US 20200257647A1

a2y Patent Application Publication o) Pub. No.: US 2020/0257647 A1

a9y United States

Ringe et al.

43) Pub. Date: Aug. 13, 2020

(54) SYSTEM, METHOD AND APPARATUS FOR
ENABLING PARTIAL DATA TRANSFERS
WITH INDICATORS

(71) Applicant: Arm Limited, Cambridge (GB)

(72) Inventors: Tushar P. Ringe, Austin, TX (US);
Jamshed Jalal, Austin, TX (US);
Anitha Kona, Austin, TX (US); Mark
David Werkheiser, Austin, TX (US)

(73) Assignee: Arm Limited, Cambridge (GB)

(21) Appl. No.: 16/271,015

Publication Classification

(51) Int. CL
GOGF 13/42 (2006.01)
GOGF 13/20 (2006.01)
(52) US.CL

CPC .. GOGF 13/4282 (2013.01); GOGF 2213/0002
(2013.01); GOG6F 13/20 (2013.01)

(57) ABSTRACT

A system, apparatus and method for an interface based
system that may be composed of a diverse set of blocks with
different data bus sizes. These different data bus sizes can be
optimized by permitting partial data transfers on the differ-

AXI Master

102

(22) Filed: Feb. 8, 2019 ent sized buses.
100~ 112 14

1. GHz Clock

2. GHz Clock

US 2020/0257647 Al

901"

MBS IXY
m siayng Buibiep
£ bZh—
S _ 90PHG IXY-OHIXY ¢ PO ZHD
% mmm. m ng1eq ¢4 1 bay C¥0[0 ZHD ')
= i A "
= poL-"1 \ ;;;;;;;;;;;;;;;]
g Ok avgNL
s 9L 811
E i 4N\ Y |
= ! w
3 | ng je ~-0ul !
H 201" mgtea f by | 04 M
> OISEN XY ! \ \ “
= Y AR AU
= *_
2 Ot 0o

S 7ol
% 5T O
3 av9°LSY T L 80d ereQy i
2 7 aroLsvI Ivov ereay (1
Gy g / 1

() 972~ Z€ LSV L8 ElRa — 057~ o
< ' aze LSV IV ERG T [i
s N e E&iw H
3 h ¢ ‘08 eleq I
: || _ere~ 8ee 08 v i
5 | o~ seeoveeaT W i
n, e PCTAN\\ +
s | e (G2E=37180Y '} X0=NTTelv) gpesy i
2 :;f///“f/ s
£ [(gze=3z15uv '1X0=NaT4Y) ¥Peoy [Ne ez [
3 9c7- Y {8Y9=3Zi5uV 0X0=NITdv) gpesy [H
= - 202
D__u.... //M//ll/ii
s \ ‘ H
£ (879=3ZISHV ‘0X0=NTTdv) vreey_[L
B 902 102 26z T
«
g SABIS |XY obpug [Xy-0kIXY BISENIXY % _ g7
g

US 2020/0257647 Al

Aug. 13,2020 Sheet 3 of 5

Patent Application Publication

A E

ejeq pifeau| eleq pifeA

{OIAD) MunuD Jemo

1S

(LIAD) sunyg Jeddn
N

A
gL

A
SORAY ale

£9

{OIAD) Ny Jemo
N

(1IAD) yunyg Jeddn

3

N
A%

SORAY N
0L

£9

{0IAD) yunyD Jemo

(11AD) yunyg Jaddn

N
908

N
p0g

(10,2 =[0:LIAD
\
7}

€

«— 00,2 =[0:LIAD

\

80¢

e LG 7 =[00LIAD

N

20¢
X008

S 7Ol
£ Ay R
S () 01=AD 'GvOLSYRIIY BleQY [
@ N i
- . RS N Nm.mw MM
‘ N) M h\\, i oo |
() Py HCELSVIILY gmm%%s%/ 1=AD ‘Gr9' LSy L E0g BIEaY [T
e . o / nesces -
s N 9rp~ 8C€ LSYT'1E Eied TN i
ﬁ R ; — E = ‘ ¢ i.,mm e
E | s\mﬁf\lmmm 08 ereq | W0=A0 v OV EIEQd 0
N . m .s\.\.u.\ﬁlut.\hllv:w.v/ -
5 || orr~ szeovTeRa //
Q X N 1ayng ebisyy 1o} 8
.] 8ey N\ wswainbey oN i
o 11 TH2e=3ZISHY "|X0=NITy) gpeay | il
Ann.. ///// il
ko N -
E (82e=3ZIS8Y 'L X0=N 1Y) ¥Pesy sy il
5 98-/ N (@r9=3ZISHY ‘0X0=NI V) gpeey H
2 [-20v
D__u.._. A/l////ii
. |
£ (8y9=3Z/Sdv ‘0X0=NI V) vresy_[1]
2 907 107 € T
«
m BABIS IXY abpug 1Xy-0-IXY 1815El IXY X 00b
[~

Patent Application Publication

Aug. 13,2020 Sheet 5 of 5

US 2020/0257647 Al

500~
~502 . ~504 506 508 ~510
New Fields %glag?‘zgel Eyr?x?es ¢ | Width | Meaning
ChunkValidEnable| AR AX] 1 AX! Master Telling AXI Slave
512~ 14 Whether it Can Accept Partial _+ 520
SN 516+ Ma%%?gf Data Transfers g g
; AXI Slave Telling AX] Master
522 p‘a/[N 1.0] R AXi Slave | N N W, il
924~ 526~ 528 Vﬁgah Chunk(s) are Valic on the 530
FiG. 5
600~y
~602 ‘ cf'ﬁ@@: 806 ~608 610
New Fields %’fg%zef gi?eg ¢ | Width | Meaning
ChunkValidEnable} AR AX] ‘i AXI Master Telling AXI Slave
612~ 14 : Whether it Can Accept Partial 620
SN 616 Ma%%g/ Data Transfers i
AXi Master Telling AXI Slave
621 ~MDTEnable AR AX] 1 Al VES ‘
X 2 I Wheter it Can AcCept Multiple L
623\ 020N Magé%;?/ Data Beats with Different RID's 629
A AX! Slave Telling AX| Master
622~ CVIN-1.0] R A Slave | N , | :
N 624~ 626~] 628~ iéﬁ{jhéeh Chunk(s) are Valid on ihg 630
A0 ve |N'M Various RiU's Being Transterred |
642ROINTD 844~ R 646~ Al Slave MERID |Overthe Bus. RID Value inthe 4 0
- 648~ Width) |Field is Valid Based on CVIN-1:0]
A0 N Various RRESP's Being
652 |RRESPIN-1:0] | R AXi Stave |NM RRESP: 660
. 656 {M=RRESP |Transferred Overthe Bus. 4
094~ BN 658~[lligh) |RRESPValue Inthe Fieldis Valid
Based on CV[N-1.0]
A N'M Various RUSER's Being
662~ [RUSERIN-L0] R AX! Slave | N _ §eing 670
¥ 666 (M=RUSER| Transferred Overthe Bus.
OO4N PN 668~Jiigh) |RUSERValue in the Fed s Vi
Based on CV[N-1:0]
A Various RLAST's Being
672 JRLASTN-10] IR A Slave | N |] BS 680
- 676 Transferred Over the Bus.
OTaN PN 678y RLAST Value in the Field is Valid
Based on CV[N-1:{]

FIG.

6

US 2020/0257647 Al

SYSTEM, METHOD AND APPARATUS FOR
ENABLING PARTIAL DATA TRANSFERS
WITH INDICATORS

BACKGROUND

[0001] Some protocols do not provide for transferring
partial data from one data bus to a second data bus, which
has increased capacity. This deficiency may result in systems
with mismatched data bus sizes, which require additional
merge-buffers at all points of interconnect as well as where
data bus size mismatches are encountered. These additional
merge-buffers result in undesired increases in area and/or
increases in power requirements for the system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The accompanying drawings provide visual repre-
sentations, which will be used to more fully describe various
representative embodiments and can be used by those skilled
in the art to better understand the representative embodi-
ments disclosed and their inherent advantages. In these
drawings, like reference numerals identify corresponding
elements.

[0003] FIG. 1 illustrates an interface system.

[0004] FIG. 2 illustrates a merge-buffer embodiment.
[0005] FIG. 3 illustrates an embodiment described herein.
[0006] FIG. 4 illustrates yet another embodiment

described herein.

[0007] FIG. 5 illustrates a table according to a represen-
tative embodiment.

[0008] FIG. 6 illustrates another table according to another
representative embodiment.

DETAILED DESCRIPTION

[0009] While this disclosure is susceptible of embodiment
in many different forms, there is shown in the drawings and
will herein be described in detail specific embodiments, with
the understanding that the present disclosure is to be con-
sidered as an example of the principles described and not
intended to limit the disclosure to the specific embodiments
shown and described. In the description below, like refer-
ence numerals are used to describe the same, similar or
corresponding parts in the several views of the drawings.
[0010] In this document, relational terms such as first and
second, top and bottom, and the like may be used solely to
distinguish one entity or action from another entity or action
without necessarily requiring or implying any actual such
relationship or order between such entities or actions. The
terms “comprise”, “comprises,” “comprising,” or any other
variation thereof, are intended to cover a non-exclusive
inclusion, such that a process, method, article, or apparatus
that comprises a list of elements does not include only those
elements but may include other elements not expressly listed
or inherent to such process, method, article, or apparatus. An
element proceeded by “comprises . . . a” does not, without
more constraints, preclude the existence of additional iden-
tical elements in the process, method, article, or apparatus
that comprises the element.

[0011] Reference throughout this document to “one
embodiment”, “certain embodiments”, “an embodiment” or
similar terms mean that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of the present
disclosure. Thus, the appearances of such phrases or in

2 <

Aug. 13,2020

various places throughout this specification are not neces-
sarily all referring to the same embodiment. Furthermore,
the particular features, structures, or characteristics may be
combined in any suitable manner in one or more embodi-
ments without limitation.

[0012] The term “or” as used herein is to be interpreted as
an inclusive or meaning any one or any combination.
Therefore, “A, B or C” means “any of the following: A; B;
C; Aand B; A and C; B and C; A, B and C”. An exception
to this definition will occur only when a combination of
elements, functions, steps or acts are in some way inherently
mutually exclusive.

[0013] For simplicity and clarity of illustration, reference
numerals may be repeated among the figures to indicate
corresponding or analogous elements. Numerous details are
set forth to provide an understanding of the embodiments
described herein. The embodiments may be practiced with-
out these details. In other instances, well-known methods,
procedures, and components have not been described in
detail to avoid obscuring the embodiments described. The
description is not to be considered as limited to the scope of
the embodiments described herein.

[0014] The following terms may be used in this descrip-
tion of various embodiments of the present disclosure.
[0015] Auxiliary: additional, supplemental.

[0016] AXI: Advanced e(X)tensible Interface (AXI). AXI
is an interface developed by ARM®.

[0017] AXID: Advanced e(X)tensible Interface (AXI)
Identification. AXI is an interface developed by ARM® for
the ARM®AMBA microcontroller bus and is currently used
by many companies such as Xilinx® incorporated.

[0018] Beat: an individual data transfer within an AXI
burst.
[0019] Block Offset: specifies the desired data within the

stored block data within the cache row. Sometimes referred
to merely as “offset”.

[0020] Buffer: a temporary storage area, usually in RAM.
The purpose of most buffers is to act as a holding area,
enabling the CPU to manipulate data before transferring it to
a device.

[0021] Bus: a communication mechanism that transfers
data between components inside a computer, or modules of
a computer, or between computers. As used herein the term
“bus” covers all related hardware components (wire, optical
fiber, etc.) and software, including communication proto-
cols.

[0022] Cache: cache memory, also called CPU memory, is
random access memory (RAM) that a computer micropro-
cessor can access more quickly than it can access regular
RAM. This memory is typically integrated directly with the
CPU chip or placed on a separate chip that has a separate bus
interconnect with the CPU.

[0023] Cache Block: basic unit for cache storage. May
contain multiple bytes/words of data. A cache line is the
same as cache block. Note that this is not the same as a
“row” of cache.

[0024] CPU: central processing unit; the electronic cir-
cuitry within a computer that carries out the instructions of
a computer program by performing the basic arithmetic,
logical, control and input/output (I/O) operations specified
by the instructions.

[0025] Execution: the basic operational process of a com-
puter. It is the process by which a computer retrieves a
program instruction from its memory, determines what

US 2020/0257647 Al

actions the instruction dictates, and carries out those actions.
This cycle is repeated continuously by the central processing
unit (CPU), from boot-up to when the computer is shut
down.

[0026] Flowchart: a type of diagram that represents an
algorithm, workflow or process. The flowchart shows the
steps as boxes of various kinds, and their order.

[0027] Generate: to produce, create or derive from one or
more steps or actions.

[0028] Index: describes which cache set that data has been
put in.
[0029] Interface: either a hardware connection or a user

interface. An interface can also be used as a verb, describing
how two devices connect to each other. A hardware interface
is used to connect two or more electronic devices together.
[0030] Micro-architectural: computer organization, the
way a given instruction set architecture (ISA), is imple-
mented in a processor.

[0031] Interface Bridge: joins two or more interfaces to a
layer. The layers are joined by the interface bridge as though
the layers were joined to the same switch.

[0032] 1/O: input/output, the transfer of data between a
processor and a peripheral device in a data processing
system. [/O devices may include keyboards, displays, point-
ing devices, etc. that can be coupled either directly or
through intervening /O controllers.

[0033] Merge: to combine data portions.

[0034] Merge Buffer: a type of buffer that stores data that
will be merged, or has been merged.

[0035] Module: a component or part of a program or
device that can contain hardware or software, or a combi-
nation of hardware and software. In a module that includes
software, the software may contain one or more routines, or
subroutines. One or more modules can make up a program
and/or device.

[0036] Offset: the block offset is sometimes simply
referred to as the “offset” or the “displacement”.

[0037] Operation: a single step performed by a computer
in the execution of a program.

[0038] Ordering tag: kind of metadata that helps describe
an item and allows it to be found again by browsing or
searching.

[0039] Peripheral: a computer device, such as a keyboard
or printer, which is not part of the essential computer (i.e.,
the memory and microprocessor). These auxiliary devices
are typically intended to be connected to the computer.
[0040] Protocol bridge: a device that connects two net-
works, such as local-area networks (LANSs), or two segments
of the same L AN that use the same protocol, such as
Ethernet or Token-Ring.

[0041] Register: a temporary storage area.

[0042] Source Code: any collection of code, possibly with
comments, written using human readable programming lan-
guage, usually as plain text. The source code of a program
is specially designed to facilitate the work of computer
programmers, who specify the actions to be performed by a
computer mostly by writing source code. The source code is
often transformed by an assembler or compiler, into binary
machine code understood by the computer. The machine
code might then be stored for later execution. Alternatively,
source code may be interpreted and thus immediately
executed.

Aug. 13,2020

[0043] Tag: a unique identifier for a group of data.
Because different regions of memory may be mapped into a
block, the tag is used to differentiate between them.

[0044] In an interface protocol, as an AXI protocol, there
is usually no provision for transferring partial data from a
first bus to a second bus, which is a wider data bus, also
described as a bus with increased capacity. This results in
interface based systems, such as AXI based systems, with
mismatched data bus sizes, which means that the system
uses additional merge-buffers at all points on the intercon-
nect where such data bus size mismatches are encountered.
This results in undesired additional area/power overhead for
the system. Embodiments described herein enable partial
data transfers on a wider data bus thereby optimizing
area/power metrics for the system.

[0045] A sufficiently complex AXI based system may be
composed of a diverse set of blocks with different data bus
sizes. These different data bus sizes create a need for
merge-buffers at every point where data bus width mismatch
is encountered. A merge-buffer is required when data is
moving from a narrow data bus to a wider data bus and
typically, data is not guaranteed to arrive back-to-back on
the narrow data bus since the AXI protocol does not support
partial datatransfers on a wider data bus.

[0046] FIG. 1 shows a system 100 that includes a first
interface, shown as AXI master 102, an interface-to-inter-
face bridge, shown as AXI-to-AXI bridge, 104 and a second
interface, shown as AXI slave 106.

[0047] The first interface, shown as AXI master, 102 has
memory module 110. The memory module 110 includes one
or more registers 112 and one or more data buffers 114. The
register(s) 112 is used as a temporary storage area, or
memory area, built into memory module 110. The register(s)
112 may be used to fetch instructions and hold each instruc-
tion as it is executed. The register(s) 112 may be used to pass
data from a memory to a processor.

[0048] The data buffer 114 is used to buffer data at AXI
master 102. The data in data buffer 114 is received via bus
116.

[0049] The interface-to-interface bridge, shown as AXI-
t0o-AXI bridge, 104 includes memory, or storage module
120. Storage module 120 includes one or more registers 122
and one or more merging buffers 124.

[0050] Second interface, shown as AXI slave, 106
includes storage, or memory module 126.

[0051] The second interface, AXI slave, 106 has a 2 GHz
clock and first interface, AXI master, 102 has a 1 GHz clock.
The distinction between the two clocks is indicated by
dashed line 103. Register 112 is in communication with
register 122 via bus 118. Register 122 is in communication
with memory module 126 via 128.

[0052] First interface, AXI Master, 102 has a 64B data bus
116 and second interface, AXI slave, 106 has a 32B data bus
130. The AXI-to-AXI bridge 104 manages data bus width
mismatch and has a tracker to process transactions. As
shown in FIG. 1, the bus width and clock speeds are
proportional. Thus, AXI master 102 has a 64B data bus 116
and a 1 GHz clock, while AX1 slave 106 has a 32B data bus
130 and a 2 GHz clock.

[0053] FIG. 1 shows that the AXI-to-AXI bridge 104
utilizes full read buffering to merge two 32B beats (130) into
one 64B beat (116) since two 32B beats are not guaranteed

US 2020/0257647 Al

to arrive back-to-back. This may result in significant over-
head in terms of area if AXI master 102 has many outstand-
ing Read transactions.
[0054] FIG. 2 shows system 200 that includes first inter-
face, AXI master 202, interface-to-interface bridge 240,
AXI-to-AXI bridge, 204 and second interface, AXI slave
206. Read A (ARLEN=0x0, ARSIZE=64B) 232, and ReadB
(ARLEN=0x0, ARSIZE=64B) 234 are shown. AXI-to-AXI
bridge 204 sends Read A (ARLEN=0x1, ARSIZE=32B) 236
and ReadB (ARLEN=0x1, ARSIZE=32B) 238.
[0055] Data_A0,32B, 240; Data_B0,32B, 242; Data_Al,
RLAST, 32B, 244; Data_B1,RLAST,32B, 246; RData_
AOA1,RLAST,64B, 250; and RData_BOB1,RLAST,64B,
252 are shown. A merge-buffer covers a window from when
first data arrives 240 until the last data is delivered 252.
[0056] FIG. 2 shows that there are two pending read
requests on narrow data bus side, for example a 32B data
bus. It may happen that first chunk (half) for two reads arrive
before second chunk may arrive. AXI-to-AXI bridge 204
needs to save the first chunk of read since the wider data bus
side (64B) can only accept data when both the chunks are
available. This necessitates the use of the merge-buffer.
[0057] For example: If AXI Master 232 supports 256
outstanding read request each worth one cache line size, the
size of the merge buffer required in this case is 64Bx
256=128K flops, which is a significant overhead in terms of
PPA.
[0058] Embodiments described herein comprise an AXI
Slave 206 tagging each read data beat with chunk valid
identifier called a “CV”.
[0059] There are parameters for the CV (chunk valid)
generation:
[0060] Each bit of the CV indicates the portion of the data
bus which carries valid data.
[0061] The portion-size of the wider data bus, which is
denoted by each bit of CV, is same as narrowest data bus size
in the system.
[0062] The width of the CV on a particular bus is deter-
mined by a ratio of the narrowest data bus size to its own bus
size in the system.
[0063] a. For example: In systems with 64B and 32B
data bus widths, CV will be 2-bit value for 64B bus.
[0064] b. For example: In systems with 64B, 32B, and
16B data bus widths, CV will be 4-bit value for 64B bus
while CV will be 2-bit value for 32B bus.
[0065] Value of 0 is not permitted on CV.
[0066] Staggered values on CV is allowed.
[0067] For example: In systems with 64B and 16B data
bus widths, a CV value of 0101 is allowed.
[0068] It is shown that RLAST semantics do not change
with the particular embodiment, which means RLAST
always arrives on the last data beat even though last data
beat may not contain valid data on the entire bus. This
ensures that all existing IP’s which are watching RLAST to
detect protocol completion windows still comport with the
process.
[0069] As shown in FIG. 3, system 300 has 64B and 32B
bus widths, CV on 64B bus is 2-bit wide and each bit
indicate the half which is valid.
[0070] Specifically, as shown in FIG. 3, CV[1:0]=2'b11,
302 has valid lower chunk (CV[0]) 306 and valid upper
chunk (CV[1]) 304. Secondly, CV[1:0]=2b01, 308 has valid
lower chunk (CV[0]) 312 and invalid upper chunk (CV[1])

Aug. 13,2020

310. Thirdly, CV[1:0]=2'b10, 314 has invalid lower chunk
(CV[0]) 318 and valid upper chunk (CV[1]) 316.

[0071] In case shown in FIG. 3, legal values of CV [1:0]
(302, 308, 314)=

[0072] {2'p11,2510,2'b01}

[0073] FIG. 4 shows a chunk valid example 400 according
to an embodiment described herein. FIG. 4 shows system
400 that includes first interface, AXI master 402, interface-
to-interface bridge, AXI-to-AXI bridge, 404 and second
interface, AXI slave, 406. ReadA (ARLEN=0xO,
ARSIZE=64B) 432, and ReadB (ARLEN=0x0,
ARSIZE=64B) 434 are sent from AXI master 402. AXI-to-
AXI bridge 404 sends ReadA (ARLEN=0x1, ARSIZE=32B)
436 and ReadB (ARLEN=0x1, ARSIZE=32B) 438.

[0074] Data_A0,32B, 440; Data_B0,32B, 442; Data_Bl1,
RLAST, 32B, 446; Data_A1,RLLAST,32B, 444; are sent
from AXI slave 406. Bits RData_A0,64B, CV=01, 450,
RData_BOB1,RLAST,64B, CV=11, 452; and RData_Al,
RLAST,64B, CV=10,454 are shown.

[0075] FIG. 4 is different than FIG. 2 because the data bits
440, 442, 444 and 446 are in a different sequence, that is AO
(440) and A1 (444) are not in direct sequence; but rather, BO
(442) and B1 (446) are between A0 (440) and Al (444).
Additionally, there is no merge buffer, as shown in FIG. 2.
Also, the bits 450, 452 and 454 have an associated CV
identifier. The data 440, 442, 444 and 446 are in a random
order.

[0076] As shown in FIG. 4, AXI-to-AXI bridge 404 is
sending partial data RDATA_AO (440) on wider data bus
using chunk valid indication of CV=01 (450). When Data_
B0 (442) and Data_B1 (446) from narrow side arrives back
to back, it can be collapsed into single wider data bus
response and sent as RData_BOB1 with CV=11 (452).
Finally, when the second beat of ReadA (444) arrives, it is
sent with CV=10 and with RLAST indication (454).
[0077] AXI master 402 needs to understand the meaning
of the associated CV value so that AXI master 402 can
accept correct portion of the data.

[0078] Embodiments also include one or more flags from
AXI master 402, which can tell AXI slave 406 whether AXI
master 402 can tolerate partial data transfers. The flag may
be identified, or called, “ChunkValidEnable”. Legacy AXI
masters may choose to drive ChunkValidEnable=0.

[0079] If AXI slave 406 is not capable of driving different
chunk valid values, it is an embodiment that the flag may be
set as all I’s.

[0080] If AXI master 402 sets ChunkValidEnable=0, AXI
slave 406 sets CV=all I’s.

[0081] FIG. 5 shows a representation 500 that includes
“new fields” 502, “channel” 504, “drive” 506, “width” 508
and “meaning” 510. In the field 502 is “chunk valid enable”
512 and CV[N-1:0] 522. Channel 504 includes AR 514 and
R 524. Drive 506 includes AXI master 516 and AXI slave
526. Width 508 includes “1” 518 and “N” 528. Meaning 510
includes a description of what the driver is instructing 520,
530, respectively.

[0082] If the AXI systems do not have flexibility to add
new fields, ARUSER/RUSER fields can be used to populate
new fields.

[0083] The embodiment shown in FIG. 5 can be aug-
mented by driving two or more (up-to N, where “N” is any
suitable number) distinct 32B data beats on a single 64B
read data bus, which is shown in FIG. 6.

US 2020/0257647 Al

[0084] The embodiment of FIG. 6 shows that AXI slave
flag has a special message “multi-data transfer enabled”. In
this mode, every distinct chunk being transferred is associ-
ated with its own set of R channel fields such as:

[0085] RID[N-1:0] (642),

[0086] RRESP[N-1:0] (652);

[0087] RUSER[N-1:0] (662); and

[0088] RLAST[N-1:0] (672).

[0089] AXI Master can control if it is capable of accepting

multiple narrow data beats with distinct RID’s on a wider
data bus using a field “MDTEnable” (Multi-Data-Transfer
Enable) (622). Note that there may be “N” unique RID’s and
RLAST’s which can arrive on a single RDATA bus and
Master should be capable of uniquely identifying it and
handling it.

[0090] This will enable Chunk merging buffers to be
eliminated while meeting high bandwidth needs without
wasting any data bus efficiency.

[0091] FIG. 6 shows a representation 600 that includes
“new fields” 602, “channel” 604, “drive” 606, “width” 608
and “meaning” 610.

[0092] In the field 602 is “chunk valid enable” 612;
MDTEnable 621; CV[N-1:0] 622; RID[N-1:0] 642; RRE-
SP[N-1:0] 652; RUSER[N-1:0] 662; and RLAST[N-1:0]
672;

[0093] Channel 604 includes AR 614; AR 623; R 624; R
644; R 654; R 664; and R 674.

[0094] Drive 606 includes AXI master 616; AXI master
625; AXI slave 626; AXI slave 646; AXI slave 656; AXI
slave 666; and AXI slave 676. Thus, there are intermediate
AXI interface slaves that may choose to send partial data on
a wider bus.

[0095] Width 608 includes “1” 618; “1” 627; “N” 628;
“‘N*M (M=RID width)” 648; “N*M (M=RRESP width”
658; “N*M (M=RUSER width” 668; and “N” 678.

[0096] Meaning 610 includes a description of instructions,
as shown by 620, 629, 630, 650, 660, 670 and 680, respec-
tively.

[0097] If AXI master sets MDTEnable=0, AXI slave sets
the same values on RID 642, RRESP 652, RUSER 662,
RLAST 672 for all narrow beats within a wider beat.
[0098] If the AXI systems do not have flexibility to add
new fields, ARUSER/RUSER fields can be used to populate
new fields.

[0099] By removing the need for merging all data beats
from a narrow bus side, the need for merge buffers at all
intermediate points on the interconnect is eliminated and
hence the system becomes optimized from area/power per-
spective.

[0100] Intermediate agents/AXI Slave can choose to send
partial data on wider data bus if system wants to optimize
latency for critical portion of data. This improves the per-
formance of overall system.

[0101] Interconnects with no merge buffers need to fully
serialize requests so that all narrow beats can come back to
back which can be merged to form a wider data beat. With
the embodiments shown in the present disclosure, such
interconnects with no merge buffer does not need to serialize
requests and all requests can be sent in parallel thereby
improving the performance of the system.

[0102] One or more of the embodiments may be per-
formed on a computing device. A computing device may be
understood to be any device having a processor, memory
unit, input, and output. This may include, but is not intended

Aug. 13,2020

to be limited to, cellular phones, smart phones, tablet com-
puters, laptop computers, desktop computers, personal digi-
tal assistants, graphical processing units, field program-
mable gate arrays, etc. Components of the computer may
include, but are not limited to, a processing unit, a system
memory, and a system bus that couples various system
components including the system memory to the processing
unit.

[0103] Computer storage media includes volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information such
as computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, FLLASH memory
or other memory technology, CD-ROM, digital versatile
disks (DVD) or other optical disk storage, magnetic cas-
settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be
used to store the desired information and which can be
accessed by a computer.

[0104] Communication media typically embodies com-
puter readable instructions, data structures, program mod-
ules or other data in a modulated data signal such as a carrier
wave or other transport mechanism and includes any infor-
mation delivery media. The term “modulated data signal”
means a signal that has one or more of its characteristics set
or changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, radio frequency, infrared and other wireless media.
Combinations of any of the above should also be included
within the scope of computer readable media.

[0105] The system memory includes computer storage
media in the form of volatile and/or nonvolatile memory
such as read only memory (ROM) and random-access
memory (RAM). A basic input/output system (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer, such as during start-up,
is typically stored in ROM.

[0106] Any combination of one or more computer-usable
or computer-readable medium(s) may be utilized. The com-
puter-usable or computer-readable medium may be, for
example but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appa-
ratus, device, or propagation medium. More specific
examples (a non-exhaustive list) of the computer-readable
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CDROM), an
optical storage device, a transmission media such as those
supporting the Internet or an intranet, or a magnetic storage
device.

[0107] The computer-usable or computer-readable
medium could even be paper or another suitable medium
upon which the program is printed, as the program can be
electronically captured, via, for instance, optical scanning of
the paper or other medium, then compiled, interpreted, or
otherwise processed in a suitable manner, if desired, and
then stored in a computer memory. In the context of this
document, a computer-usable or computer-readable medium

US 2020/0257647 Al

may be any medium that can contain, store, communicate,
propagate, or transport the program for use by or in con-
nection with the instruction execution system, apparatus, or
device. The computer-usable medium may include a propa-
gated data signal with the computer-usable program code
embodied therewith, either in baseband or as part of a carrier
wave. The computer-usable program code may be transmit-
ted using any appropriate medium, including but not limited
to wireless, wire line, optical fiber cable, RF, etc.

[0108] Computer program code for carrying out opera-
tions may be written in any combination of one or more
programming languages, including an object-oriented pro-
gramming language such as Java, Smalltalk, C++, C # or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a
stand-alone software package, partly on the user’s computer
and partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the user’s computer through any
type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

[0109] The present embodiments are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus, systems and computer program prod-
ucts according to embodiments. It will be understood that
each block of the flowchart illustrations and/or block dia-
grams, and combinations of blocks in the flowchart illustra-
tions and/or block diagrams, can be implemented by com-
puter program instructions.

[0110] These computer program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer, or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer
program instructions may also be stored in a computer-
readable medium that can direct a computer or other pro-
grammable data processing apparatus, to function in a
particular manner, such that the instructions stored in the
computer-readable medium produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram
block or blocks.

[0111] The computer program instructions may also be
loaded onto a computer or other programmable data pro-
cessing apparatus to cause a series of operational steps to be
performed on the computer, or other programmable appa-
ratus to produce a computer-implemented process such that
the instructions which execute on the computer or other
programmable apparatus, provide processes for implement-
ing the functions/acts specified in the flowchart and/or block
diagram block or blocks.

[0112] Unless stated otherwise, terms such as “first” and
“second” are used to arbitrarily distinguish between the
elements such terms describe. Thus, these terms are not
necessarily intended to indicate temporal or other prioriti-
zation of such elements.

Aug. 13,2020

[0113] As will be appreciated by one skilled in the art, the
disclosure may be embodied as a system, method or com-
puter program product. Accordingly, embodiments may take
the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident soft-
ware, micro-code, etc.) or an embodiment combining soft-
ware and hardware aspects that may all generally be referred
to herein as a “circuit,” “module” or “system.” Furthermore,
the embodiments may take the form of a computer program
product embodied in any tangible medium of expression
having computer-usable program code embodied in the
medium.

[0114] The apparatus, system and methodologies pre-
sented herein provide an advancement in the state of the art.
[0115] The various representative embodiments, which
have been described in detail herein, have been presented by
way of example and not by way of limitation. It will be
understood by those skilled in the art that various changes
may be made in the form and details of the described
embodiments resulting in equivalent embodiments that
remain within the scope of the appended claims.

[0116] It can be seen that the system and methodologies
presented herein provide an advancement in the state of the
art.

[0117] Accordingly, some of the disclosed embodiments
are set out in the following items.

[0118] 1. A method comprising: generating one or more
identifiers, each identifier having a plurality of bits and a
width component; and tagging one or more data beats with
an associated identifier selected from the one or more
identifiers; where each bit of the identifier indicates a portion
of a data bus which carries valid data; where the width of the
identifier on a particular data bus is determined by a ratio of
a narrowest data bus size to a bus size of the identifier; and
enabling partial data transfers of the data beats based on the
identifier.

[0119] 2. The method in item 1, where a portion parameter
of a second data bus is the same as the narrowest data bus
size.

[0120] 3. The method in item 1, where the identifier has a
staggered value.

[0121] 4. The method in item 1, further comprising: des-
ignating a completion code associated with the identifier that
signifies a last data beat.

[0122] 5. The method in item 1, further comprising: uti-
lizing a flag to determine whether partial data transfers are
permissible.

[0123] 6. The method in item 1, further comprising: driv-
ing a plurality of data beats on a single read data bus, where
the single read data bus is wider than the data beats.

[0124] 7. The method in item 6, where the single read data
bus is 64B.
[0125] 8. The method in item 1, further comprising: inter-

leaving one or more unrelated data beats on a single read
data bus in a non-sequential order.

[0126] 9. The method in item 1, where portions of the
identifier represent valid data and/or invalid data.

[0127] 10. An apparatus comprising: a first bus having a
first width; a second bus having a second width, the second
width being greater than the first width; and an interface
configured to send partial data on the second bus using an
identifier that indicates the partial data is valid, where the
identifier has a plurality of bits and a width component,
where each bit of the identifier indicates a portion of the first

US 2020/0257647 Al

data bus that carries valid data, and where the width of the
identifier on the first data bus is determined by a ratio of a
narrowest data bus size to the width of the first data bus.
[0128] 11. The apparatus in item 10, further comprising:
an interface slave associated with the first data bus; and an
interface master associated with the second data bus.
[0129] 12. The apparatus in item 11, where the interface
master indicates to the interface slave whether the interface
master can accept partial data transfers.

[0130] 13. The apparatus in item 11, further comprising:
one or more intermediate interface slaves configured to send
partial data.

[0131] 14. The apparatus in item 11, where the interface
slave drives a plurality of data beats on the second data bus.
[0132] 15. The apparatus in item 10, further comprising:
an interleaving buffer configured to store interleaved single
data beats.

[0133] 16. The apparatus in item 10, where the identifier
has a staggered value.

[0134] 17. The apparatus in item 10, where a portion
parameter of the second data bus is the same as the narrow-
est data bus size.

[0135] The various representative embodiments, which
have been described in detail herein, have been presented by
way of example and not by way of limitation. It will be
understood by those skilled in the art that various changes
may be made in the form and details of the described
embodiments resulting in equivalent embodiments that
remain within the scope of the appended claims.

1. A method comprising:

generating one or more identifiers, each of the one or

more identifiers having a plurality of bits and a width
component; and

tagging one or more data beats with an associated iden-

tifier selected from the one or more identifiers;

where each bit of the associated identifier indicates a

portion of a data bus which carries valid data;
where the width of the associated identifier on a particular
data bus is determined by a ratio of a narrowest data bus
size to a bus size of the associated identifier; and

enabling partial data transfers of the data beats based on
the associated identifier.

2. The method as claimed in claim 1, where a portion
parameter of a second data bus is the same as the narrowest
data bus size.

3. The method as claimed in claim 1, where the identifier
has a staggered value.

4. The method as claimed in claim 1, further comprising:

designating a completion code associated with the iden-

tifier that signifies a last data beat.

Aug. 13,2020

5. The method as claimed in claim 1, further comprising:
utilizing a flag to determine whether partial data transfers are
permissible.

6. The method as claimed in claim 1, further comprising:
driving a plurality of data beats on a single read data bus,
where the single read data bus is wider than the data beats.

7. The method as claimed in claim 6, where the single read
data bus is 64B.

8. The method as claimed in claim 1, further comprising:
interleaving one or more unrelated data beats on a single
read data bus in a non-sequential order.

9. The method as claimed in claim 1, where portions of
the identifier represent valid data and/or invalid data.

10. An apparatus comprising:

a first bus having a first width;

a second bus having a second width, the second width

being greater than the first width; and

an interface configured to send partial data on the second

bus using an identifier that indicates the partial data is
valid,

where the identifier has a plurality of bits and a width

component,

where each bit of the identifier indicates a portion of the

first data bus that carries valid data, and

where the width of the identifier on the first data bus is

determined by a ratio of a narrowest data bus size to the
width of the first data bus.

11. The apparatus as claimed in claim 10, further com-
prising:

an interface slave associated with the first data bus; and

an interface master associated with the second data bus.

12. The apparatus as claimed in claim 11, where the
interface master indicates to the interface slave whether the
interface master can accept partial data transfers.

13. The apparatus as claimed in claim 11, further com-
prising:

one or more intermediate interface slaves configured to

send partial data.

14. The apparatus as claimed in claim 11, where the
interface slave drives a plurality of data beats on the second
data bus.

15. The apparatus as claimed in claim 10, further com-
prising:

an interleaving buffer configured to store interleaved

single data beats.

16. The apparatus as claimed in claim 10, where the
identifier has a staggered value.

17. The apparatus as claimed in claim 10, where a portion
parameter of the second data bus is the same as the narrow-
est data bus size.

