disclo-
sure looks at possible attack combinations for all parties that
have influence over the contract, which include the portfolio
buyer, the portfolio seller, and the oracle. For each party to
the contract there are two states from which they act: they
are either hacked or not hacked. By being hacked, it is
assumed that they will be acting nefariously and so the
system does not have to consider the situation where they are
not hacked but have for some reason decided to act nefari-
ously. For example, a specific user may not be hacked but
may decide to try and cheat the management entity. Either
way, if the user was hacked or not, they are acting in clear
contradiction to how the contract is designed to operate.
Likewise, in The Big Grab Attack, the management entity
could claim to have been hacked but really just stole them

US 2020/0258159 Al

money themselves, either way, the contract was somehow
tricked into not producing the expected results. For example,
expected results whose calculation is rather mundane with
zero-room for interpretation or subjectivity. For this reason,
the following discussion is going to fold the “non-hacked,
but nefarious” party into the term “hacked”.

[0294] Again, the different states can include: (1) The
management entity is hacked: somehow the attacker gets a
hold of the private keys associated with the management
entity’s position as the portfolio seller in the contract; (2)
The management entity is not hacked: everything is fine; (3)
The user is the hacker: since the attacker can take out swaps
anonymously with management entity, then they don’t need
to hack a specific user to assume this position in the contract.
If they hacked a user, they could simply request settlement
and take the funds. The product can let the user manage their
own private keys, and so that is the user’s own liability.
Thus, this disclosure only needs to consider if the user is
actually the attacker; (4) The user is not the hacker: every-
thing is fine; (5) The oracle is hacked: If the oracle is
compromised then the data will be false (not true data); and
(6) The oracle is not hacked: this means the oracle is not
compromised, everything is fine, and the data is true.
[0295] The above scenarios are discussed now in more
detail. Assume the “Big Grab Attack” in which the manage-
ment entity is hacked, the oracle is hacked and the user is not
the hacker. The approach to this scenario was discussed
above.

[0296] In another scenario, assume the “Hacker Big Grab
Attack” in which the contract state is that the management
entity is not hacked, the oracle is hacked, and the user is the
hacker. This is a new type of big grab attack. The attack
would be executed as follows: (1) Attacker takes out a large
number of swaps with the management entity as the buyer;
(2) Attacker hacks the oracle; (3) Attacker initiates settle-
ment of the swaps as buyer; and (4) Attacker pushes false
data to the oracle.

[0297] In this case, the swaps will settle based on false
data (inflated coin values), and the attacker will gain all of
the collateral, and management entity’s collateral will be
stolen. To defend against this attack, the system needs to
make sure the oracle is secure and has failsafes. To do this,
a security stack is proposed for the oracle in line with our
previous discussions, but with much greater detail and added
solutions. The following is a summary of the solutions
which will be discussed in the oracle design section: (1) A
multi-sig and validator oracle: Hacker would need to acquire
more than just one key, if not all keys (M of N keys); (2) An
oracle that receives data from multiple exchanges: Hacker
would need more than just one key, if not all keys (i.e. hack
all exchange oracle keys simultaneously); (3) An oracle that
receives data from Oraclize: Hacker would need to find a
weakness in the Oraclize smart contract as well as the TLS
Notary technology. (Oraclize is a Solidity smart contract
ensemble designed to make it easy for people to set up their
own oracles using the public APIs of any website); (4) An
oracle that receives “crowdsourced” data-validation from a
group of users: This is something which the disclosure will
elaborate on in the oracle design section. It is possibly the
most decentralized oracle seen in the industry to date. This
solution also lends itself to token issuance; and/or (5) Many
of these layers and solutions can be combined. For example,
one concept proposed is combining one through three in the
product during its early stages of development. The goal is

Aug. 13,2020

actually to push as much risk as possible to the oracle and
design the product to inherently defend against any user or
management entity centric attacks. This is an object behind
many smart contracts decentralized applications.

[0298] The above introduction to possible oracle solutions
relates to oracle security in this attack, but the disclosure
also introduces the aforementioned “failsafes” which will
also be discussed in greater detail later.

[0299] One failsafe allows both the buyer and the seller to
be authorized to “pause” a contract for some amount of time.
The amount of time could be 24 hours, 7 days, or one month,
or any other amount of time short or long. It could even be
all three, that is, each party can choose for what period they
want the contract to “pause”. When a party pauses a con-
tract, it deactivates contract functions like buyerWithdraw,
or the oracle, etc. This prevents those functions from pro-
ducing undesirable results during this period. The “pause”
feature can be implemented by using a multi-signature
approach, a joint approach were the buyer and the seller
must both authorize the pause, or an individual approach.
Other variations could be built into the process, such as the
buyer and/or seller each being given one “free” opportunity
the pause the contract for 24 hours. One party could pay an
additional amount of money for additional “pause” rights or
time. All such variations are included within this disclosure.
[0300] Another failsafe is that each contract will also
likely have a “settlement period” wherein even if the settle-
ment calculation goes through without issue (that is, the data
is true and neither party is hacked) then there could be a
certain time before each party is allowed to withdraw funds.
On a first glance, this should likely depend on the value of
the contract, e.g. 24 hour period for contracts whose settle-
ment value is less than 5 k USD, 48 hours for contracts of
5-20k USD, and 7 days for contracts of 20 k USD or higher.
Other time frames can also be built in the contract as noted
above, such as providing interactions that urge the buyer or
the seller to complete the contract based on some parameter
such as an increasing risk to being hacked based on one or
more of how long the contract has existed, outside external
factors such as political changes, time of year, personal data
about the parties to the contract obtained through social
media, predicted issues that have a higher probability of
occurring in the near or distant future, and so forth.

[0301] Another failsafe is that both the oracle and each
contract itself can have a “manual override” function. The
override acts as “training wheels” until the application is
“battle tested”. A manual override function essentially
allows a small set of trusted individuals (like curators in
DAO) to completely override the contract in a number of
ways. One power will be to manually send the contract
settlement values instead of the oracle (in case the oracle is
hacked). This manual override also can have other authori-
zations.

[0302] Yet another failsafe relates to a deployment plan
with this application which is to slowly ramp up both the
maximum allowable value for each contract as well as the
total outstanding value of all contracts. The system starts
with small portfolios with a limited number of total portfo-
lios/contracts that are outstanding/open. As the application
continues to operate securely, the system will increase the
allowable value of each contract as well as the total out-
standing value of all contracts. This is in contrast to how the
DAO operated in that it solicited massive funds essentially
during its alpha phase.

US 2020/0258159 Al

[0303] Reverting back to the subject of this specific attack
(Hacker Big Grab), an important point to make is that
although management entity would lose its collateral, man-
agement entity users would not be directly affected unless
they were trying to settle their contract at the exact same
time that the attacker was executing the attack. If this was
the case, then those users would also be served false data,
but likely also get inflated coin prices as this would be how
the attacker would get the collateral pushed to them, and
thus the customers would actually be “happy” since their
portfolio got settled in their favor, and the management
entity would lose its collateral.

[0304] Another scenario is the “Poor Extortionist Attack™
in which the contract state is that the management entity is
not hacked, the oracle is hacked and the user is not the
hacker. In this attack, the attacker wouldn’t immediately
gain anything since they are not the management entity or
the user. If the attacker has control over the oracle, then why
wouldn’t they just take out a bunch of swaps with the
management entity before hacking the oracle? (This
approach would be similar to the Hacker Big Grab Attack).
In reality, the hacker probably would, but what if the attacker
is poor and doesn’t have the capital to post to the swaps
before taking over the oracle? How else could they monetize
their access to the oracle? These questions shall be addressed
next.

[0305] In the above scenario, the system would not allow
any contracts to settle by pushing false data to the oracle,
like all zero values. All zero values would make all portfo-
lios worthless (and hence the user would never ask to settle
them). Thus, the attacker could extort the management entity
users to get their own collateral back by making them send
ethers; or, simply wreak havoc on the entire system for
whatever reason. This is an attack with a different execution
profile, but with deleterious results nonetheless.

[0306] The inverse of the above attack could be that the
attacker decides to inflate all portfolios to high values
(makes all coins worth 1M USD) wherein everyone would
initiate settlement (free money) and the management entity
would falsely lose all of its collateral to its users. In this case,
the attacker would gain nothing, however all the users would
make gains; the attacker would likely see herself as being
some kind of Robin Hood. The defense of this attack again
rests with the security of the oracle for which this disclosure
touched on in the previous attack and which is addressed
under the oracle design options portion.

[0307] Another attack scenario is the “Hot Contract
Attack”. In this scenario, the contract state is that the
management entity is hacked, the oracle is fine, and the user
is the hacker. This attack is very similar to what all
exchanges face with having “hot wallets”. Here is how it
would be executed: (1) Attacker would take out a non-trivial
number of swaps with management entity; (2) Attacker
would gain control of the portfolio seller role in those swaps
by hacking management entity servers; (3) Attacker would
initiate settlement of those swaps from the buyer role; and
(4) Attacker would get all the collateral since they have
assumed both sides of the swap regardless of oracle settle-
ment data.

[0308] In this attack, all non-hacker users would not be
affected, but the management entity would lose all its
collateral. The defense to this attack depends on operational
and business centric rules designed to protect management
entity contract keys. The management entity has identified

Aug. 13,2020

some features which can be programmed into the smart
contract that will help protect the management entity in this
attack. The discussion of the next attack will demonstrate
how these features will help the management entity.

[0309] The scenario is the “Poor Vampire Attack”. The
contract state is that the management entity is hacked, the
oracle is fine, and the user is not the hacker. In the past
attack, the user is the hacker, and so they would get all the
collateral once they initiate settlement from the buyer role.
In this version, the attacker has gained control over the
management entity contract keys, but has not taken out a
bunch of swaps with the management entity. The reason for
this could be the same as in the Poor Extortionist Attack in
that the attacker doesn’t have much capital to start with, and
so she looks to monetize this access in another way.

[0310] In this attack, once the hacker steals the manage-
ment entity contract keys, they would just sit and wait for
each user to request settlement over time. The management
entity would be powerless in this situation and the hacker
would slowly drain the collateral out of each contract, like
a Vampire, as each user went to settle their contract. How-
ever, management entity users would not be affected in this
attack since they would get settled fairly as the oracle is fine.

[0311] To reduce the risk and value of this attack, this
disclosure proposes that contracts include a new function
designed to invalidate the Hot Keys registered in the con-
tract as the portfolio seller role and revert it to a new address
which it is called the Back Up Key(s). If the system suspects
foul play, or if all server-side keys have been compromised,
then with one simple call to this function, the system can
quickly invalidate all active contract keys and revert the
portfolio seller address to the Back Up Key. There could
even be two layers here in that there could two or three Back
Up Keys. The Back Up Key(s) could be generated and
managed like a cold storage/contract key in that it is never
really exposed to an attacker since it is generated offline, and
only needs to sign a message in the event the system
suspects a Hot Contract key has been compromised, which
will hopefully be never.

[0312] This disclosure recommends a hack prevention
process for any key holder authorized to push data to the
oracle. In this way, no oracle participant should ever be able
to reasonably claim that their oracle key was hacked for any
meaningful length of time; all they will have to do is use the
Back Up Key to invalidate the Hot Key (which in the case
of the oracle will be trivial to detect since there will be
several parties validating the data at each settlement).

[0313] In this configuration, the first time management
entity notices that any settlement funds have been diverted
out of their control, they can simply swap any single
key—or all keys—Ilong before other user’s request settle-
ment. This should deter hackers since it is the equivalent of
not being to do a “big grab” on a centralized exchanges “hot
wallet” since the hacker would have to wait for each and
every user to make a withdrawal request from the exchange
to get their money. User withdrawals by their very nature do
not happen all at once and so the attacker could wait a very
long time to drain all the hot wallet funds. Once that first
withdrawal/settlement appears compromised, then manage-
ment entity can quickly invalidate all the “hot wallet keys”
and replace them with fresh keys. Adding such a key
replacement function is secure from a Solidity programming
perspective.

US 2020/0258159 Al

[0314] This defense significantly reduces the risk of loss
during the Hot Wallet Attack and the Poor Vampire Attack
wherein management entity contract keys are hacked. Again,
remember that in both of the attacks non-hacked PRISM
users are not affected.

[0315] Another scenario is the “Business As Usual #1”. In
this case, the contract state is that the management entity is
not hacked, oracle is fine, and the user is the hacker. There
is no application level attack here. The product is designed
to protect management entity against a nefarious/hacked
user and likewise the product is designed to protect the user
against a nefarious/hacked management entity (with the
aforementioned caveats).

[0316] Another scenario is the “Business As Usual #2”. In
this case, the contract state is that the management entity is
not hacked, oracle is fine, and the user is not the hacker.
There is no issue in this case, everything is working fine, and
the management entity operates business as usual.

[0317] Another scenario is the “Hell Fire and Brimstone™
Attack. In this case, the contract state is that the management
entity is hacked, oracle is hacked, and the user is the hacker.
In this case, all security features have simultaneously failed,
the attacker decidedly can do anything upon any party she so
pleases. The last three scenarios above are provided for
completeness in the attack scenarios as there are three
parties to the contract, the portfolio buyer, the portfolio
seller and the oracle, each if which can be either hacked or
not hacked.

[0318] After making the design considerations mentioned
above, the only attack which would hurt users of the
disclosed marketplace (PRISM) are the first, third and eighth
attacks above. With attack #1, the system can simply remove
the sellerSettle function as discussed. At which point, this
attack morphs into the third attack, in which just the oracle
is hacked and the attacker extorts users to get “fair settle-
ment” (Poor Extortionist Attack). If the last attack occurs,
then it will be difficult. Thus, this is the attack which needs
to be defended against. Securing the oracle is paramount to
avoiding this attack and so a discussion of the oracle design
and implementation is next.

[0319] In this section the disclosure will introduce and
discuss the different oracle design options and see their
effects on the oracle’s security. The first option with respect
to the oracle design is a multi-validator oracle. A multi-
signature technology can be implemented for the oracle. If
so, for data to be accepted by the oracle as “truth”, it would
need to be signed off by M of N parties to the transaction.
[0320] Having the oracle be multi-signature applies this
level of security and comfort to the system. There is no
altcoin exchange that can claim they have multi-sig for all
their wallets. This is because it takes time and effort to build
a multi-sig implementation for each and every coin. Thus,
the present approach shifts that technical problem directly to
securing the oracle data rather than the private keys of each
coin. This alone is interesting from a sales and marketing
perspective as multi-signature is a cryptographic concept
and from the outset the system can claim to be “more
secure” than any centralized exchange (based on the oracle
security).

[0321] The implementation disclosed herein can imple-
ment a re-imagination of multi-signature concepts. In the
present disclosure, the system can ask an entity, such as
Bitgo (or any other entity), to not only be a signer but also
validate the oracle data at the same time. This means that

Aug. 13,2020

Bitgo would have to run an instance of the CoinCap.io API,
pulling the source data from the public APIs of each con-
tributing exchange, running the CoinCap.io calculation
methodology, and then pushing that data to the oracle.
[0322] In this configuration, Bitgo (or any entity perform-
ing this function) is both a key holder and a validator. The
entity would not be blindly signing oracle data and would
have to provide the right result and corresponding calcula-
tion proofs.

[0323] As noted above, the entity does not have to be
Bitgo, and could be an array of trusted validators and signors
all pulling data from the public APIs, producing the calcu-
lation results, and when everyone is in agreement, only then
signing for the authenticity of this data for oracle use.
[0324] The multi-validator process could also be enforced
by a single smart contract itself rather than having the
key-derivation function be a multi-signature process. In a
pure smart contract implementation, oracle data would not
be validated until M of N key-holders signed off on its
authenticity. The difference in these two approaches could
be up for discussion based since in multi-signature the
source of risk is a Crypto-Primitives Risk versus in the pure
smart contract implementation the source of risk is Solidity
Language Risk.

[0325] Some of these concepts apply in a pre-Bitfinex
hack world, and since Bitfinex was using Bitgo, there are
new product implementations with suggesting they could be
a signor/validator. Until the system knows the source of the
failure for the Bitfinex hack, Bitgo as a specifically sug-
gested entity may not be an option. Pre-Bitfinex hack, most
people likely agreed they would have been a potential good
choice for this role.

[0326] A second option for developing the oracle is the
multi-exchange oracle in which the exchanges push data. In
this case, the oracle would contact the exchanges and ask
them to push their trading data directly to the oracle. The
oracle would only be authorized to receive data from certain
Ethereum addresses, each of which would be controlled by
a different exchange. The system can also authorize the
oracle to receive data from other addresses from a group of
trusted addresses. Each exchange would just push the data
from their API directly to the oracle. An attacker would need
to simultaneously compromise each of the exchanges oracle
keys, and then simultaneously push false data to the oracle
to execute the attacks previously discussed. Although this
does increase the security of the oracle significantly, there
are two important considerations which arise from this
configuration.

[0327] The first is a business development and product-
centric consideration. Implementing this type of oracle
would require the cooperation of each exchange. They
would have to take responsibility for managing their oracle
key and then pushing the data to the oracle upon request.
Many exchanges may do this to help build the ETH eco-
system, while some exchanges may see PRISM as a com-
petitor for their small/mid-dollar retail clients. Successful
exchanges have built liquidity through attracting all different
types of clients including retail clients. Further, a sales and
marketing pitch is definitely geared toward showing that the
product has significantly less custodial risk than any
exchange.

[0328] The second aspect is a modification on the Hacker
Big Grab Attack which could be executed by a nefarious
exchange instead of an independent attacker of the oracle.

US 2020/0258159 Al

Assume that after contacting all the exchanges that only one
exchange agrees to push data to the oracle, e.g. Poloneix.
Therefore, all of the oracle data is coming from them. Here
is how an attack could execute: (1) Take out a bunch of
swaps with management entity as a series of anonymous
users; (2) Request settlement of those portfolios from the
buyer role; (3) Push fake data to the oracle which errone-
ously inflates the value of those users’ portfolios; (4) All the
collateral would wrongly get pushed to the buyers; (5) The
management entity then contacts the exchange asking
“What’s going on with the data?”’; and (6) Exchange claims
it was hacked, but quietly makes off with a fortune.

[0329] This attack is called the Nefarious Exchange Big
Grab Attack. A solution to this attack is to have a diversity
of'exchanges pushing data to the oracle. However, this could
create a bottleneck on the flexibility of the service since
there are some coins which Poloneix does not trade. Con-
versely, there are some coins that only one exchange trades
(e.g. Gatecoin for Augur and DGX 10Us). This attack could
be executed against a single coin portfolio if that coin is only
traded on one exchange. Another good solution to this
problem reverts back to the process mentioned with Bitgo,
in that Bitgo would be pulling the data from the exchanges
public APIs. The main benefit here is that the exchange
couldn’t claim that its oracle keys were hacked. The only
way they could manipulate the data at that point would be to
orchestrate some type of flash-crash on their order book.
This is far more difficult and has broader ramifications for
the exchange since their own users will be severely affected
by such a flash crash (whereas if they claimed a hack on the
oracle, none of their customers would be affected). Further,
if management entity or another party like Bitgo is pulling
the data from those exchanges, then the system can do sanity
checks on the data before signing its authenticity to the
oracle. For example, if the system observes a “flash crash”
happening, it simply “pause” transactions by not signing the
oracle data until the “flash crash” is over. The system would
want to have such sanity checks on trading data for market
risk centric reasons. In the traditional finance world, such
“trading pauses” during a flash crash or ultra high volatility
period are called “circuit breakers”. Note that a circuit
breaker approach with management entity authorized to
pause settlement would also defend against a Big Grab
Attack where the oracle was compromised by an outside
attacker (since they would try and inflate prices).

[0330] Although the approaches herein can implement a
process where exchanges push data to the oracle from their
own oracle keys, some configurations can allow an entity to
pull the data from public APIs for more security to the
management entity. Additionally, the robustness of the over-
all oracle (number of coins that can be offered, number of
data providers, etc.) will not be dependent on getting each
and every exchanges “approval” to use their data for the
oracle.

[0331] The disclosure now turns to a discussion on Ora-
clize, which would allow a management entity to pull data
from exchanges public APIs without their permission in a
“provably honest” way. Another option is to use the Oraclize
Technology and Service. Oraclize is a Solidity smart con-
tract ensemble designed to help people set up their own
oracles using the public APIs of any website. It does this
through a suite of smart contracts, a pseudo-centralized
service which they provide, and a technology called TLS
Notary which is designed to make their centralized pro-

Aug. 13,2020

cesses “provably honest”. A TLS Notary allows a client to
provide evidence to a third party auditory that certain web
traffic occurred between himself and a server. The evidence
is irrefutable as long as the auditor trusts the server’s public
key. Essentially, Oraclize queries a target API and then
pushes the data to the designated oracle for the application.
[0332] The following is an example for using Oraclize in
the present application. A CoinCap.io instance is set up with
Oraclize in which Oraclize, upon every request, pulls data
from all the public APIs of all the exchanges and then
computes the resulting values (using the CoinCap.io
method). Next, Oraclize pushes the resulting data to the
portfolio contracts oracle (that will be used for settlement)
and at the same time includes two things: (1) A TLS Notary
proof and (2) The location of the source data and results in
the interplanetary file system (IPFS). All of this is done
through a smart contract except for when the data must be
queried from the exchanges public API, since smart con-
tracts cannot reach out to APIs. Thus, the Oraclize central-
ized server makes the query, which is where TLS Notary
operates.

[0333] TLS Notary can work by generating a crypto-
graphic proof during the TLS Handshake process which
allows one to prove to any third party that the data delivered
from the server’s HMAC key has not been manipulated by
anyone. Therefore, the user is able to prove that the data sent
from that server has integrity. This is useful because the
major risk with using Oraclize is that it could manipulate the
data between when it queries it from the public API of an
exchange and pushes it to the oracle. This would open the
process up to a Big Grab Attack since Oraclize could all of
sudden push false data to the oracle and then settle a bunch
of swaps it took out against the management entity. How-
ever, with the TLS Notary proof, the management entity can
mathematically verify that they have not manipulated the
data when it was sent from the exchange API.

[0334] All the management entity has to do once it
receives the data is run the verification on the TLS proof and
it would know that Oraclize did not change anything. Of
course, the system can also check their result with the
CoinCap.io results and make sure they match. Oraclize
stores the source data, the result, and the TLS Proof in the
interplanetary file system so that anyone can pull up the file
and run the validation independently without having to
request the files from Oraclize.

[0335] Another option relates to a Browser Wallet Vali-
dation Tool in which the users derive data. Another inter-
esting way to validate the CoinCapi.io data is to have the
user re-derive it for every settlement. This could be done by
the user running an instance of the CoinCap.io calculation
methodology but pulling the source data themselves. This
could be implemented as a browser tool in MyEtherWallet
or as a desktop tool connected to Mist/MetaMask. It would
work as follows: (1) A user would initiate settlement from
the buyer role; (2) The tool would then pull the public API
data and calculate the results; and (3) The tools sends that
result as a signed message to the oracle. A benefit of this
approach is that this solution is attached to the private key
of'the user’s public address in the contract. If every user was
pulling and validating trading data and then sending the
results in a signed message, that would be close to a fully
decentralized oracle.

[0336] Another aspect of this option is that it allows
non-technical users to execute it without their knowledge.

US 2020/0258159 Al

For example, if the system were running it from MyEther-
Wallet, then the process would just occur in-browser through
JavaScript calls to the public APIs of each exchange. Of
course, the big question is what if the user lies about data
(changes the APIs results) for whatever reason. What can be
learned in the crypto-world to disincentivize anonymous
users from lying about transaction data? The disincentiviza-
tion can be in requiring a proof of work, proof of stake, or
another consensus algorithm.

[0337] The following is a further possible oracle imple-
mentation. Considering the options and trade-offs, the fol-
lowing is an example embodiment for the oracle. In one
aspect, 50-100 user contracts with maximum contract value
of 1 ETH per contract could be implemented. In this initial
case, the system would just use CoinCap.io API that will
push data directly to oracle. In a later version, 100-200 user
contracts are initiated but with a maximum contract value of
100 ETH and with a Total Outstanding Notional Value of
100 k-300 k USD. In this case, the system would add
Oraclize CoinCap.io data validation process and provide
two contributors to oracle the management entity (such as a
management entity) and Oraclize. Thus, a tiered approach to
the data validation process could be implemented based on
one or more factors in the portfolio of contracts.

[0338] Another version could serve a maximum of 200-
400 customers with a maximum contract value of 500 ETH
and with a Total Outstanding Notional of $1M-2M USD.
The system could add Bitgo/EtherLi multi-sig to the vali-
dation process, two signers/validators (2 of 2 multi-sig) and
one contributor (Oraclize) to oracle: management entity,
Oraclize, and Bitgo/Etherli. The system would add new
sellers to the equation to share risk with management entity
for collateralizing portfolios, and let sellers be signatory
(bump multi-sig) and sellers would have a maximum of 250
k they can use to collateralize (target of 2 sellers on-
boarded).

[0339] Integrating Oraclize will work since their service is
specifically designed to make setup of an oracle easy, and
this is one of the reasons why it is recommended to integrate
them first. Having Bitgo be a party in the transaction is good
since: (1) The multi-sig tech is established; (2) the multi-sig
tech is pretty simple and Etherli is functional today, so
integration time and effort would be low; and (3) just the
sales pitch of “crypto-asset portfolios secured by multi-sig/
validation model” can make the management entity more
secure than any exchange, never mind that Oraclize is
integrated too. From Bitgo’s perspective, this could be a
lucrative new business model: validating data, computa-
tions, and being an impartial signatory to all types of
different oracles.

[0340] A user validation tool can also be on the list to
combat users forging data and trying to trick the system.
These decentralized “data validation™ processes combined
with “simple contracts” are the likely near-term future of
Ethereum until the protocol has years of debugging and
testing similar to Bitcoin’s protocol progression. A startup
called Truebit by Dr. Christian Reitwiessner is an off-chain
data validation tool/process, which publishes proofs to
“simple contracts” so that more complex computational
operations can be securely executed in Ethereum’s frame-
work (rather than coding all the logic to be executed
on-chain). Such technologies could be applied here and are
incorporated herein by reference.

Aug. 13,2020

[0341] The following is one possible way in which a
settlement can occur in this configuration: (1) A user
requests settlement of their contract; (2) The contract fires a
message to Oraclize requesting a settlement result; (3)
Oraclize pulls the data, computes the result, and sends it with
proofs to the oracle; (4) The oracle waits for management
entity and Bitgo to validate the results and the proof; (5) The
management entity and Bitgo both sign the result and the
proof; (6) The oracle takes the result and sends it to the
contract; and (7) Contract makes the settlement based on the
validation oracle data. There are other implementations and
ways to address this as well and the above provides an
example settlement approach.

[0342] There are other configurations that can be included
and applied as part of this disclosure and application. These
options include: (1) Smartcontract.com, (2) Feedbase, (3)
PriceGeth, (4) Microtick, etc. Smartcontract.com acts like
Oraclize by executing calls to public APIs and then pushing
the data to an application oracle. In the present configura-
tion, they could be another “contributor” and also a back-up
in the case that Oraclize fails. They are also working with
Brave New Coin, which is a data aggregator of crypto-asset
exchange prices and that is the entity that will be pushing
data to the oracle. Feedbase is a simple tool that allows
people to push data to the blockchain from geth in a
standardized way. This could be employed in the user
validation process. PriceGeth is a smart contract and python
file/server that is fetching poloneix data from the public API
and then writing it to the ETH blockchain. This technology
is leveraged by the present system based on the above
discussion. Microtick is an implementation of Vitalik’s
Schelling Coin paper using the ‘betting’ method as opposed
to the consensus or sampling method. It is a browser
implementation. The details of each of these concepts that
can be gained through access to their website is incorporated
herein by reference. A number of oracle options can be used
for increasing the security of any oracle.

[0343] Next, the disclosure addresses the attack surface
for the oracle configuration and scenarios. In the recom-
mended configuration, there are two signers/validators and
one contributor. This disclosure does not consider Oraclize
to be a “signer” because they are only contributing the
source data and calculation results to the oracle but they will
not have any signing power for authorizing the data to be
used in the settlement of contracts. Rather, it is the job of
management entity and Bitgo to validate Oraclize data and
then sign for its authenticity for the transactions to go
through. While Bitgo is the example, the scenarios could
apply to any entity performing a similar function. The
following provides a “name” of a particular scenario, a
“state” of that scenario and a “result”.

[0344] Name 1: Business as Usual.

[0345] State 1: Oraclize is not hacked, management entity
is not hacked, Bitgo is not hacked.

[0346] Result 1: All data matches, management entity and
Bitgo sign transaction, data used for settlement.

[0347] Name 2: Paused by management entity.

[0348] State 2: Oraclize is not hacked, management entity
is hacked, Bitgo is not hacked.

[0349] Result 2: Management entity data does not match.
Transaction is paused. Management entity invalidates its
primary key with the oracle using the back-up key. Man-
agement entity signs data with back-up key and transaction
goes through.

US 2020/0258159 Al

[0350] Name 3: Paused by Bitgo.

[0351] State 3: Oraclize is not hacked, management entity
is not hacked, Bitgo is hacked.

[0352] Result 3: Bitgo data does not match. Transaction is
paused. Bitgo invalidates its primary key with the oracle
using the back-up key. Bitgo signs data with back-up key
and transaction goes through.

[0353] Name 4: Paused by Signers and oracle Switched
#1.
[0354] State 4: Oraclize is not hacked, management entity

is hacked, Bitgo is hacked.

[0355] Result 4: The management entity and Bitgo data
does not match Oraclize. Transaction is paused. Bitgo and
management entity invalidate their primary keys with the
oracle using the back-up key. Both signs the transaction
using back up keys and data is used for settlement.

[0356] Name 5: Paused by Signers and oracle Switched
#2.
[0357] State 5: Oraclize is hacked, management entity is

not hacked, Bitgo is not hacked.

[0358] Result 5: The management entity and Bitgo data
does not match Oraclize. Transaction is paused. If Oraclize
protocol is cryptographically broken, then the system has to
remove them as a data source from the oracle.

[0359] How would removing them from the data source be
accomplished? This disclosure introduces a function called
“oracle override”. This function can be called by two of the
three parties. The keys for the oracle override function are
separate from the primary and backup signing keys for data
validation, and so the override keys will always be held in
cold storage until this event occurs (hopefully never). To
repair the oracle in this situation, management entity and
Bitgo call the oracle override function and appoint manage-
ment entity as the new oracle data source. Both management
entity and Bitgo sign the new data and the transaction goes
through.

[0360] Name 6: Paused by Bitgo and oracle Switched.
[0361] State 6: Oraclize is hacked, management entity is
hacked, Bitgo is not hacked.

[0362] Result 6: The management entity and Oraclize data
does not match Bitgo data. The management entity invali-
dates primary oracle keys with back up keys. If Oraclize
protocol is broken, the management entity and Bitgo retrieve
Override Keys from cold storage and authorize the oracle to
switch to CoinCap.io data. The management entity and
Bitgo sign correct data and transaction goes through.

[0363] Name 7: Paused by management entity and oracle
Switched.
[0364] State 7: Oraclize is hacked, management entity is

not hacked, Bitgo is hacked.

[0365] Result 7: Bitgo and Oraclize data does not match
management entity. Bitgo invalidates primary oracle keys
with back up keys. If Oraclize protocol is broken, manage-
ment entity and Bitgo retrieve Override Keys from cold
storage and authorize the oracle to switch to CoinCap.io
data. The management entity and Bitgo sign correct data and
transaction goes through.

[0366] Name 8: Hell Fire and Brimstone, Again.

[0367] State 8: Oraclize is hacked, management entity is
hacked, Bitgo is hacked.

[0368] Result 8: Attacker has broken the protocol and can
do whatever she wants. The novelty here is to make the total
expected value of a hack less than the effort and combined
expertise required to execute the hack; i.e. the Total Notional

Aug. 13,2020

Value of Outstanding Contracts is 1M USD, not 214M USD,
like the DAO. However, this level oracle security could
handle up to 25M USD easily. Bitgo is already securing
more than that with its Bitcoin solutions.

[0369] Since there are three parties to the oracle: manage-
ment entity, Bitgo, and Oraclize, and two possible states per
party (hacked or not hacked), then the total attack surface is
2%2%2=8 scenarios. Thus, all the scenarios are covered.
[0370] Next, the application addresses manual override,
speed bumps, and training wheels. In the last discussion of
the oracle, the ability to “pause” the contract by either of the
two signing parties was introduced should it appear that
something is amiss. The oracle override function was also
introduced, a function which acts as an escape hatch should
the Oraclize service get hacked. Lastly, an off-chain multi-
validator model was introduced in which three different
parties made calls to the public APIs of the source data and
then derived the results by running an instance of the
CoinCap.io calculation methodology.

[0371] The following extends these same concepts
directly to each and every contract itself. As mentioned
above, this disclosure must also develop a plan to deal with
Solidity Language Risk both known and unknown. In the
case of unknown bugs, the best that can be done is: (1) Add
the ability to pause a contract for a certain amount of time.
This equates to freezing the contracts state and select
functions for all parties; (2) Add a manual override function
which allows a contract to be settled based on manual inputs
from a group of trusted validators; and (3) Open-source the
contract validation and monitoring tools which management
entity has developed for their own internal purposes. In this
way, anyone can use them to validate that contracts are
behaving as planned.

[0372] Expanding on the third point, one could implement
this entire application via off-chain logic and several vali-
dators. That is, one could remove almost all the logic
currently coded in the Solidity files and instead use an
escrow contract that sends funds to each party based on the
collective agreement of the settlement amounts by the seller,
the buyer, and any number of third-party Arbitrators/Vali-
dators.

[0373] Instead, the present disclosure proposes to use a
Training Wheels configuration where much of the logic
stays on-chain but a certain set of validators/signers will be
able to manually override/settle, pause, or cancel a contract
if it’s not behaving as expected. These validators/signers
could be the same as in the oracle (Bitgo), or another set of
publicly identified arbitrators (Roger Ver, for example).
[0374] This configuration can be thought of as a type of
“Training Wheels” configuration for the application because
more code is left on-chain but have trusted parties who can
jump to the rescue the contract if things do not work. As
mentioned previously, the goal with one embodiment of this
disclosure is for it to have significantly “less trust” than the
current alternatives in the marketplace, all of which are
highly-centralized blockchain asset exchanges. With all of
the risk placed on the oracle, and with an open and trans-
parent oracle process that involves three separate parties
rather than one (like current exchanges) big improvements
to the fully centralized model that currently dominates the
marketplace have been presented.

[0375] An example embodiment of the concepts disclosed
herein includes a computer-readable storage device. The
computer-readable storage device is a man-made physical

US 2020/0258159 Al

device such as RAM, ROM, a hard drive, optical drive, or
any other device that can store instructions which, when
executed by a processor, can cause the processor to perform
operations including any one or more of the steps or pro-
cesses disclosed herein. The computer-readable storage
device excludes signals per se and the like.

[0376] The present examples are to be considered as
illustrative and not restrictive, and the examples is not to be
limited to the details given herein, but may be modified
within the scope of the appended claims. It is further noted
that any feature of any example or any embodiment may be
mixed with any other feature disclosed herein. Any method
embodiment which includes a series of steps may also
include, as one aspect, only one or two of the listed steps.
The order of the listed steps may also be modified and
performed in any order unless explicitly required.

[0377] Claim language reciting “at least one of” a set
indicates that one member of the set or multiple members of
the set satisfy the claim. For example, claim language
reciting “at least one of A and B” means A, B, or A and B.
Use of the terms “at least one of” to describe a list of items
separated by the term “and” should not be interpreted to
mean that the list requires one of each item in the list, but
rather that the list includes at least one item in the list, which
can be any item or number of items in the list, such as the
full set of items in the list, a subset of items in the list, or a
single item in the list.

[0378]

[0379] Statement 1: A method comprising: receiving, from
with a user interface associated with a user, one or more
parameters associated with a creation of a customized smart
contract for a multi-asset portfolio; authenticating one or
more parameters via a public key or a private key associated
with the user; and deploying the customized smart contract
onto a blockchain.

[0380] Statement 2: The method according to Statement 1,
further comprising: generating the customized smart con-
tract to implement the one or more parameters, wherein the
customized smart contract is written in a language having a
syntax designed to compile code for the Ethereum Virtual
Machine (EVM).

[0381] Statement 3: The method according to Statement 1
or Statement 2, further comprising: implementing the cus-
tomized smart contract on the EVM.

[0382] Statement 4: The method according to any one of
Statements 1 to 3, wherein the blockchain is a public
blockchain, and wherein deploying the customized smart
contract comprises deploying the customized smart contract
on the public blockchain.

[0383] Statement 5: The method according to any one of
Statements 1 to 4, wherein the customized smart contract
runs without a custodial risk.

[0384] Statement 6: The method according to any one of
Statements 1 to 5, wherein the customized smart contract is
between a first party and a second party and wherein no third
party holds custody of any assets associated with the cus-
tomized smart contract.

[0385] Statement 7: The method according to any one of
Statements 1 to 6, wherein the one or more parameters are
associated with one or more of auctions, wallets, real estate
transactions, stock trades, altcoin trades, crowdfunding, con-
tracts, legal services, and currencies.

Statements of the Disclosure Include:

Aug. 13,2020

[0386] Statement 8: The method according to any one of
Statements 1 to 7, wherein the customized smart contract is
coded, stored and replicated in a distributed platform.
[0387] Statement 9: A system comprising one or more
processors and at least one computer-readable storage
device having stored therein instructions which, when
executed by the one or more processors, cause the one or
more processors to perform a method according to any one
of Statements 1 to 8.

[0388] Statement 10: At least one computer-readable stor-
age device having stored therein instructions which, when
executed by the one or more processors, cause the one or
more processors to perform a method according to any one
of Statements 1 to 8.

[0389] Statement 11: A system comprising means for
performing a method according to any one of Statements.

1. A method of publishing a leaderboard of blockchain
portfolio swap smart contracts, the method comprising:

generating a list of blockchain portfolio swap smart

contracts, each representing a portfolio of blockchain
assets swapped for exposure against a funding block-
chain asset between a buyer and a seller, the blockchain
portfolio swap smart contracts binding the buyer and
the seller to share a payout in the funding blockchain
asset based on a value of the portfolio of blockchain
assets upon closing of the portfolio swap smart con-
tract;

analyzing the list of blockchain portfolio swap smart

contracts to yield at least one performance metric and
to yield status information regarding each blockchain
portfolio swap smart contract;

sorting the list of blockchain portfolio swap smart con-

tracts based on the at least one performance metric;
receiving a request from a potential buyer for the list of
blockchain portfolio swap smart contracts; and
publishing the list of blockchain portfolio swap smart
contracts to the potential buyer, each blockchain port-
folio swap smart contract displaying the status infor-
mation and performance metric associated therewith.

2. The method of publishing a leaderboard of blockchain
portfolio swap smart contracts of claim 1, further compris-
ing:

receiving, from the potential buyer, a request to clone a

leader blockchain portfolio swap smart contract in the
list to yield a follower blockchain portfolio swap smart
contract; and

deploying the follower blockchain portfolio swap smart

contract to a blockchain of the funding blockchain
asset, the follower blockchain portfolio swap smart
contract being programmed to periodically rebalance to
a blockchain portfolio asset allocation based on a
current blockchain portfolio asset allocation of the
leader blockchain portfolio swap smart contract.

3. The method of publishing a leaderboard of blockchain
portfolio swap smart contracts of claim 1, further compris-
ing:

publishing the list of portfolio swap smart contracts to

potential sellers including an amount of the funding
blockchain asset sufficient to fund each blockchain
portfolio swap smart contract and a blockchain address
of each follower blockchain portfolio swap smart con-
tract;

receiving an indication of agreement to fund one of the

portfolio swap smart contracts; and

US 2020/0258159 Al

revising the list published to potential buyers to indicate
that at least one seller is willing to fund the one of the
portfolio swap smart contracts.

4. The method of publishing a leaderboard of blockchain
portfolio swap smart contracts of claim 1, wherein the list of
blockchain portfolio swap smart contract published to the
potential buyer includes an indication of whether any seller
has agreed to fund a follower blockchain portfolio swap
smart contracts purchased as clones of a blockchain portfo-
lio swap smart contracts on the list.

5. The method of publishing a leaderboard of blockchain
portfolio swap smart contracts of claim 1, wherein the
operation that generates the list of blockchain portfolio swap
smart contracts includes scanning a blockchain of the fund-
ing asset and not receiving elements of the list from any
third-party.

6. The method of publishing a leaderboard of blockchain
portfolio swap smart contracts of claim 5, wherein the
request from the potential buyer to clone the leader block-
chain portfolio swap smart contract includes a request for
the follower blockchain portfolio swap smart contract to
periodically rebalance to a blockchain asset portfolio that is
only a portion of a rebalance to the blockchain asset port-
folio of the leader blockchain portfolio swap smart contract.

7. The method of publishing a leaderboard of blockchain
portfolio swap smart contracts of claim 1, wherein the
portfolio of blockchain assets includes assets pegged to the
value of one or more of auctions, wallets, real estate trans-
actions, stock trades, altcoin trades, crowdfunding, con-
tracts, legal services, and currencies.

8. The method of publishing a leaderboard of blockchain
portfolio swap smart contracts of claim 1, wherein the
operation that publishes the list of blockchain portfolio swap
smart contracts is a publication to a social media feed.

9. A method of cloning a leader blockchain portfolio swap
smart contract to yield a follower blockchain portfolio swap
smart contract comprising:

requesting, from a blockchain portfolio swap smart con-

tract marketplace, a leaderboard list of blockchain
portfolio swap smart contracts, the blockchain portfolio
swap smart contracts in the list each representing a
portfolio of blockchain assets to swap for exposure
against a funding blockchain asset between a buyer and
a seller, the blockchain portfolio swap smart contracts
binding the buyer and the seller to share a payout in the
funding blockchain asset based on a value of the
portfolio of blockchain assets upon closing of the
portfolio swap smart contract;

receiving, from the blockchain portfolio swap smart con-

tract marketplace, the list of blockchain portfolio swap
smart contracts sorted according to a performance
metric;

requesting creation of a new follower blockchain portfolio

swap smart contract cloning a blockchain portfolio
swap smart contract in the leaderboard list such that the
new follower blockchain portfolio swap smart contract
is programmed to periodically rebalance to a block-
chain portfolio asset allocation based on a current
blockchain portfolio asset allocation of the leader
blockchain portfolio swap smart contract;

receiving a blockchain portfolio swap smart contract

address of the new follower blockchain portfolio swap
smart contract;

Aug. 13,2020

broadcasting a buyer funding transaction to the smart
contract address of the new follower blockchain port-
folio swap smart contract on the blockchain of the
funding asset; and

receiving confirmation that a seller has deposited a seller

funding transaction to the smart contract address of the
new follower blockchain portfolio swap smart contract
in an amount equal to the buyer funding transaction,
thus providing opposite exposure to the buyer and the
seller with respect to the portfolio of blockchain assets.

10. The method of claim 9, further comprising:

receiving, from the blockchain portfolio swap smart con-

tract marketplace, in response to the operation request-
ing creation of the new follower blockchain portfolio
swap smart contract, one or more options for the
periodic rebalance of the portfolio of blockchain assets
of the follower blockchain portfolio swap smart con-
tract that differ from a straight mirroring of the portfolio
of blockchain assets of the leader blockchain portfolio
swap smart contract.

11. The method of claim 10, wherein the options for the
periodic rebalance of the portfolio of blockchain assets of
the follower blockchain portfolio swap smart contract
include a time delay between rebalancing of the leader
blockchain portfolio swap smart contract until the follower
blockchain portfolio swap smart contract rebalances during
which the buyer or the seller of the follower blockchain
portfolio swap smart contract can cancel rebalancing by
sending a transaction to the address of the follower block-
chain portfolio swap smart contract on a blockchain of the
funding asset.

12. The method of claim 10, wherein the options for the
periodic rebalance of the portfolio of blockchain assets of
the follower blockchain portfolio swap smart contract
include approval of the buyer of the follower blockchain
portfolio swap smart contract via transaction sent to the
address of the follower blockchain portfolio swap smart
contract before rebalancing can occur.

13. The method of claim 10, wherein the operation that
received one or more options for the periodic rebalance of
the portfolio of blockchain assets of the follower blockchain
portfolio swap smart contract includes receiving market
research on the portfolio of blockchain assets.

14. The method of claim 13, wherein the new follower
portfolio of blockchain assets is programmed to periodically
rebalance to only a blockchain portfolio asset allocation that
is only a portion of the blockchain portfolio asset allocation
of the leader blockchain portfolio swap smart contract.

15. The method of claim 9, further comprising:

requesting creation of cold wallet follower blockchain

portfolio swap smart contract cloning the new follower
blockchain portfolio swap smart contract with a block-
chain asset portfolio value significantly greater than the
new follower blockchain portfolio swap smart contract.

16. The method of claim 9, wherein leader blockchain
portfolio swap smart contract and the new follower block-
chain portfolio swap smart contract are both controlled by
the buyer, the leader blockchain portfolio swap smart con-
tract being a hot wallet contract and the follower blockchain
portfolio swap smart contract being a cold wallet contract
with a blockchain asset portfolio significantly larger than the
hot wallet contract such that rebalancing of the cold wallet
contract can be done with the signing key to the hot wallet
contract without exposing the hot wallet key to theft.

US 2020/0258159 Al

17. A method comprising:

requesting, from a blockchain portfolio swap smart con-
tract marketplace, a list of blockchain portfolio swap
smart contracts for which a potential buyer has indi-
cated a desire to buy, each representing a portfolio of
blockchain assets swapped for exposure against a fund-
ing blockchain asset between a buyer and a seller, the
blockchain portfolio swap smart contracts binding the
buyer and the seller to share a payout in the funding
blockchain asset based on a value of the portfolio of
blockchain assets upon closing of the portfolio swap
smart contract,

receiving, from the blockchain portfolio swap smart con-
tract marketplace, the list of blockchain portfolio swap
smart contracts for which a potential buyer has indi-
cated a desire to buy, sorted according to a metric;

transmitting, to the blockchain portfolio swap smart con-
tract marketplace, a desire to sell one of the list of
blockchain portfolio swap smart contracts;

receiving, from the blockchain portfolio swap smart con-
tract market, a smart contract address of the one of the
list of blockchain portfolio swap smart contracts; and

Aug. 13,2020

broadcasting, to a network of blockchain of a funding
asset of the one of the list of blockchain portfolio swap
smart contracts, a blockchain transaction transferring
an amount of the funding blockchain asset sufficient to
fund the one of the list of blockchain portfolio swap
smart contracts.

18. The method of claim 17, wherein the operation that
transmits the desire to sell one of the list of blockchain
portfolio swap smart contracts includes a contingency on the
rebalancing parameters of the one of the list of blockchain
portfolio swap smart contracts.

19. The method of claim 18, wherein the one of the list of
blockchain portfolio swap smart contracts includes only a
portfolio of blockchain assets pegged to an published index
of assets, the portfolio of blockchain assets being rebalanced
according to changes to the index of assets periodically.

20. The method of claim 17, wherein the operation that
transmits the desire to sell the one of the list of blockchain
portfolio swap smart contracts includes a requirement that
the one of the blockchain portfolio swap smart contract be
rebalanced automatically.

#* #* #* #* #*

