US 20200257613A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0257613 A1

YOSHIDA et al.

43) Pub. Date: Aug. 13, 2020

(54)

(71)

(72)

(73)

@

(22)

(1)

Big Code
Database

Source Code

AUTOMATED SOFTWARE PROGRAM
REPAIR

Applicant: FUJITSU LIMITED, Kawasaki-shi
(P

Inventors: Hireaki YOSHIDA, Cupertino, CA
(US); Mukul R. PRASAD, San Jose,
CA (US)

Assignee: FUJITSU LIMITED, Kawasaki-shi
(IP)

Appl. No.: 16/270,518

Filed: Feb. 7, 2019

Publication Classification

Int. CL.
GO6F 11/36 (2006.01)
GO6F 8/41 (2006.01)

v
:> Anays%\ﬁoduie E;r}

104

inferred Events

(52) US.CL
CPC ... GOGF 11/3624 (2013.01); GOGF 8/427
(2013.01); GOGF 11/3608 (2013.01); GO6F
11/3664 (2013.01)

(57) ABSTRACT

According to an aspect of an embodiment, operations may
include generating a first abstract syntax tree with respect to
a first iteration of first source code of a first software
program and generating a second abstract syntax tree with
respect to a second iteration of the first source code. The
operations may also include identifying a first sub-tree of the
first abstract syntax tree and identifying a plurality of second
sub-trees of the second abstract syntax tree. In addition the
operations may include generating a first textual represen-
tation of the first sub-tree and generating a plurality of
second textual representations with respect to the second
sub-trees. Moreover, the operations may include modifying
the second abstract syntax tree based on the second sub-trees
and obtaining a third iteration of the first source code by
regenerating the first source code based on the modified
second abstract syntax tree.

[100

Commit Message

p Module

110




US 2020/0257613 Al

Aug. 13,2020 Sheet 1 of 14

Patent Application Publication

gLl
$8DBSSBI IO

%T\

SINPON
abessspy uwon

=

SIUBAT paLBjul

901
BNPO SisAleUy

(=

8p0n 89IN0S

apo) fig

ir

0L
aseqeIe(]




Patent Application Publication  Aug. 13,2020 Sheet 2 of 14 US 2020/0257613 A1

/— 200

Modified
Source Code
206

“y

Trimming Module
202
FIG. 2

=

7

Source Code
204




US 2020/0257613 Al

Aug. 13,2020 Sheet 3 of 14

Patent Application Publication

80¢
1891 Japun
SP0D PRUIPOW

a0¢ \

Zie
slejdwa | yedey |

(s)aung 1s8],

&

90¢

SNPo Jeday

aseqele(] ualed |
| 8poD uowwo) |

SIUSAT paLajy)
apog big

G

159 Japun spon




Patent Application Publication  Aug. 13,2020 Sheet 4 of 14 US 2020/0257613 A1

FiG. 4

Computing System
402

Processor
450
Memory
452
Data Storage
454




US 2020/0257613 Al

Aug. 13,2020 Sheet 5 of 14

Patent Application Publication

& Old

3p07) 82IN0S PUOIBS
PUIPOW IndInQ

526

SJUBAT] LORDBLIOT) PaLBlUl up
paseg syne4 O siedey wioued

226~

wiefoid SIEMOS PUsIss vV 40
apo7) 8IN0S PUOIBS U SHIne Ajnusp

025~ on
=Ty ¢ebueyy 1epio
815~
B0UBIBIU] JUBAT uonRIBIy wioneld
915~

00s \\

S84

ON

debueyn Jomen
pi6- ﬁ

30URJ2JU] JUBAT LOIDBLI0N 198J8(

215~ y

SOLBIBIU] JUSAT LONONPOAU 198j8(]

015

SOUBISIU] JUSAT UDIDRLIOT JNE 4

806~ ,

BOUBISIU JUBAZT UORONPOAU JNE 4

906" ,

sbueyn 1sepi0 108198

b5~ V

webold s1emyos 184 v
10 2P07) 82IN0S 18K UGG

205~




Patent Application Publication  Aug. 13,2020 Sheet 6 of 14 US 2020/0257613 A1

/, 600

Perform First Execution Of Test Suite

! (,504
Perform Second Execution Of Test Suite

. 608

No Any Failing Tests Of

Second Execution?
! Yes 608

Select A Particular Failing
Test "T" Of Second Execution
‘ 610
< "T" Passed First Execution? >L
|Yes 612
infer Fault Infroduction Event
' {fﬁ’;’z?
No Any Failing Tests
Ot First Execution?

! Yes - 616

Select A Failing Test

"T" Of First Execution
‘ 618

< "T" Passed Second Execution? >NQ——«»

Yes - 520

Infer Fault Correction Event

FiG. 6




Patent Application Publication  Aug. 13,2020 Sheet 7 of 14 US 2020/0257613 A1

/, 700

Perform First Static Analysis

. {/704

Perform Second Static Analysis

“—%emnd Analysis ldentify Any Qefeats‘>

Y
Lres 708

Select A Particular Defect "D1°

. :/7?0
< First Analysis identify "D1"? Yes

No

infer Defect Infroduction Event

(714
No " First Analysis Identify Any Defects? >

Y

Select A Particular Defect "D2"

| 718
< Second Analysis Identify "D2"? Yes

No

!/'729

Infer Defect Correction Event

FiG. 7




Patent Application Publication  Aug. 13,2020 Sheet 8 of 14 US 2020/0257613 A1

}f“SGG

802

Generate ASTs From First
And Second Hterations

fr'gﬁli

Partition ASTs Into Forests
Of Statement Sublrees

806

Generate Textual
Representations Of Forests

808

Determine Textual Differences 816

Partition Subtrees
810 With Biggest Height

Find Smallest Sized Set Of Primary |
Differing Textual Representations

{/’812

Remove Sublrees Of Second AST

//3?’4

Any Subfrees Of Smallest ™\ Yes
SetWith Height > 17

No

818

Generate A Third Implementation
From The Modified AST

{/82’6

Perform Repair Operations Based
On The Third Implementation

FIG. 8



US 2020/0257613 Al

Aug. 13,2020 Sheet 9 of 14

Patent Application Publication

us|

Jaswaw,

1B5WBLW

g wiesboid man

:

Bngap

i

i

%mﬁ
10

{

{us) ‘Yo Ispliesws

‘(Jeswiaw, )bngep

=} US| 99 0=i Yo 29 15P)

wmm\u

y,( 906

us| Ud Isp

S

JoswisLy

x/(m@m
T

tq wesbosd puibug

‘(Ua] ‘Yo “1sphesusiu

ﬁ%mx




Patent Application Publication

AN

Aug. 13,2020 Sheet 10 of 14

[{oY ~ e
g 7/ N
& s AS
\\’\ / \
7/ o A
/ L
/
i
i
| [<}]
‘ &
| &=
: @ £
= [
§
\
§
\\ i
\ Bl
o ’
N " p
m - - Mo,
> <
R 7 AN
‘ E78 B
J 2 el
- ! L E i N
- m Q} !
- 3\ ] E F; ~
# = e
/
, N N - 7 <
/
. o
j 2 B
|
i of o
[
! = o3 o <
A\
A i o
\ s 5
N
LN N <
o -
g ™ 5
N
. N
p \
\\
/ o
; @£
¢
{
ook
{ [<}]
)
b E
@ £
e 5
i
%
%
\ . /
Kf ) 2 /
<y N\ -
e 7
3

US 2020/0257613 Al

FiG. 9B



US 2020/0257613 Al

Aug. 13,2020 Sheet 11 of 14

Patent Application Publication

J6 Ol

{
{(us] o Ispieswail ~
{{Jeswsi, }Bngep ~~rz6

10 =1 U8} 99 =] U §9 1SP) I~{~226

| Em\ B #

N 0z6
7/ - . «
s Lo ltue | olfw] -
V4 \
7/
)
L ] =] =
-7 - ~ / S
~ N , m\ ~ N i
us| Yo p |, Lieswa, 29 18P
] ! | /m
. ”
M ~_
Joswst v Bngep | 9%
P 4
- - = \

{us] ‘Yo ‘Ispliesiaw

A

m&k

Pswew




US 2020/0257613 Al

Aug. 13,2020 Sheet 12 of 14

Patent Application Publication

a6 'Sid
re6~ 916~
f@mm ‘U0 “18pliestustu f@mm ‘Yo 18plieswisLl
~(Jesweu, )Bngap 50
/(0= UB1 9% =1 10 93 15D) § B

026 226

{
[(ug] Yo “ispliestuBl ~ |
[ Jeswaw, )Bngsp ~-z6
(0 =1 U8 99 0=] YO 99 1P} H~{>-226

{us] ‘Yo ‘ISpheswsw ~
,//ma




Patent Application Publication

memset

if

&&

&&

dst

Aug. 13,2020 Sheet 13 of 14

e
/

/ o
@

ook

[¢}]

o9

=
[<h] i
E 3
\ o
N (52
\ -

S

US 2020/0257613 Al

FiG. SE



Patent Application Publication  Aug. 13, 2020 Sheet 14 of 14  US 2020/0257613 A1l

memset

FIG. 9F

len

ch

memset

910
dst



US 2020/0257613 Al

AUTOMATED SOFTWARE PROGRAM
REPAIR

FIELD

[0001] The embodiments discussed in the present disclo-
sure are related to automated software program repair.

BACKGROUND

[0002] Software programs often have errors in them (com-
monly referred to as “bugs”) in which they may not operate
as intended. Often automated repair systems are used in
attempt to identify and correct errors in software programs.
[0003] The subject matter claimed in the present disclo-
sure is not limited to embodiments that solve any disadvan-
tages or that operate only in environments such as those
described above. Rather, this background is only provided to
illustrate one example technology area where some embodi-
ments described in the present disclosure may be practiced.

SUMMARY

[0004] According to an aspect of an embodiment, opera-
tions may include generating a first abstract syntax tree with
respect to a first iteration of first source code of a first
software program, the first iteration excluding a particular
change in a particular portion of the first source code. The
operations may further include generating a second abstract
syntax tree with respect to a second iteration of the first
source code, the second iteration including the particular
change in the particular portion, the particular change
including a plurality of modifications made with respect to
the particular portion of the first source code. The operations
may also include identifying a first sub-tree of the first
abstract syntax tree that corresponds to the particular portion
with respect to the first iteration of the first source code and
identifying a plurality of second sub-trees of the second
abstract syntax tree that correspond to the particular portion
with respect to the second iteration of the first source code.
In addition the operations may include generating a first
textual representation of the first sub-tree and generating a
plurality of second textual representations in which a respec-
tive second textual representation is generated for each of
the second sub-trees. Moreover, the operations may include
performing a difference determination between the first
textual representation and each of the second textual repre-
sentations and identifying, from the second textual repre-
sentations based on the difference determination, one or
more differing textual representations that differ from the
first textual representation, each differing textual represen-
tation corresponding to one or more respective modifications
of the particular change. The operations may also include
determining a smallest-sized set of the differing textual
representations that corresponds to a same particular event
as the particular change, the particular event occurring with
respect to the first source code from the first iteration to the
second iteration. Additionally, the operations may include
identifying, as secondary textual representations, the differ-
ing textual representations that are outside of the smallest
sized set, the secondary textual representations correspond-
ing to secondary modifications of the plurality of modifica-
tions. The operations may also include identifying, as sec-
ondary trees, the second sub-trees that correspond to the
secondary textual representations, modifying the second
abstract syntax tree by removing the secondary trees from

Aug. 13,2020

the second abstract syntax tree, and obtaining a third itera-
tion of the first source code by regenerating the first source
code based on the modified second abstract syntax tree.
Moreover, the operations may include performing repair
operations with respect to one or more of the first source
code and second source code of a second software program
based on the third iteration of the first source code.

[0005] The objects and advantages of the embodiments
will be realized and achieved at least by the elements,
features, and combinations particularly pointed out in the
claims.

[0006] Both the foregoing general description and the
following detailed description are given as examples and are
explanatory and are not restrictive of the invention, as
claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Example embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which:

[0008] FIG. 1 is a diagram representing an example envi-
ronment related to inferring events that occur with respect to
a software program;

[0009] FIG. 2 is a diagram representing an example envi-
ronment related to removing secondary modifications from
a software program;

[0010] FIG. 3 is a diagram representing an example envi-
ronment related to repairing a software program;

[0011] FIG. 4 illustrates a block diagram of an example
computing system;

[0012] FIG. 5 is a flowchart of an example method of
inferring events that occur with respect to a software pro-
gram;

[0013] FIG. 6 is a flowchart of an example method of
performing fault introduction event and fault correction
event inference operations;

[0014] FIG. 7 is a flowchart of an example method of
performing defect introduction event and defect correction
event inference operations;

[0015] FIG. 8 is a flowchart of an example method of
removing secondary modifications from source code of a
software program;

[0016] FIG. 9A illustrates example Abstract Syntax Trees
(ASTs) that may be used in removing secondary modifica-
tions from source code;

[0017] FIG. 9B illustrates example sub-trees of the ASTs
of FIG. 9A;
[0018] FIG. 9C illustrates example textual representations

of the sub-trees of FIG. 9B,
[0019] FIG. 9D illustrates example differing textual rep-
resentations of the textual representations of FIG. 9C;

[0020] FIG. 9E illustrates ASTs including a modified AST;
and
[0021] FIG. 9F illustrates example sub-trees of the ASTs
of FIG. 9E.

DESCRIPTION OF EMBODIMENTS
[0022] Some embodiments described in the present dis-

closure relate to methods and systems of repairing software
programs. Software programs often include errors (also
commonly referred to as “bugs”) that may cause the soft-
ware programs to behave in an unintended manner. Addi-



US 2020/0257613 Al

tionally, automated repair systems and techniques are often
used to detect and correct errors to repair software programs.
[0023] Additionally, repositories of existing software pro-
grams may be used to identify patterns in the corresponding
code that may be used to identify and/or correct errors in
code that is being developed or tested. In some instances, the
repositories of existing software programs may include
source code of a large number of software programs (e.g.,
thousands, tens of thousands, hundreds of thousands, mil-
lions, etc. of software programs). In addition, the reposito-
ries may include different iterations of the source code of the
respective software programs that are made through one or
more changes made to the source code. In the present
disclosure, existing software programs and the correspond-
ing source code that are stored in such repositories and that
may be used to help develop other software programs may
be referred to as “big code.” In some instances, the changes
made between the different iterations of source code of a
particular software program may be to correct errors and/or
may introduce errors. Additionally or alternatively, the
changes may be due to a platform migration, added behav-
ior, removed behavior, refactoring of the source code, etc.
Understanding events that cause a change in source code or
that are caused by changes in source code may help in the
development of other software by helping identify when and
where changes may be needed and/or problematic.

[0024] In some instances, one or more changes in the
source code may have a corresponding message (referred to
as a “commit message”) generated to provide some insight
as why the corresponding change was made (e.g., to provide
insight regarding an event that caused or was caused by the
corresponding change). However, commit messages that are
included with existing source code are often overly vague
and/or broad to provide meaningful insight. Further, the
events that correspond to a respective change are also
commonly not readily apparent. As such, the events that
correspond to changes in the repositories of existing soft-
ware programs are an untapped resource that may be very
helpful in improving software programs that are in devel-
opment or being tested but that are not readily available.
[0025] According to one or more embodiments of the
present disclosure, the technological field of software devel-
opment may be improved by configuring a computing
system in a manner in which the computing system is able
to infer events that correspond to changes made between
different versions of existing software programs. Addition-
ally, in some embodiments, the computing system may be
configured to generate, based on the inferred events, commit
messages that are more detailed and explanatory than those
typically included in commit libraries associated with soft-
ware programs.

[0026] In these or other embodiments, the computing
system may be configured to use the inferred events and/or
improved commit messages with respect to testing and/or
developing other software programs. For example, the com-
puting system may be configured to compare events that
have occurred with respect to code-under-test of a software
program against events inferred from big code to identify
potential errors that may have been introduced or fixed in the
code under test. Additionally or alternatively, the computing
system may be configured to identify, in the big code, code
patterns associated with the inferred events. In these or other
embodiments, the identified code patterns may be used to
select or implement repairs (e.g., to select or implement

Aug. 13,2020

repairs with similar code patterns) with respect to the code
under test in response to the inferred events associated with
the identified code patterns being the same or similar to
events associated with the code under test. For example,
U.S. patent application Ser. No. 15/822,106 filed on Nov. 24,
2017 and U.S. patent application Ser. No. 15/915,894 filed
on Mar. 8, 2018, which are both incorporated by reference
herein in their entireties, discuss the use of code patterns in
existing source code to implement repairs in other source
code.

[0027] Additionally or alternatively, changes in the source
code may at times include one or more secondary modifi-
cations that do not affect the underlying functionality of the
corresponding software program. The inclusion of the sec-
ondary modifications in existing source code (e.g., big code)
that may be used to help in the development of other source
code may make it difficult to identify which portions of the
existing source code may be helpful or unhelpful in the
development or testing of the other source code.

[0028] According to one or more embodiments of the
present disclosure, operations may be performed to identify
secondary modifications in source code and to remove the
identified secondary modifications. The removal of the sec-
ondary modifications may help facilitate the identification of
code patterns in existing source code that may be useful for
the development and testing of other source code. In these
or other embodiments, the inference of events may be used
to help identify secondary modifications, as detailed below.
In the present disclosure, reference to “secondary” modifi-
cations may refer to modifications that may not change the
underlying functionality of the corresponding source code.
For example, “secondary” modifications be include for
cosmetic modifications (e.g., to improve readability) or
modifications that may be used for debugging purposes.
[0029] Additionally or alternatively, the removal of sec-
ondary modifications may help identify which modifications
may include an error. For example, particular source code
may have a particular change made to it that may introduce
one or more errors in the particular source code. The change
may include multiple modifications that were made to the
particular source code in which one or more of the multiple
modifications may be secondary modifications whose inclu-
sion may not have contributed to the error. The removal of
secondary modifications may thus help identify which modi-
fications of the change contributed to the error. The
improved identification of the error may thus facilitate the
correction of the error and consequently may help improve
the particular source code.

[0030] Embodiments of the present disclosure are
explained with reference to the accompanying drawings.
[0031] FIG. 1 is a diagram representing an example envi-
ronment 100 related to inferring events that occur with
respect to a software program, arranged in accordance with
at least one embodiment described in the present disclosure.
The environment 100 may include an analysis module 106
configured to analyze source code 104 of the software
program to determine one or more inferred events 108 that
occurred with respect to the software program and that are
associated with one or more changes made to the source
code 104. In these or other embodiments, the environment
100 may include a commit message module 110 configured
to obtain the inferred events 108 and to generate correspond-
ing commit messages 112. Each commit message 112 may
include an indication of a respective inferred event 108 that



US 2020/0257613 Al

may be a reason or cause for a respective change or that may
have been the result of the respective change.

[0032] The source code 104 may include electronic data,
such as, for example, the software program, code of the
software program, libraries, applications, scripts, or other
logic or instructions for execution by a processing device. In
some embodiments, the source code 104 may include a
complete instance of the software program. Additionally or
alternatively, the source code 104 may include a portion of
the software program. The source code 104 may be written
in any suitable type of computer language that may be used
for the software program.

[0033] In some embodiments, the source code 104 may
include multiple iterations of the code of the software
program. For example, multiple changes may be made to the
source code 104 as updates, patches, platform migrations,
bug fixes, cosmetic rearrangement, etc. The multiple
changes may thus result in two or more different iterations
of the source code 104. In these or other embodiments, the
source code 104 may include two or more of such iterations
of the code of the software program in which one or more
differences may exist between the different iterations due to
changes made between the iterations. Additionally, refer-
ence to a “change” to source code in the present disclosure
may include any number of modifications that may be made
to one or more lines of code. For example, a change may
range from something as simple as a single element name
change, element addition, or element deletion in a single line
of code to something as complex as introducing or deleting
a large number of lines of code.

[0034] The analysis module 106 may include code and
routines configured to enable a computing device to perform
one or more operations with respect to the source code 104
to obtain the inferred events 108. Additionally or alterna-
tively, the analysis module 106 may be implemented using
hardware including a processor, a microprocessor (e.g., to
perform or control performance of one or more operations),
a field-programmable gate array (FPGA), or an application-
specific integrated circuit (ASIC). In some other instances,
the analysis module 106 may be implemented using a
combination of hardware and software. In the present dis-
closure, operations described as being performed by the
analysis module 106 may include operations that the analy-
sis module 106 may direct a corresponding system to
perform.

[0035] The analysis module 106 may be configured to
obtain the source code 104 including multiple iterations of
the source code 104. In some embodiments, the analysis
module 106 may be configured to obtain the source code 104
from a big code database 102. The big code database 102
may be a repository of existing software programs and their
respective source code. In these or other embodiments, the
big code database 102 may include different iterations of the
corresponding source code. Additionally or alternatively, the
big code database 102 may be made available for analysis,
which may help facilitate the development and debugging of
other software programs.

[0036] The analysis module 106 may be configured to
perform a series of operations with respect to the source
code 104 that may be used to determine event correspon-
dences with respect to the source code 104. In some embodi-
ments, each event correspondence may indicate a correspon-
dence between a respective change made to the source code
104 and a respective event type that occurs with respect to

Aug. 13,2020

the software program. In these or other embodiments, the
analysis module 106 may be configured to output the
inferred events 108.

[0037] As indicated above, the inferred events 108 may
include events that occurred with respect to the software
program and that were caused by or the cause of changes
made to the source code 104 between different iterations of
the source code 104. By way of example, the inferred events
108 may include error correction, error introduction, a
platform migration, added behavior, removed behavior,
refactoring of the source code 104, etc.

[0038] In some embodiments, the analysis module 106
may be configured to perform event type inference opera-
tions with respect to changes made to the source code 104
to determine event types that correspond to respective
changes. In these or other embodiments, the analysis module
106 may be configured to output the inferred events 108 as
indications as to which event types correspond to which
changes. For example, the inferred events 108 may include
a particular change, a location of the particular change in the
source code 104, a particular event that has been determined
as corresponding to the particular change, and an indication
of the correspondence between the particular event and the
particular change. In some embodiments, event type infer-
ence operations that may be performed by the analysis
module 106 to determine the inferred events 108 may
include one or more operations described below with respect
to the methods 500, 600, 700, 800, 900, 1000, and 1100 of
FIGS. 5-11, respectively, discussed in detail below.

[0039] In some embodiments, the environment 100 may
include the commit message module 110. The commit
message module 110 may include code and routines con-
figured to enable a computing device to perform one or more
operations with respect to the inferred events 108 to obtain
the commit messages 112. Additionally or alternatively, the
commit message module 110 may be implemented using
hardware including a processor, a microprocessor (e.g., to
perform or control performance of one or more operations),
a field-programmable gate array (FPGA), or an application-
specific integrated circuit (ASIC). In some other instances,
the commit message module 110 may be implemented using
a combination of hardware and software. In the present
disclosure, operations described as being performed by the
commit message module 110 may include operations that
the commit message module 110 may direct a corresponding
system to perform.

[0040] The commit message module 110 may be config-
ured to generate the commit messages 112 such that the
commit messages 112 provide more insight regarding rea-
sons why particular code changes were made or the effects
of particular code changes. For example, the commit mes-
sage module 110 may be configured to generate the commit
messages 112 using the inferred events 108 such that the
commit messages 112 provide a message that describes a
particular change, a particular event that corresponds to the
change, and the correspondence of the particular event to the
particular change.

[0041] For instance, the particular event may be indicated
in the inferred events 108 as an error correction event of a
particular type of error. Additionally, the particular change
may be indicated in the inferred events 108 by the modifi-
cations that were made to correct the error and the location
in the source code 104 of the modifications. In these or other
embodiments, the commit message module 110 may be



US 2020/0257613 Al

configured to generate a particular commit message that
states that the particular type of error was corrected by the
particular change. In some embodiments, the commit mes-
sage module 110 may be configured to include the particular
commit message in the source code at the location of the
particular change. Additionally or alternatively, the commit
message module 110 may be configured to include the
particular commit message in an event report in which the
particular commit message of the event report may indicate
the location of the particular change.

[0042] Modifications, additions, or omissions may be
made to FIG. 1 without departing from the scope of the
present disclosure. For example, the environment 100 may
include more or fewer elements than those illustrated and
described in the present disclosure. For instance, in some
embodiments, the environment 100 may include the analysis
module 106 but not the commit message module 110 and in
other embodiments the environment 100 may include the
commit message module 110 but not the analysis module
106. In addition, in some embodiments, one or more rou-
tines, one or more instructions, or at least a portion of code
of the analysis module 106 and the commit message module
110 may be combined such that they may be considered the
same element or may have common sections that may be
considered part of the analysis module 106 and the commit
message module 110.

[0043] FIG. 2 is a diagram representing an example envi-
ronment 200 related to removing secondary modifications
from a software program, arranged in accordance with at
least one embodiment described in the present disclosure.
The environment 200 may include a trimming module 202
configured to analyze source code 204 of the software
program to remove one or more secondary modifications
made to the source code 204 to obtain modified source code
206.

[0044] The source code 204 may include electronic data,
such as, for example, the software program, code of the
software program, libraries, applications, scripts, or other
logic or instructions for execution by a processing device. In
some embodiments, the source code 204 may include a
complete instance of the software program. Additionally or
alternatively, the source code 204 may include a portion of
the software program. The source code 204 may be written
in any suitable type of computer language that may be used
for the software program.

[0045] In some embodiments, the source code 204 may
include multiple iterations of the code of the software
program. For example, multiple changes may be made to the
source code 204 as updates, patches, platform migrations,
bug fixes, cosmetic rearrangement, etc. The multiple
changes may thus result in two or more different iterations
of the source code 204. In these or other embodiments, the
source code 204 may include two or more of such iterations
of the code of the software program in which one or more
differences may exist between the different iterations due to
changes made between the iterations.

[0046] Additionally or alternatively, in some embodi-
ments, the source code 204 may include software code that
is under development or being tested. In these or other
embodiments, the source code 204 may include two or more
iterations of the code that is under development or being
tested.

[0047] The trimming module 202 may include code and
routines configured to enable a computing device to perform

Aug. 13,2020

one or more operations with respect to the source code 204
to obtain the modified source code 206. Additionally or
alternatively, the trimming module 202 may be implemented
using hardware including a processor, a microprocessor
(e.g., to perform or control performance of one or more
operations), a field-programmable gate array (FPGA), or an
application-specific integrated circuit (ASIC). In some other
instances, the trimming module 202 may be implemented
using a combination of hardware and software. In the
present disclosure, operations described as being performed
by the trimming module 202 may include operations that the
trimming module 202 may direct a corresponding system to
perform.

[0048] The trimming module 202 may be configured to
obtain the source code 204 including multiple iterations of
the source code 204. In some embodiments, the trimming
module 202 may be configured to obtain the source code 204
from a big code database, such as the big code database 102
of FIG. 1.

[0049] The trimming module 202 may be configured to
perform a series of operations with respect to different
iterations of the source code 204 to determine which modi-
fications made between the iterations are primary modifica-
tions and secondary modifications. As indicated above,
reference to “secondary” modifications may refer to modi-
fications that may not change the underlying functionality of
the source code 204. Conversely, reference to “primary”
modifications may refer to modifications that may change
the underlying functionality of the source code 204.
[0050] In these or other embodiments, the trimming mod-
ule 202 may be configured to remove from the source code
204 those modifications that are determined to be secondary
modifications. The modified source code 206 that may be
output by the trimming module may include the source code
204 with the determined secondary modifications removed.
In some embodiments, the trimming module 202 may be
configured to generate the modified source code 206 using
one or more operations described below with respect to the
methods 500, 600, and 700 of FIGS. 5-7, respectively,
discussed in detail below.

[0051] Modifications, additions, or omissions may be
made to FIG. 2 without departing from the scope of the
present disclosure. For example, the environment 200 may
include more or fewer elements than those illustrated and
described in the present disclosure. For instance, in some
embodiments, the environment 200 may be included with
the environment 100 of FIG. 1. In addition, in some embodi-
ments, one or more routines, one or more instructions, or at
least a portion of code of the trimming module 202 may be
combined with one or more of the analysis module 106 and
the commit message module 110.

[0052] FIG. 3 is a diagram representing an example envi-
ronment 300 related to repairing a software program,
arranged in accordance with at least one embodiment
described in the present disclosure. The environment 300
may include a repair module 306 configured to analyze code
under test 304 for errors. The repair module 306 may also be
configured to output modified code under test 308, which
may include one or more modifications made to the code
under test 304 by repair operations performed by the repair
module 306.

[0053] The code under test 304 may include electronic
data, such as, for example, the software program, source
code of the software program, libraries, applications, scripts,



US 2020/0257613 Al

or other logic or instructions for execution by a processing
device. In some embodiments, the code under test 304 may
include a complete instance of the software program. Addi-
tionally or alternatively, the code under test 304 may include
a portion of the software program. The code under test 304
may be written in any suitable type of computer language
that may be used for the software program. In some embodi-
ments, the code under test 304 may include one or more
iterations of the source code of the software program.
Additionally or alternatively, the code under test 304 may
include the source code 104 or the source code 204 of FIGS.
1 and 2, respectively.

[0054] The repair module 306 may include code and
routines configured to enable a computing device to perform
one or more modifications of the code under test 304 to
generate the modified code under test 308. Additionally or
alternatively, the repair module 306 may be implemented
using hardware including a processor, a microprocessor
(e.g., to perform or control performance of one or more
operations), a field-programmable gate array (FPGA), or an
application-specific integrated circuit (ASIC). In some other
instances, the repair module 306 may be implemented using
a combination of hardware and software. In the present
disclosure, operations described as being performed by the
repair module 306 may include operations that the repair
module 306 may direct a corresponding system to perform.
[0055] The repair module 306 may be configured to per-
form a series of repair operations with respect to the code
under test 304 that may be used to repair (also referred to as
correct) one or more errors in the code under test 304. In
some embodiments, the repair module 306 may be config-
ured to perform one or more of the repair operations based
on a repair template 312 and one or more test suites 311.
[0056] The repair template 312 may include any suitable
type of instructions or routines that, when executed, may be
configured to implement one or more modifications with
respect to the code under test 304 in response to the presence
of errors in the code under test 304. The modifications may
include changes in the code under test 304 that may repair
or attempt to repair the errors. In the present disclosure, the
modifications that may be performed may be referred to as
“repair candidates™ or “repairs.”

[0057] The test suites 311 may include one or more
routines that may act as test cases for the code under test
304. The test suites 311 may be configured to determine
whether the code under test 304 behaves in a specified
manner. The test suites 311 may be configured according to
any suitable technique.

[0058] The repair module 306 may be configured to apply
one or more of the test suites 311 with respect to the code
under test 304 to detect or determine one or more errors and
corresponding error locations in the code under test 304. In
some embodiments, the repair module 306 may be config-
ured to execute one or more tests included in the test suites
311, which may be referred to as performing a test execu-
tion. A test execution that passes may be referred to as a
“passing test execution” and a test execution that fails may
be referred to as a “failing test execution.” In some embodi-
ments, an error location and corresponding error of the code
under test 304 may be identified based on a failing test
execution executing code appearing at the error location.
[0059] In some embodiments, the repair module 306 may
include a trimming module such as the trimming module
202 described with respect to FIG. 2. In these embodiments,

Aug. 13,2020

the repair module 306 may be configured to more accurately
identify error locations using the trimming module. For
example, the repair module 306 may be configured to
identify that a particular error location includes a particular
error that was introduced after a particular change was
implemented. In some embodiments, the repair module 306
may include an analysis module such as the analysis module
106 of FIG. 1 to identify that the particular error was
introduced by the particular change. Additionally or alter-
natively, the repair module 306 may identify that the par-
ticular change caused the particular error using any other
suitable technique such as a bisection technique.

[0060] Using the trimming module, the repair module 306
may be configured to identify which modifications of the
particular change may be secondary modifications. Addi-
tionally or alternatively, using the trimming module, the
repair module 306 may be configured to remove the sec-
ondary modifications to identify primary modifications of
the particular change that resulted in the particular error. In
some embodiments, the repair module 306 may be config-
ured to pinpoint such primary modifications as described in
detail below with respect to method 800 of FIG. 8.

[0061] In some embodiments, the repair module 306 may
be configured to obtain a repair candidate from the repair
template as a potential modification that may be made to
repair a detected error. In some embodiments, the repair
module 306 may obtain a repair code pattern of the repair
candidate. For example, in some embodiments, the repair
module 306 may be configured to obtain the repair code
pattern such as described in U.S. patent application Ser. No.
15/822,106.

[0062] In some embodiments, the repair module 306 may
be configured to access a common code pattern database
314. The common code pattern database 314 may include
common code patterns that may be derived from big code.
For example, the common code patterns may be derived
from existing code of existing software programs that may
be stored in one or more repositories of existing software
programs. In some embodiments, the common code patterns
may be obtained such as described in U.S. patent application
Ser. No. 15/822,106.

[0063] Additionally or alternatively, in some embodi-
ments, the existing source code of the existing software
programs may be obtained by the trimming module 202 of
FIG. 2 to remove secondary modifications that may be
included in the existing source code to generate modified
existing source code. In these or other embodiments, the
common code patterns may be obtained from the modified
existing source code, which may improve the efficiency of
identification of common code patterns.

[0064] In some embodiments, the repair module 306 may
be configured to select or prioritize repair candidates for the
correction of error based on associations between code
patterns of the repair candidates and the common code
patterns such as described in U.S. patent application Ser. No.
15/822,106.

[0065] Additionally or alternatively, in some embodi-
ments, the repair module 306 may be configured to obtain
big code inferred events 316. The big code inferred events
316 may be events inferred with respect to changes made in
big code. In some embodiments, the big code inferred events
may be analogous to the inferred events 108 of FIG. 1. In



US 2020/0257613 Al

these or other embodiments, the repair module may be
configured to prioritize or select repair candidates based on
the big code inferred events.

[0066] For example, the big code inferred events may
include a particular change in that corresponds to an event
of correction of a particular type of error. Additionally, the
error detection may identify a particular error of the code
under test 304 that is of the particular error type. In some
embodiments, the repair module 306 may be configured to
select or prioritize repair candidates that are similar to the
particular change.

[0067] In some embodiments, the repair module 306 may
also be configured to perform repairs on the code under test
304 based on the prioritization of the repair candidates. For
example, the repair module 306 may implement as potential
repairs, the repair candidates in descending order from
highest prioritization to lowest prioritization. Additionally or
alternatively, the repair module 306 may be configured to
output the modified code under test 308, which may include
one or more repairs that may be implemented based on the
prioritization of the repair candidates.

[0068] As indicated above, in some embodiments, the
repair module 306 may include the analysis module to
identify one or more inferred events that may occur with
respect to different iterations of the code under test 304. In
these or other embodiments, the repair module 306 may
include a commit message module such as the commit
message module 110 of FIG. 1. In some embodiments, the
repair module 306 may be configured to generate commit
messages with respect to the code under test 304 using the
commit message module and the inferred events, such as
described above with respect to FIG. 1. In some embodi-
ments, the commit messages that correspond to the code
under test 304 may be used in the development and testing
of the code under test 304 in the generation of the modified
code under test 308.

[0069] Modifications, additions, or omissions may be
made to FIG. 3 without departing from the scope of the
present disclosure. For example, the environment 300 may
include more or fewer elements than those illustrated and
described in the present disclosure. In addition, in some
embodiments, one or more routines, one or more instruc-
tions, or at least a portion of code of the repair module 306,
the test suites 311, and the repair template 312 may be
combined such that they may be considered the same
element or may have common sections that may be consid-
ered part of two or more of the repair module 306, the test
suites 311, and the repair template 312.

[0070] FIG. 4 illustrates a block diagram of an example
computing system 402, according to at least one embodi-
ment of the present disclosure. The computing system 402
may be configured to implement or direct one or more
operations associated with an analysis module (e.g., the
analysis module 106 of FIG. 1), a commit message module
(e.g., the commit message module 110 of FIG. 1), a trim-
ming module (e.g., the trimming module 202 of FIG. 2),
and/or a repair module (e.g., the repair module 306 of FIG.
3). The computing system 402 may include a processor 450,
a memory 452, and a data storage 454. The processor 450,
the memory 452, and the data storage 454 may be commu-
nicatively coupled.

[0071] In general, the processor 450 may include any
suitable special-purpose or general-purpose computer, com-
puting entity, or processing device including various com-

Aug. 13,2020

puter hardware or software modules and may be configured
to execute instructions stored on any applicable computer-
readable storage media. For example, the processor 450 may
include a microprocessor, a microcontroller, a digital signal
processor (DSP), an application-specific integrated circuit
(ASIC), a Field-Programmable Gate Array (FPGA), or any
other digital or analog circuitry configured to interpret
and/or to execute program instructions and/or to process
data. Although illustrated as a single processor in FIG. 4, the
processor 450 may include any number of processors con-
figured to, individually or collectively, perform or direct
performance of any number of operations described in the
present disclosure. Additionally, one or more of the proces-
sors may be present on one or more different electronic
devices, such as different servers.

[0072] In some embodiments, the processor 450 may be
configured to interpret and/or execute program instructions
and/or process data stored in the memory 452, the data
storage 454, or the memory 452 and the data storage 454. In
some embodiments, the processor 450 may fetch program
instructions from the data storage 454 and load the program
instructions in the memory 452. After the program instruc-
tions are loaded into memory 452, the processor 450 may
execute the program instructions.

[0073] Forexample, in some embodiments, one or more of
the above mentioned modules (e.g., the analysis module, the
commit message module, the trimming module, and/or the
repair module) may be included in the data storage 454 as
program instructions. The processor 450 may fetch the
program instructions of a corresponding module from the
data storage 454 and may load the program instructions of
the corresponding module in the memory 452. After the
program instructions of the corresponding module are
loaded into memory 452, the processor 450 may execute the
program instructions such that the computing system may
implement the operations associated with the corresponding
module as directed by the instructions.

[0074] The memory 452 and the data storage 454 may
include computer-readable storage media for carrying or
having computer-executable instructions or data structures
stored thereon. Such computer-readable storage media may
include any available media that may be accessed by a
general-purpose or special-purpose computer, such as the
processor 450. By way of example, and not limitation, such
computer-readable storage media may include tangible or
non-transitory computer-readable storage media including
Random Access Memory (RAM), Read-Only Memory
(ROM), Electrically Erasable Programmable Read-Only
Memory (EEPROM), Compact Disc Read-Only Memory
(CD-ROM) or other optical disk storage, magnetic disk
storage or other magnetic storage devices, flash memory
devices (e.g., solid state memory devices), or any other
storage medium which may be used to carry or store
particular program code in the form of computer-executable
instructions or data structures and which may be accessed by
a general-purpose or special-purpose computer.

[0075] Combinations of the above may also be included
within the scope of computer-readable storage media. Com-
puter-executable instructions may include, for example,
instructions and data configured to cause the processor 450
to perform a certain operation or group of operations.
[0076] Modifications, additions, or omissions may be
made to the computing system 402 without departing from
the scope of the present disclosure. For example, in some



US 2020/0257613 Al

embodiments, the computing system 402 may include any
number of other components that may not be explicitly
illustrated or described.

[0077] FIG. 5 is a flowchart of an example method 500 of
inferring events that occur with respect to a software pro-
gram, according to at least one embodiment described in the
present disclosure. The method 500 may be performed by
any suitable system, apparatus, or device with respect to
code under test. For example, one or more of the analysis
module 106 of FIG. 1, the commit message module 110 of
FIG. 1, and the repair module 306 of FIG. 3 or the com-
puting system 402 of FIG. 4 (e.g., as directed by one or more
modules) may perform one or more of the operations
associated with the method 500. Although illustrated with
discrete blocks, the steps and operations associated with one
or more of the blocks of the method 500 may be divided into
additional blocks, combined into fewer blocks, or elimi-
nated, depending on the particular implementation.

[0078] The method 500 may begin at block 502, where
first source code of a first software program may be
obtained. In some embodiments, multiple iterations of the
first source code may be obtained in which one or more
changes (which may each include one or more modifica-
tions) may have occurred with respect to the first source
code between iterations.

[0079] In some embodiments, the method 500 may
include determining multiple event correspondences in
which each event correspondence indicates a correspon-
dence between a respective change made to the first source
code between iterations. In these or other embodiments, the
event correspondences may be determined by performing
one or more event type inference operations using two or
more of the iterations. In some embodiments, the event type
inference operations may be performed according to blocks
504, 506, 508, 510, 512, 514, 516, and 518 described below.
[0080] At block 504, an oldest change may be selected.
For instance, as indicated above, each iteration of the first
source code may be due to one or more changes being made
to a previous iteration. As such, based on the obtained
iterations of the source code at block 502, multiple changes
made to the first source code may be identified. At block
504, in some embodiments, of the identified changes, the
change that is the oldest change or in other words the change
that was made prior to all of the other changes may be
selected.

[0081] In some embodiments, the method 500 may
include performing fault introduction event inference opera-
tions with respect to the selected change at block 506. The
fault introduction event inference operations may be used to
determine whether the selected change introduced a fault in
the first source code. As such, in some embodiments, at
block 506, it may be determined whether a fault introduction
event corresponds to the selected change.

[0082] For instance, in some embodiments, at block 506
one or more software tests may be performed with respect to
the first source code without the selected change being
included in the first source code. Additionally, the same
software tests may be performed with respect to the first
source code with the selected change being included in the
first source code. In some instances, a first software test of
the first source code may have passed without the selected
change being included in the first source code and may have
failed with the selected change being included in the first
source code. In some embodiments, the first software test

Aug. 13,2020

may be identified based on it having passed and then having
failed. In these or other embodiments, it may be determined
that a fault introduction event corresponds to the selected
change in response to identifying the first software test based
on it having passed and then having failed. In some embodi-
ments, the determination as to whether a fault introduction
event corresponds to the selected change may be made by
performing one or more operations of the method 600 of
FIG. 6 as discussed below.

[0083] In some embodiments, the method 500 may
include performing fault correction event inference opera-
tions with respect to the selected change at block 508. The
fault correction event inference operations may be used to
determine whether the selected change corrected a fault in
the first source code. As such, in some embodiments, at
block 508, it may be determined whether a fault correction
event corresponds to the selected change.

[0084] For instance, in some embodiments, at block 508
and similar to as described with respect to block 506 one or
more software tests may be performed with respect to the
first source code without the selected change being included
in the first source code. Additionally, the same software tests
may be performed with respect to the first source code with
the selected change being included in the first source code.
In some instances, a second software test of the first source
code may have failed without the selected change being
included in the first source code and may have passed with
the selected change being included in the first source code.
In some embodiments, the second software test may be
identified based on it having failed and then having passed.
In these or other embodiments, it may be determined that a
fault correction event corresponds to the selected change in
response to identifying the second software test based on it
having failed and then having passed. In some embodiments,
the determination as to whether a fault correction event
corresponds to the selected change may be made by per-
forming one or more operations of the method 600 of FIG.
6, as discussed in detail below.

[0085] In some embodiments, the method 500 may
include performing defect introduction event inference
operations with respect to the selected change at block 510.
The defect introduction event inference operations may be
used to determine whether the selected change introduced a
defect in the first source code. As such, in some embodi-
ments, at block 510, it may be determined whether a defect
introduction event corresponds to the selected change. In the
present disclosure, use of the terms “defect” and “fault” may
both refer to errors that may be found in source code. In the
present disclosure the different terms are used with respect
to FIGS. 5, 6, and 7, and with respect to the claims to
differentiate how the errors may be identified. In particular,
“fault” is used in the context of identifying error introduc-
tion events and error correction events using test suites.
Additionally, “defect” is used in the context of identifying
error introduction events and error correction using a static
analysis.

[0086] For instance, in some embodiments, at block 510 a
first static analysis may be performed with respect to the first
source code without the selected change being included in
the first source code. Additionally, a second static analysis
may be performed with respect to the first source code with
the selected change being included in the first source code.
In some instances, a first defect may be identified from the
second static analysis. Additionally, the first defect may not



US 2020/0257613 Al

have been identified from the first static analysis. In these or
other embodiments, it may be determined that a defect
introduction event corresponds to the selected change in
response to the first defect being identified from the second
static analysis but not being identified from the first static
analysis. In some embodiments, the determination as to
whether a defect introduction event corresponds to the
selected change may be made by performing one or more
operations of the method 700 of FIG. 7, as discussed in
detail below.

[0087] In some embodiments, the method 500 may
include performing defect correction event inference opera-
tions with respect to the selected change at block 512. The
defect correction event inference operations may be used to
determine whether the selected change corrected a defect in
the first source code. As such, in some embodiments, at
block 512, it may be determined whether a defect correction
event corresponds to the selected change.

[0088] For instance, in some embodiments, at block 512,
similar as to with block 514, a first static analysis may be
performed with respect to the first source code without the
selected change being included in the first source code.
Additionally, a second static analysis may be performed with
respect to the first source code with the selected change
being included in the first source code. In some instances, a
second defect may be identified from the first static analysis.
Additionally, the second defect may not have been identified
from the second static analysis. In these or other embodi-
ments, it may be determined that a defect correction event
corresponds to the selected change in response to the second
defect being identified from the first static analysis but not
being identified from the second static analysis. In some
embodiments, the determination as to whether a defect
correction event corresponds to the selected change may be
made by performing one or more operations of the method
700 of FIG. 7, as discussed in detail below.

[0089] Following one or more operations performed at one
or more of blocks 506, 508, 510, and 512, another change
may be selected. For example, at block 504, the oldest
change may have been selected as discussed above. In some
embodiments, at block 514 it may be determined whether
there is a newer change that has not been analyzed in which
the newer change is newer than the previously selected
change at block 504. In some embodiments, in response to
there being a newer change, the newer change may be
selected and one or more of the operations of one or more
of blocks 506, 508, 510, and 512 may be performed with
respect to the newly selected change. In some embodiments,
the newly selected change may be selected in response to the
newly selected change being the next oldest change as
compared to the previously selected change. In some
embodiments, the above recited operations with respect to
blocks 506, 508, 510, 512, and 514 may be repeated until
every change has been analyzed with respect to one or more
of blocks 506, 508, 510, and 512.

[0090] Modifications may be made to the above in some
embodiments. For example, in some instances operations
may be performed with respect to only one of blocks 506,
508, 510, or 512 with respect to a particular change. Addi-
tionally or alternatively, operations may be performed with
respect to one of blocks 506, 508, 510, or 512 and if a
corresponding event correspondence is not identified with
respect to the particular block, the method 500 may proceed
to another one of blocks 506, 508, 510, or 512. Additionally

Aug. 13,2020

or alternatively, in response to a particular event correspon-
dence being determined for a particular change with respect
to one of blocks 506, 508, 510, or 512, the remaining of such
blocks may be skipped with respect to the particular change.

[0091] In some embodiments, the method 500 may
include performing platform migration event inference
operations with respect a particular change at block 512. In
the illustrated example implementation of FIG. 5, the par-
ticular change may be the newest (or most recent) change
that has been made to the first source code. Additionally or
alternatively, the particular change may be any other change
that may have been made to the first source code.

[0092] The platform migration inference operations may
be used to determine whether the particular change corre-
sponded to a platform migration of the first source code. As
such, in some embodiments, at block 516, it may be deter-
mined whether a platform migration event corresponds to
the particular change.

[0093] A platform migration may include modifications
made to the first source code such that the first source code
may be used with a different platform or a different version
of a platform. For example, a platform migration event may
include a migration from a first platform to a second
platform. Additionally or alternatively, a platform migration
event may include a migration from a first version of a
particular platform to a second version of a particular
platform. A platform may include a compiler used to com-
pile the first source code, a library used with respect to the
first source code, an operating system that runs the software
program that includes the first software program. In some
embodiments, the determination as to whether a platform
migration event corresponds to the particular change may be
made by performing one or more operations of the method
700 of FIG. 7, as discussed in detail below. In some
embodiments, the operations of block 516 may be repeated
for each possible different platform that may correspond to
the first source code.

[0094] Following block 516, another change may be
selected. For example, at block 514, the newest change may
have been selected to perform platform migration event
inference operations. In some embodiments, at block 518 it
may be determined whether there is an older change that has
not been analyzed in which the older change is older than the
previously selected change at block 514. In some embodi-
ments, in response to there being an older change, the older
change may be selected and one or more of the operations
of block 516 may be performed with respect to the newly
selected change. In some embodiments, the newly selected
change may be selected in response to the newly selected
change being the next newest change as compared to the
previously selected change at block 514. In some embodi-
ments, the above recited operations with respect to blocks
514, 516, and 518 may be repeated until every change has
been analyzed with respect to block 516.

[0095] Insome embodiments, one or more operations may
be performed based on the event correspondences that may
be performed at blocks 504, 506, 508, 510, 512, 514, 516,
and 518. For example, in some embodiments, an event
inference may be identified for each of one or more of the
changes based on the determined event correspondences
such as described above. In these or other embodiments, one
or more commit messages may be generated based on the
identified event inferences such as also described above.



US 2020/0257613 Al

[0096] As another example, in some embodiments, one or
more repair operations may be performed with respect to
second source code of a second software program based on
the event correspondences. In some embodiments, the code
under test 304 of FIG. 3 may be an example of the second
source code.

[0097] For instance, in some embodiments, the method
500 may include blocks 520, 522, and 524. At block 520,
one or more errors may be identified in the second source
code. The error identification may be performed with respect
to the second source code using any suitable technique. For
example, in some embodiments, the error identification may
be performed based on performing a test execution of the
one or more test suites with respect to the second source
code.

[0098] Atblock 522, repairs of the identified errors may be
performed based on the event correspondences that may be
determined with respect to the first source code. For
example, as indicated above, in some embodiments, the
inferred events with respect to the first source code that may
be obtained from the event correspondences may be analo-
gous to the big code inferred events described above with
respect to FIG. 3. In these or other embodiments, one or
more of the first source code inferred events may be used to
identify or prioritize one or more repair candidates that may
be made to the second source code to correct errors that may
be similar to those included in the inferred events, such as
described above with respect to FIG. 3. In these or other
embodiments, the similarity between the repair candidates
and changes that correspond to the inferred events may be
determined based on code patterns that may be determined
for the repair candidates and the changes. In these or other
embodiments, one or more commit messages that may be
generated with respect to the inferred events that correspond
to the first source code may be used to identify possible
causes of the errors based on the similarities between the
changes included in the inferred events and changes made to
the second source code.

[0099] At block 524, modified second source code may be
output. The modified second source code may include
modifications that may include one or more repair candi-
dates that may be implemented based on the repair priori-
tization described above such that the modified second
source code may include a repaired version of the second
source code.

[0100] The method 500 may improve the efficiency and
efficacy of software program testing and repair. For
example, the determining of the prioritization of repair
candidates as described help make better determinations as
to the effectiveness of repair candidates.

[0101] Modifications, additions, or omissions may be
made to the method 500 without departing from the scope of
the present disclosure. For example, the operations of
method 500 may be implemented in differing order. Addi-
tionally or alternatively, two or more operations may be
performed at the same time. Furthermore, the outlined
operations and actions are only provided as examples, and
some of the operations and actions may be optional, com-
bined into fewer operations and actions, or expanded into
additional operations and actions without detracting from
the essence of the disclosed embodiments.

[0102] For example, in some embodiments, the operations
described with respect to performing event type inference
operations may be performed with respect to the second

Aug. 13,2020

source code. Additionally or alternatively, one or more
second source code inferred events may be determined. In
these or other embodiments, one or more corresponding
second source code commit messages may be generated. In
some embodiments, the second source code inferred events
and/or commit messages may be used to repair the second
source code. For instance, a second source code inferred
event may indicate that a fault or defect introduction event
occurred with respect to a particular change made to the
second source code. In some embodiments, the particular
change may thus be identified and modified to correct the
second source code. Additionally or alternatively, a fault or
defect correction event that corrects a similar fault or defect
may be identified from the first source code inferred events.
In these or other embodiments, the change to the first source
code that corresponds to the identified fault or defect cor-
rection event may be used to select a repair candidate to
correct the similar fault or defect identified from the second
source code inferred events.

[0103] FIG. 6 is a flowchart of an example method 600 of
performing fault introduction event and fault correction
event inference operations, according to at least one embodi-
ment described in the present disclosure. In some embodi-
ments, the method 600 may be performed to determine
whether a particular change of source code of a software
program may correspond to a fault introduction event or a
fault correction event. Additionally, as indicated above, in
some embodiments, one or more of the operations of blocks
506 and 508 described above with respect to the method 500
of FIG. 5 may be performed according to the method 600.
As such, in some embodiments, the selected change dis-
cussed above with respect to the method 500 of FIG. 5 may
be the particular change referred to in the description of the
method 600. Additionally or alternatively, the source code
referred to in the description of the method 600 may be the
first source code or the second source code discussed above
with respect to the method 500 of FIG. 5.

[0104] The method 600 may be performed by any suitable
system, apparatus, or device with respect to code under test.
For example, one or more of the analysis module 106 of
FIG. 1 and the repair module 306 of FIG. 3 or the computing
system 402 of FIG. 4 (e.g., as directed by one or more
modules) may perform one or more of the operations
associated with the method 600. Although illustrated with
discrete blocks, the steps and operations associated with one
or more of the blocks of the method 600 may be divided into
additional blocks, combined into fewer blocks, or elimi-
nated, depending on the particular implementation.

[0105] The method 600 may begin at block 602, where
one or more software tests may be performed with respect to
the source code without the particular change being included
in the source code. In some embodiments, the one or more
software tests may be performed by performing a first
execution of a test suite with respect to the source code in a
first iteration of the source code in which the particular
change is omitted from the source code.

[0106] At block 604, the same one or more software tests
may be performed with respect to the source code with the
particular change being included in the source code. In some
embodiments, the one or more software tests may be per-
formed by performing a second execution of the test suite
with respect to the source code in a second iteration of the
source code in which the particular change is included in the
source code.



US 2020/0257613 Al

[0107] At block 606, it may be determined whether there
are any failing tests with respect to the second test execution.
In response to there not being any failing tests with respect
to the second test execution, the method 600 may proceed
from block 606 to block 614. In response to there being at
least one failing test with respect to the second test execu-
tion, the method 600 may proceed from block 606 to block
608. At block 608, a particular failing test of the second test
execution may be selected.

[0108] At block 610 it may be determined whether the
particular failing test of the second test execution was a
passing test with respect to the first test execution. In
response to the particular failing test of the second test
execution being a passing test with respect to the first test
execution, the method 600 may proceed from block 610 to
block 612. At block 612, it may be determined that a fault
introduction event corresponds to the particular change
based on the particular failing test of the second test execu-
tion being a passing test with respect to the first test
execution.

[0109] Following block 612, the method 600 may return to
block 606. Additionally, referring back to block 610, in
response to the particular failing test not being a passing test
with respect to the first test execution, the method 600 may
proceed from block 610 back to block 606.

[0110] After proceeding back to block 606 from block 610
or 612, it may be determined whether there are any other
failing tests with respect to the second test execution that
have not been analyzed with respect to blocks 608, 610, or
612. In response to there being other failing tests with
respect to the second test execution that have not been
analyzed with respect to blocks 608, 610, or 612, the method
600 may proceed from block 606 back to block 608. In some
embodiments, the operations of blocks 606, 608, 610, and
612 may be repeated until all failing tests with respect to the
second test execution have been analyzed with respect to
blocks 608, 610, and 612.

[0111] In response to there being no failing tests with
respect to the second test execution or in response to all the
failing tests with respect to the second test execution being
analyzed with respect to blocks 608, 610, and 612, the
method 600 may proceed from block 606 to block 614.
[0112] At block 614, it may be determined whether there
are any failing tests with respect to the first test execution of
the source code. In response to there not being any failing
tests with respect to the first test execution, the method 600
may end. In response to there being at least one failing test
with respect to the first test execution, the method 600 may
proceed from block 614 to block 616. At block 616, a
particular failing test of the first test execution may be
selected.

[0113] At block 618 it may be determined whether the
particular failing test of the first test execution was a passing
test with respect to the second test execution. In response to
the particular failing test of the first test execution being a
passing test with respect to the second test execution, the
method 600 may proceed from block 618 to block 620. At
block 620, it may be determined that a fault correction event
corresponds to the particular change based on the particular
failing test of the first test execution being a passing test with
respect to the second test execution.

[0114] Following block 620, the method 600 may return to
block 614. After proceeding back to block 614 from block
620, it may be determined whether there are any other

Aug. 13,2020

failing tests with respect to the first test execution that have
not been analyzed with respect to blocks 616, 618, or 620.
In response to there being other failing tests with respect to
the first test execution that have not been analyzed with
respect to blocks 616, 618, or 620, the method 600 may
proceed from block 614 back to block 616. In some embodi-
ments, the operations of blocks 614, 616, 618, and 620 may
be repeated until all failing tests with respect to the first test
execution have been analyzed with respect to blocks 616,
618, and 620. In response to it being determined at block 614
that all the failing tests with respect to the first test execution
have been analyzed with respect to blocks 616, 618, and
620, the method 600 may end.

[0115] Modifications, additions, or omissions may be
made to the method 600 without departing from the scope of
the present disclosure. For example, the operations of
method 600 may be implemented in differing order. For
instance, in some embodiments operations 614, 616, 618,
and 620 may be performed prior to operations 606, 608, 610,
and 612 in some embodiments. As another example, the
operations of blocks 602 and 604 may be performed in a
different order than described. Additionally or alternatively,
two or more operations may be performed at the same time.
For instance, in some embodiments, operations 606, 608,
610, and 612 may be performed concurrently with opera-
tions 614, 616, 618, and 620 in some embodiments. As
another example, the operations of blocks 602 and 604 may
be performed at the same time. Furthermore, the outlined
operations and actions are only provided as examples, and
some of the operations and actions may be optional, com-
bined into fewer operations and actions, or expanded into
additional operations and actions without detracting from
the essence of the disclosed embodiments.

[0116] FIG. 7 is a flowchart of an example method 700 of
performing defect introduction event and defect correction
event inference operations, according to at least one embodi-
ment described in the present disclosure. In some embodi-
ments, the method 700 may be performed to determine
whether a particular change of source code of a software
program may correspond to a defect introduction event or a
defect correction event. Additionally, as indicated above, in
some embodiments, one or more of the operations of blocks
510 and 512 described above with respect to the method 500
of FIG. 5 may be performed according to the method 700.
As such, in some embodiments, the selected change dis-
cussed above with respect to the method 500 of FIG. 5 may
be the particular change referred to in the description of the
method 700. Additionally or alternatively, the source code
referred to in the description of the method 700 may be the
first source code or the second source code discussed above
with respect to the method 500 of FIG. 5.

[0117] The method 700 may be performed by any suitable
system, apparatus, or device with respect to code under test.
For example, one or more of the analysis module 106 of
FIG. 1 and the repair module 306 of FIG. 3 or the computing
system 402 of FIG. 4 (e.g., as directed by one or more
modules) may perform one or more of the operations
associated with the method 700. Although illustrated with
discrete blocks, the steps and operations associated with one
or more of the blocks of the method 700 may be divided into
additional blocks, combined into fewer blocks, or elimi-
nated, depending on the particular implementation.

[0118] The method 700 may begin at block 702, where a
first static analysis may be performed with respect to a first



US 2020/0257613 Al

iteration of the source code that has the particular change
omitted from the source code. At block 704, a second static
analysis may be performed with respect to a second iteration
of the source code that has the particular change included
therein.

[0119] At block 706, it may be determined whether the
second static analysis identified any defects with respect to
the second iteration of the source code. In response to the
second static analysis not identifying any defects with
respect to the second iteration, the method 700 may proceed
from block 706 to block 714. In response to the second static
analysis identifying at least one defect with respect to the
second iteration, the method 700 may proceed from block
706 to block 708. At block 708, a particular defect of the
second iteration identified from the second static analysis
may be selected.

[0120] At block 710 it may be determined whether the
particular defect of the second iteration was identified from
the first static analysis performed with respect to the first
iteration. In response to the particular defect not being
identified from the first static analysis, the method 700 may
proceed from block 710 to block 712. At block 712, it may
be determined that a defect introduction event corresponds
to the particular change based on the particular defect being
identified from the second static analysis but not being
identified from the first static analysis.

[0121] Following block 712, the method 700 may return to
block 706. Additionally, referring back to block 710, in
response to the particular defect being identified from the
second static analysis and from the first static analysis, the
method 700 may proceed from block 710 back to block 706.
[0122] After proceeding back to block 706 from block 710
or 712, it may be determined whether there are any other
defects identified from the second static analysis with
respect to the second iteration that have not been analyzed
with respect to blocks 708, 710, or 712. In response to there
being other defects identified from the second static analysis
with respect to the second iteration that have not been
analyzed with respect to blocks 708, 710, or 712, the method
700 may proceed from block 706 back to block 708. In some
embodiments, the operations of blocks 706, 708, 710, and
712 may be repeated until defects identified from the second
static analysis with respect to the second iteration have been
analyzed with respect to blocks 708, 710, and 712.

[0123] In response to there being no more defects identi-
fied from the second static analysis with respect to the
second iteration that have not been analyzed with respect to
blocks 708, 710, or 712, the method 700 may proceed from
block 706 to block 714.

[0124] At block 714, it may be determined whether the
first static analysis identified any defects with respect to the
first iteration of the source code. In response to there not
being any defects identified from the first static analysis with
respect to the first iteration, the method 700 may end. In
response to there being at least one defect identified from the
first static analysis with respect to the first iteration, the
method 700 may proceed from block 714 to block 716. At
block 716, a particular defect identified from the first static
analysis may be selected.

[0125] At block 718 it may be determined whether the
particular defect identified from the first static analysis was
identified from the second static analysis performed with
respect to the second iteration. In response to the particular
defect being identified from the first static analysis but not

Aug. 13,2020

the second static analysis, the method 700 may proceed from
block 718 to block 720. At block 720, it may be determined
that a defect correction event corresponds to the particular
defect based on the first static analysis identifying the
particular defect and the second static analysis not identi-
fying the particular defect.

[0126] Following block 720, the method 700 may return to
block 714. After proceeding back to block 714 from block
720, it may be determined whether there are any other
defects identified from the first static analysis that have not
been analyzed with respect to blocks 716, 718, or 720. In
response to there being other defects identified from the first
static analysis that have not been analyzed with respect to
blocks 716, 718, or 720, the method 700 may proceed from
block 714 back to block 716. In some embodiments, the
operations of blocks 714, 716, 718, and 720 may be repeated
until all defects identified from the first static analysis have
been analyzed with respect to blocks 716, 718, and 720. In
response to it being determined at block 714 that all the
defects identified from the first static analysis have been
analyzed with respect to blocks 716, 718, and 720, the
method 700 may end.

[0127] Modifications, additions, or omissions may be
made to the method 700 without departing from the scope of
the present disclosure. For example, the operations of
method 700 may be implemented in differing order. For
instance, in some embodiments operations 714, 716, 718,
and 720 may be performed prior to operations 706, 708, 710,
and 712 in some embodiments. As another example, the
operations of blocks 702 and 704 may be performed in a
different order than described. Additionally or alternatively,
two or more operations may be performed at the same time.
For instance, in some embodiments, operations 706, 708,
710, and 712 may be performed concurrently with opera-
tions 714, 716, 718, and 720 in some embodiments. As
another example, the operations of blocks 702 and 704 may
be performed at the same time. Furthermore, the outlined
operations and actions are only provided as examples, and
some of the operations and actions may be optional, com-
bined into fewer operations and actions, or expanded into
additional operations and actions without detracting from
the essence of the disclosed embodiments.

[0128] FIG. 8 is a flowchart of an example method 800 of
removing secondary modifications from source code of a
software program, according to at least one embodiment
described in the present disclosure. The method 800 may be
performed by any suitable system, apparatus, or device with
respect to code under test. For example, one or more of the
trimming module 202 of FIG. 2 and the repair module 306
of FIG. 3 or the computing system 402 of FIG. 4 (e.g., as
directed by one or more modules) may perform one or more
of the operations associated with the method 800. Although
illustrated with discrete blocks, the steps and operations
associated with one or more of the blocks of the method 800
may be divided into additional blocks, combined into fewer
blocks, or eliminated, depending on the particular imple-
mentation.

[0129] The method 800 may begin at block 802, where
abstract syntax trees (ASTs) may be generated from multiple
iterations of first source code of a first software program. In
some embodiments, multiple iterations of the first source
code may be obtained in which one or more changes (which
may each include one or more modifications) may have
occurred with respect to the first source code between



US 2020/0257613 Al

iterations. In some embodiments, a first iteration of the first
source code may be obtained in which the first iteration
excludes a particular change in a particular portion of the
first source code. Additionally or alternatively, a second
iteration of the first source code may be obtained in which
the second iteration includes the particular change in the
particular portion of the first source code. In some embodi-
ments, the particular change may include multiple modifi-
cations in which one or more of the modifications may be
secondary modifications.

[0130] In some embodiments, a first AST may be gener-
ated with respect to the first iteration at block 802. In these
or other embodiments, a second AST may be generated with
respect to the second iteration at block 802.

[0131] For instance, FIG. 9A illustrates an example first
AST 902 that may be generated with respect to a first
iteration of source code that includes a particular portion
904. Additionally, FIG. 9A illustrates an example second
AST 906 that may be generated with respect to a second
iteration of the source code in which a particular change 908
that includes multiple modifications has been made to the
particular portion 904.

[0132] Returning to FIG. 8, at block 804 the ASTs gen-
erated at block 802 may be partitioned into forests of one or
more statement sub-trees. For example, in some embodi-
ments, one or more first sub-trees of the first AST may be
identified. The first sub-trees may correspond to the particu-
lar portion associated with the particular change and may be
identified accordingly. In some embodiments, the first sub-
trees may be identified according to statement calls included
in the first source code. In these or other embodiments, the
first AST may be partitioned according to the identified first
sub-trees. Additionally or alternatively, multiple second sub-
trees of the second AST may be identified. The multiple
second sub-trees may also correspond to the particular
portion associated with the particular change and may also
be identified accordingly. In these or other embodiments, the
second sub-tree may be partitioned according to the identi-
fied second sub-trees. In some instances, a particular sub-
tree may be an entire AST such that the entire AST may be
identified as the particular sub-tree.

[0133] For instance, FIG. 9B illustrates an example first
sub-tree 910 that may be identified from the first AST 902
of FIG. 9A. In the particular example, the first sub-tree 910
may be all of the first AST 902 of FIG. 9A. FIG. 9B also
illustrates second sub-trees 912, 914, and 916 that may be
second sub-trees of the second AST 906 of FIG. 9A.
[0134] Returning to FIG. 8, at block 806, textual repre-
sentations of the identified forests may be generated. For
example, a first textual representation may be generated with
respect to each first sub-tree and a second textual represen-
tation may be generated with respect to each second sub-
tree. In some embodiments, the textual representations may
include the lines of code that may correspond to the respec-
tive sub-trees.

[0135] For instance, FIG. 9C illustrates a first textual
representation 918 that corresponds to the first sub-tree 910.
As indicated by a comparison between FIGS. 9A and 9C, the
first textual representation 918 may include the lines of code
of the first iteration of the first source code at the particular
portion 904 that correspond to the first sub-tree 910.
[0136] Additionally, FIG. 9C illustrates a second textual
representation 920 that may correspond to the second sub-
tree 912, a second textual representation 922 that may

Aug. 13,2020

correspond to the second sub-tree 914, and a second textual
representation 924 that may correspond to the second sub-
tree 916.

[0137] Returning to FIG. 8. At block 808, textual differ-
ences between the textual representations may be deter-
mined to identify from the second textual representations
differing textual representations that differ from the first
textual representations. For example, in some embodiments,
a different determination may be performed between each
first textual representation and each second textual repre-
sentation to identify which second textual representations
are not the same as any of the first textual representations.
The second textual representations that are not the same as
any of the first textual representations may correspond to
modifications made between the first iteration and the sec-
ond iterations. Such second textual representations may be
identified as differing textual representations.

[0138] By way of example, the first textual representation
918 may be compared against each of the second textual
representation 920, the second textual representation 922,
and the second textual representation 924 to determine
which of the second textual representation 920, the second
textual representation 922, and the second textual represen-
tation 924 differ from the first textual representation 918.
Based on the difference determination performed from the
comparison, it may be determined that the second textual
representation 920 and the second textual representation 922
differ from the first textual representation. Additionally, it
may be determined that the second textual representation
924 is the same as the first textual representation 918. In
these or other embodiments, the second textual representa-
tion 920 may be identified as a differing textual represen-
tation “C1” and the second textual representation 922 may
be identified as a differing textual representation “C2.”
[0139] Returning to FIG. 8, at block 810 a smallest sized
set of differing textual representations may be identified. In
some embodiments, the smallest sized set of differing textual
representations may be identified as the smallest number of
differing textual representations that may be implemented
with respect to the first source code such that the first source
code corresponds to a same event as if the entire particular
change were implemented with respect to the first source
code. The identification of the smallest sized set of differing
textual representations that correspond to the same event
may indicate which modifications that correspond to the
differing textual representations are secondary modifications
and which may include primary modifications.

[0140] For instance, if a particular differing textual repre-
sentation or set of differing textual representations does not
correspond to a same event as the entire particular change,
such differing textual representations likely correspond to
secondary modifications. In contrast, if a particular differing
textual representation or set of differing textual representa-
tions does correspond to the same event as the entire
particular change, such differing textual representations
likely correspond to primary modifications. As such, iden-
tifying which differing textual representations are outside of
the smallest sized set that does correspond to the same event
may identify the largest number of secondary modifications
that may be trimmed.

[0141] In some embodiments, the operations of block 810
may include performing an event correspondence determi-
nation with respect to the particular change. In some
embodiments, the event correspondence determination may



US 2020/0257613 Al

identify the particular event as corresponding to the particu-
lar change. In some embodiments, one or more operations of
the methods 500, 600, and/or 700 may be performed to
perform the event correspondence determination with
respect to the particular change. For instance, the modifica-
tions that correspond to all of the particular change may be
used as the selected change described above with respect to
methods 500, 600, and/or 700. In these or other embodi-
ments, the first iteration of the first source code that corre-
sponds to the first AST may be used as the iteration of the
source code that does not include the selected change
included therein.

[0142] In these or other embodiments, the operations of
block 810 may include performing the event correspondence
determination with respect to each possible set of differing
textual representations in which each set of differing textual
representations includes one or more differing textual rep-
resentation. In some embodiments, one or more operations
of the methods 500, 600, and/or 700 may be performed to
perform the event correspondence determination with
respect to each possible set. For instance, the modifications
that correspond to each set and that may be with respect to
the first iteration may correspond to the selected change
described above with respect to the methods 500, 600,
and/or 700. In these or other embodiments, the first iteration
of'the first source code that corresponds to the first AST may
be used as the iteration of the source code that does not
include the selected change included therein that is
described with respect to the methods 500, 600, and/or 700.
[0143] Additionally or alternatively, the operations of
block 810 may include identifying, as matching sets, which
of the sets of differing textual representations correspond to
the particular event. In these or other embodiments, the
matching set identification may be based on the event
correspondence determinations made with respect to the
possible sets. Additionally, as indicated above, the matching
set identification may identify which of the sets of differing
textual representations may include primary modifications.
Conversely, those sets of differing textual representations
that are not matching sets may be those sets that include only
secondary modifications.

[0144] In these or other embodiments, the operations of
block 810 may include identifying, as the smallest sized set,
a particular matching set that includes the fewest number of
differing textual representations. In other words, the other
matching sets may correspond to the primary modifications
but may also correspond to more secondary modifications
than the smallest-sized set. As such, those differing textual
representations that are outside of the smallest-sized set may
be considered as corresponding to secondary modifications.
[0145] By way of example with respect to FIG. 9D, as
indicated above, the difference determinations between the
first textual representation 918 and each of the second
textual representations 920, 922, and 924 may identify the
second textual representations 920 and 922 as differing
textual representations C1 and C2, respectively. The differ-
ing textual representations C1 and C2 may be organized into
each possible set of differing textual representations such
that a first set may include only C1 ([C1]), a second set may
include only C2 ([C2]), and a third set may include C1 and
C2 ([C1, C2]).

[0146] In these or other embodiments, an event “E1” may
be identified as corresponding to the particular change 908,
which includes the modifications that correspond to C1 and

Aug. 13,2020

C2. Further, as an example, the event E1 may be identified
as corresponding to the first set [C1] and the third set [C1,
C2], but not the second set [C2]. As such, the first set [C1]
and the third set [C1, C2] may be identified as matching sets.
Additionally, because the first set [C1] includes a smaller
number of differing textual representations than the third set
[C1, C2], the first set [C1] may be determined to be and
selected as the smallest-sized set.

[0147] Returning to FIG. 8. At block 812, a modified
second AST may be obtained by removing one or more
sub-trees of the second AST based on the identification of
the smallest-sized set. In particular, as indicated above, the
differing textual representations that are outside of the
smallest-sized set may be those that may correspond to
secondary modifications. As such, in some embodiments,
the differing textual representations that are outside of the
smallest sized set may be identified as secondary textual
representations that correspond to secondary modifications.
In these or other embodiments, the second sub-trees that
correspond to the secondary textual representations may be
identified as secondary sub-trees that may be removed from
the second AST.

[0148] By way of example, FIG. 9E illustrates a modified
second AST 930 in which the second sub-tree 914 has been
removed. As indicated above, the second sub-tree 914
corresponds to the differing textual representation C2, which
is outside of the first set [C1] that was identified as the
smallest-sized set. As such, the second sub-tree 914 may be
removed. Of note, in the illustrated example, the second
sub-tree 916 has not been removed because the second
sub-tree 916 corresponds to a textual representation that is
not a differing textual representation.

[0149] Returning to FIG. 8, in some embodiments, the
method 800 may include additional operations to further
trim the second AST. For example, in some embodiments,
the method 800 may include performing the operations 806,
808, 810, and 812 with respect to another set of sub-trees
that may be sub-trees with respect to the sub-trees previ-
ously analyzed. In some embodiments, the operations 806,
808, 810, and 812 may be repeated with respect to the
additional sub-trees set until all the sub-trees have only one
level (also referred to as a height of “1”).

[0150] For instance, in some embodiments, the method
800 may include block 814 at which it may be determined
whether any sub-trees of the first AST and the second AST
have a height that is greater than “1”. In response to there
being at least one sub-tree having a height that is greater than
“17, the method 800 may proceed from block 814 to block
816.

[0151] At block 816, the sub-trees with the biggest height
may be partitioned into additional sub-trees. For example, in
some embodiments, the height (i.e., the number of levels) of
each sub-tree may be identified. Additionally or alterna-
tively, a particular sub-tree of the ASTs may be identified as
having a larger number of levels than the other sub-trees. In
these or other embodiments, the particular sub-tree may be
partitioned into additional sub-trees. Following block 816,
the method 800 may proceed back to block 806.

[0152] By way of example, as illustrated in FIG. 9E, the
first sub-tree 910 may have two levels (also referred to as a
height of “2”), the second sub-tree 912 may have five levels
(also referred to as a height of ““5”), and the second sub-tree
916 may also have two levels (also referred to as a height of
“27”). As such, given that the second sub-tree 912 has the



US 2020/0257613 Al

most levels, the second sub-tree may be divided into addi-
tional sub-trees. For instance, as illustrated in FIG. 9F, the
second sub-tree 912 of FIG. 9E may be divided into addi-
tional sub-trees 932, 934, 936, and 938. Following the
division of the second sub-tree 912 into the additional
sub-trees 932, 934, 936, a smallest-sized change set may be
determined with respect to the corresponding textual repre-
sentations of the additional sub-trees 932, 934, 936 such as
described above. In some embodiments, the operations of
blocks 806, 808, 810, 812, 814, and 816 may be repeated
until all the sub-trees have only one level.

[0153] At block 818, a third iteration of the first source
code may be obtained from the modified second AST. For
example, the third iteration may be obtained by regenerating
the first source code using the modified second AST. As
indicated above, the modified second AST may include one
or more portions removed as detailed above in which the one
or more portions may correspond to secondary modifications
that may have been made to the first source code. As such,
the third iteration of the first source code may have one or
more secondary modifications omitted therefrom. As such,
analysis of the third iteration may be more efficient than
analysis of the second iteration, which may include one or
more secondary modifications that have been removed in the
third iteration.

[0154] In some embodiments, one or more repair opera-
tions may be performed with respect to the first source code
based on the third iteration of the first source code. For
example, in some embodiments, the particular change may
introduce an error in the first source code. Further, based on
the third iteration of the first source code, a particular
sub-portion of the particular portion may be identified as
including a primary modification that introduces the error. In
some embodiments, the particular sub-portion may be iden-
tified by comparing the first iteration against the third
iteration to identify differences. In these or other embodi-
ments, the particular sub-portion may be modified to repair
the error. The particular sub-portion may be modified in
response to determining that the particular sub-portion cor-
responds to a primary modification that introduced the error
based on the third iteration. As such, the repair operations
may be more directed and efficient than if they were per-
formed based on the second iteration.

[0155] In these or other embodiments, the repair opera-
tions may include identifying one or more errors in the
second source code based on executing a test suite with
respect to the second source code. Additionally or alterna-
tively, one or more repair candidates to repair the errors of
the second source code may be identified or prioritized
based on the third iteration of the first source code.

[0156] For example, in some embodiments, the third itera-
tion may include a repair to a particular error and one or
more code patterns may be identified from the third iteration
in which the one or more code patterns indicate modifica-
tions that may be made to repair the particular error. In these
or other embodiments, the identified code patterns may be
used to select or prioritize repair candidates for errors of the
second source code that are related to or the same as the
particular error. The use of the third iteration to identify code
patterns may be better than the second iteration by removing
secondary modifications that may make it difficult to iden-
tify code helpful code patterns as opposed to unhelptul code
patterns.

Aug. 13,2020

[0157] The method 800 may improve the efficiency and
efficacy of software program testing and repair. For
example, the use of a combination of ASTs and textual
representations may allow for identifying secondary modi-
fications in a more efficient manner than using just ASTs but
also in a more effective manner than just using textual
analysis. As such, the operations of method 800 may
improve the efficacy and efficiency of computing systems
configured to perform analysis and debugging operations
with respect to software programs. Further, as detailed
above, removal of secondary modifications may help to
provide more efficient analysis and identification of prob-
lems and solutions by computing systems.

[0158] Modifications, additions, or omissions may be
made to the method 800 without departing from the scope of
the present disclosure. For example, the operations of
method 800 may be implemented in differing order. Addi-
tionally or alternatively, two or more operations may be
performed at the same time. Furthermore, the outlined
operations and actions are only provided as examples, and
some of the operations and actions may be optional, com-
bined into fewer operations and actions, or expanded into
additional operations and actions without detracting from
the essence of the disclosed embodiments.

[0159] As indicated above, the embodiments described in
the present disclosure may include the use of a special
purpose or general purpose computer (e.g., the processor
250 of FIG. 2) including various computer hardware or
software modules, as discussed in greater detail below.
Further, as indicated above, embodiments described in the
present disclosure may be implemented using computer-
readable media (e.g., the memory 252 or data storage 254 of
FIG. 2) for carrying or having computer-executable instruc-
tions or data structures stored thereon.

[0160] As used in the present disclosure, the terms “mod-
ule” or “component” may refer to specific hardware imple-
mentations configured to perform the actions of the module
or component and/or software objects or software routines
that may be stored on and/or executed by general purpose
hardware (e.g., computer-readable media, processing
devices, etc.) of the computing system. In some embodi-
ments, the different components, modules, engines, and
services described in the present disclosure may be imple-
mented as objects or processes that execute on the comput-
ing system (e.g., as separate threads). While some of the
system and methods described in the present disclosure are
generally described as being implemented in software
(stored on and/or executed by general purpose hardware),
specific hardware implementations or a combination of
software and specific hardware implementations are also
possible and contemplated. In this description, a “computing
entity” may be any computing system as previously defined
in the present disclosure, or any module or combination of
modulates running on a computing system.

[0161] Terms used in the present disclosure and especially
in the appended claims (e.g., bodies of the appended claims)
are generally intended as “open” terms (e.g., the term
“including” should be interpreted as “including, but not
limited to,” the term “having” should be interpreted as
“having at least,” the term “includes” should be interpreted
as “includes, but is not limited to,” etc.).

[0162] Additionally, if a specific number of an introduced
claim recitation is intended, such an intent will be explicitly
recited in the claim, and in the absence of such recitation no



US 2020/0257613 Al

such intent is present. For example, as an aid to understand-
ing, the following appended claims may contain usage of the
introductory phrases “at least one” and “one or more” to
introduce claim recitations. However, the use of such
phrases should not be construed to imply that the introduc-
tion of a claim recitation by the indefinite articles “a” or “an”
limits any particular claim containing such introduced claim
recitation to embodiments containing only one such recita-
tion, even when the same claim includes the introductory
phrases “one or more” or “at least one” and indefinite
articles such as “a” or “an” (e.g., “a” and/or “an” should be
interpreted to mean “at least one” or “one or more”); the
same holds true for the use of definite articles used to
introduce claim recitations.

[0163] In addition, even if a specific number of an intro-
duced claim recitation is explicitly recited, those skilled in
the art will recognize that such recitation should be inter-
preted to mean at least the recited number (e.g., the bare
recitation of “two recitations,” without other modifiers,
means at least two recitations, or two or more recitations).
Furthermore, in those instances where a convention analo-
gous to “at least one of A, B, and C, etc.” or “one or more
of A, B, and C, etc.” is used, in general such a construction
is intended to include A alone, B alone, C alone, A and B
together, A and C together, B and C together, or A, B, and
C together, etc.

[0164] Further, any disjunctive word or phrase presenting
two or more alternative terms, whether in the description,
claims, or drawings, should be understood to contemplate
the possibilities of including one of the terms, either of the
terms, or both terms. For example, the phrase “A or B”
should be understood to include the possibilities of “A” or
“B” or “A and B.”

[0165] All examples and conditional language recited in
the present disclosure are intended for pedagogical objects
to aid the reader in understanding the present disclosure and
the concepts contributed by the inventor to furthering the art,
and are to be construed as being without limitation to such
specifically recited examples and conditions. Although
embodiments of the present disclosure have been described
in detail, various changes, substitutions, and alterations
could be made hereto without departing from the spirit and
scope of the present disclosure.

1. A method comprising:

generating a first abstract syntax tree with respect to a first
iteration of first source code of a first software program,
the first iteration excluding a particular change in a
particular portion of the first source code;

generating a second abstract syntax tree with respect to a
second iteration of the first source code, the second
iteration including the particular change in the particu-
lar portion, the particular change including a plurality
of modifications made with respect to the particular
portion of the first source code;

identifying a first sub-tree of the first abstract syntax tree
that corresponds to the particular portion with respect
to the first iteration of the first source code;

identifying a plurality of second sub-trees of the second
abstract syntax tree that correspond to the particular
portion with respect to the second iteration of the first
source code;

generating a first textual representation of the first sub-
tree;

Aug. 13,2020

generating a plurality of second textual representations in
which a respective second textual representation is
generated for each of the second sub-trees;

performing a difference determination between the first
textual representation and each of the second textual
representations;
identifying, from the second textual representations based
on the difference determination, one or more differing
textual representations that differ from the first textual
representation, each differing textual representation
corresponding to one or more respective modifications
of the particular change;
determining a smallest-sized set of the differing textual
representations that corresponds to a same particular
event as the particular change, the particular event
occurring with respect to the first source code from the
first iteration to the second iteration;
identifying, as secondary textual representations, the dif-
fering textual representations that are outside of the
smallest-sized set, the secondary textual representa-
tions corresponding to secondary modifications of the
plurality of modifications;
identifying, as secondary trees, the second sub-trees that
correspond to the secondary textual representations;

modifying the second abstract syntax tree by removing
the secondary trees from the second abstract syntax
tree;

obtaining a third iteration of the first source code by

regenerating the first source code based on the modified
second abstract syntax tree; and

performing repair operations with respect to one or more

of the first source code and second source code of a
second software program based on the third iteration of
the first source code.

2. The method of claim 1, wherein performing the repair
operations with respect to the second source code includes:

identifying one or more errors in the second source code

of based on executing a test suite with respect to the
second source code; and

identifying one or more repair candidates for the one or

more errors based on the third iteration of the first
source code.

3. The method of claim 2, wherein identifying the one or
more repair candidates based on the third iteration of the first
source code is based on the one or more repair candidates
having a code pattern similar to that of the third iteration of
the first source code.

4. The method of claim 1, further comprising:

identifying a particular second sub-tree that corresponds

to a particular differing textual representation that is
included in the smallest-sized set, the identifying of the
particular second sub-tree being based on the particular
second sub-tree having a larger number of levels than
the other second sub-trees that correspond to the other
differing textual representations included in the small-
est-sized set;

identifying a plurality of additional sub-trees that are

sub-trees of the particular second sub-tree;
generating a plurality of additional textual representations
in which a respective additional textual representation
is generated for each of the additional sub-trees;

performing an additional difference determination
between the first textual representation and each of the
additional textual representations;



US 2020/0257613 Al

identifying, based on the additional difference determina-
tion, one or more additional differing textual represen-
tations that differ from the first textual representation,
each additional differing textual representation corre-
sponding to one or more respective modifications of the
particular change;

determining an additional smallest-sized set of the differ-
ing textual representations that corresponds to the same
particular event as the first textual representation;

identifying, as additional secondary textual representa-
tions, the additional differing textual representations
that are outside of the additional smallest-sized set, the
additional secondary textual representations corre-
sponding to the secondary modifications of the plural-
ity of modifications; and

identifying, as additional secondary trees, the additional
sub-trees that correspond to the additional secondary
textual representations;

wherein modifying the second abstract syntax tree further
includes removing the additional secondary trees from
the second abstract syntax tree.

5. The method of claim 1, wherein determining the

smallest-sized set includes:

performing an event correspondence determination with
respect to the particular change, the event correspon-
dence determination identifying the particular event as
corresponding to the particular change;

performing the event correspondence determination with
respect to each possible set of a plurality of possible
sets of differing textual representations in which each
set of differing textual representations includes one or
more differing textual representation;

identifying, as matching sets and based on the event
correspondence determinations made with respect to
the plurality of possible sets, which of the plurality of
possible sets of differing textual representations corre-
spond to the particular event; and

identifying, as the smallest-sized set, a particular match-
ing set of the plurality of possible sets that includes the
fewest number of differing textual representations.

6. The method of claim 5, wherein performing the event

correspondence determination with respect to the particular
change includes:

identifying the particular event as a fault introduction
event that corresponds to the particular change based
on identifying a first software test of the first source
code that passed without the particular change included
in the first source code and that failed with the particu-
lar change included in the first source code;

identifying the particular event as a fault correction event
that corresponds to the particular change based on
identifying a second software test of the first source
code that failed without the particular change included
in the first source code and that passed with the
particular change included in the first source code;

identifying the particular event as a defect introduction
event that corresponds to the particular change based
on a first defect not being identified from a first static
analysis performed on the first source code without the
particular change being included in the first source code
and based on the first defect being identified from a
second static analysis performed on the first source
code with the particular change included in the first
source code;

16

Aug. 13,2020

identifying the particular event as a defect correction
event that corresponds to the particular change based
on a second defect that is identified from a third static
analysis performed on the first source code with the
particular change included in the first source code and
based on the second defect not being identified from a
fourth static analysis performed on the first source code
with the particular change included in the first source
code; or

identifying the particular event as a platform migration

event that corresponds to the particular change based
on a first build of the first source code with the
particular change included therein having an error that
is omitted with respect to a second build of the first
source code with the particular change included
therein, the first build being performed using a first
version of a particular platform and the second build
being performed using a second version of the particu-
lar platform.

7. The method of claim 1, wherein the particular change
introduces a particular error in the first source code and the
method further comprises:

determining that a sub-portion of the particular portion

corresponds to the particular error based on a compari-
son between the first iteration of the first source code
and the third iteration of the first source code;
wherein performing the repair operations includes modi-
fying the sub-portion in response to determining that
the sub-portion corresponds to the particular error.

8. One or more non-transitory computer-readable storage
media configured to store instructions that, in response to
being executed, cause a system to perform operations, the
operations comprising:

generating a first abstract syntax tree with respect to a first

iteration of first source code of a first software program,
the first iteration excluding a particular change in a
particular portion of the first source code;
generating a second abstract syntax tree with respect to a
second iteration of the first source code, the second
iteration including the particular change in the particu-
lar portion, the particular change including a plurality
of modifications made with respect to the particular
portion of the first source code;
identifying a first sub-tree of the first abstract syntax tree
that corresponds to the particular portion with respect
to the first iteration of the first source code;

identifying a plurality of second sub-trees of the second
abstract syntax tree that correspond to the particular
portion with respect to the second iteration of the first
source code;

generating a first textual representation of the first sub-

tree;
generating a plurality of second textual representations in
which a respective second textual representation is
generated for each of the second sub-trees;

performing a difference determination between the first
textual representation and each of the second textual
representations;

identifying, from the second textual representations based

on the difference determination, one or more differing
textual representations that differ from the first textual
representation, each differing textual representation
corresponding to one or more respective modifications
of the particular change;



US 2020/0257613 Al

determining a smallest-sized set of the differing textual
representations that corresponds to a same particular
event as the particular change, the particular event
occurring with respect to the first source code from the
first iteration to the second iteration;
identifying, as secondary textual representations, the dif-
fering textual representations that are outside of the
smallest-sized set, the secondary textual representa-
tions corresponding to secondary modifications of the
plurality of modifications;
identifying, as secondary trees, the second sub-trees that
correspond to the secondary textual representations;

modifying the second abstract syntax tree by removing
the secondary trees from the second abstract syntax
tree;

obtaining a third iteration of the first source code by

regenerating the first source code based on the modified
second abstract syntax tree; and

performing repair operations with respect to one or more

of the first source code and second source code of a
second software program based on the third iteration of
the first source code.

9. The one or more computer-readable storage media of
claim 8, wherein performing the repair operations with
respect to the second source code includes:

identifying one or more errors in the second source code

of based on executing a test suite with respect to the
second source code; and

identifying one or more repair candidates for the one or

more errors based on the third iteration of the first
source code.

10. The one or more computer-readable storage media of
claim 9, wherein identifying the one or more repair candi-
dates based on the third iteration of the first source code is
based on the one or more repair candidates having a code
pattern similar to that of the third iteration of the first source
code.

11. The one or more computer-readable storage media of
claim 8, wherein the operations further comprise:

identifying a particular second sub-tree that corresponds

to a particular differing textual representation that is
included in the smallest-sized set, the identifying of the
particular second sub-tree being based on the particular
second sub-tree having a larger number of levels than
the other second sub-trees that correspond to the other
differing textual representations included in the small-
est-sized set;

identifying a plurality of additional sub-trees that are

sub-trees of the particular second sub-tree;
generating a plurality of additional textual representations
in which a respective additional textual representation
is generated for each of the additional sub-trees;

performing an additional difference determination
between the first textual representation and each of the
additional textual representations;

identifying, based on the additional difference determina-

tion, one or more additional differing textual represen-
tations that differ from the first textual representation,
each additional differing textual representation corre-
sponding to one or more respective modifications of the
particular change;

determining an additional smallest-sized set of the differ-

ing textual representations that corresponds to the same
particular event as the first textual representation;

Aug. 13,2020

identifying, as additional secondary textual representa-
tions, the additional differing textual representations
that are outside of the additional smallest-sized set, the
additional secondary textual representations corre-
sponding to the secondary modifications of the plural-
ity of modifications; and

identifying, as additional secondary trees, the additional
sub-trees that correspond to the additional secondary
textual representations;

wherein modifying the second abstract syntax tree further
includes removing the additional secondary trees from
the second abstract syntax tree.

12. The one or more computer-readable storage media of
claim 8, wherein determining the smallest-sized set
includes:

performing an event correspondence determination with
respect to the particular change, the event correspon-
dence determination identifying the particular event as
corresponding to the particular change;

performing the event correspondence determination with
respect to each possible set of a plurality of possible
sets of differing textual representations in which each
possible set of differing textual representations includes
one or more differing textual representation;

identifying, as matching sets and based on the event
correspondence determinations made with respect to
the plurality of possible sets, which of the plurality of
possible sets of differing textual representations corre-
spond to the particular event; and

identifying, as the smallest-sized set, a particular match-
ing set of the plurality of possible sets that includes the
fewest number of differing textual representations.

13. The one or more computer-readable storage media of
claim 12, wherein performing the event correspondence
determination with respect to the particular change includes:

identifying the particular event as a fault introduction
event that corresponds to the particular change based
on identifying a first software test of the first source
code that passed without the particular change included
in the first source code and that failed with the particu-
lar change included in the first source code;

identifying the particular event as a fault correction event
that corresponds to the particular change based on
identifying a second software test of the first source
code that failed without the particular change included
in the first source code and that passed with the
particular change included in the first source code;

identifying the particular event as a defect introduction
event that corresponds to the particular change based
on a first defect not being identified from a first static
analysis performed on the first source code without the
particular change being included in the first source code
and based on the first defect being identified from a
second static analysis performed on the first source
code with the particular change included in the first
source code;

identifying the particular event as a defect correction
event that corresponds to the particular change based
on a second defect that is identified from a third static
analysis performed on the first source code with the
particular change included in the first source code and
based on the second defect not being identified from a



US 2020/0257613 Al

fourth static analysis performed on the first source code
with the particular change included in the first source
code; or

identifying the particular event as a platform migration

event that corresponds to the particular change based
on a first build of the first source code with the
particular change included therein having an error that
is omitted with respect to a second build of the first
source code with the particular change included
therein, the first build being performed using a first
version of a particular platform and the second build
being performed using a second version of the particu-
lar platform.

14. The one or more computer-readable storage media of
claim 8, wherein the particular change introduces a particu-
lar error in the first source code and the operations further
comprise:

determining that a sub-portion of the particular portion

corresponds to the particular error based on a compari-
son between the first iteration of the first source code
and the third iteration of the first source code;
wherein performing the repair operations includes modi-
fying the sub-portion in response to determining that
the sub-portion corresponds to the particular error.

15. A system comprising:

one or more computer-readable storage media configured

to store instructions; and

one or more processors communicatively coupled to the

one or more computer-readable storage media and

configured to, in response to execution of the instruc-

tions, cause the system to perform operations, the

operations comprising:

generating a first abstract syntax tree with respect to a
first iteration of first source code of a first software
program, the first iteration excluding a particular
change in a particular portion of the first source code;

generating a second abstract syntax tree with respect to
a second iteration of the first source code, the second
iteration including the particular change in the par-
ticular portion, the particular change including a
plurality of modifications made with respect to the
particular portion of the first source code;

identifying a first sub-tree of the first abstract syntax
tree that corresponds to the particular portion with
respect to the first iteration of the first source code;

identifying a plurality of second sub-trees of the second
abstract syntax tree that correspond to the particular
portion with respect to the second iteration of the
first source code;

generating a first textual representation of the first
sub-tree;

generating a plurality of second textual representations
in which a respective second textual representation is
generated for each of the second sub-trees;

performing a difference determination between the first
textual representation and each of the second textual
representations;

identifying, from the second textual representations
based on the difference determination, one or more
differing textual representations that differ from the
first textual representation, each differing textual
representation corresponding to one or more respec-
tive modifications of the particular change;

Aug. 13,2020

determining a smallest-sized set of the differing textual
representations that corresponds to a same particular
event as the particular change, the particular event
occurring with respect to the first source code from
the first iteration to the second iteration;
identifying, as secondary textual representations, the
differing textual representations that are outside of
the smallest-sized set, the secondary textual repre-
sentations corresponding to secondary modifications
of the plurality of modifications;
identifying, as secondary trees, the second sub-trees
that correspond to the secondary textual representa-
tions;
modifying the second abstract syntax tree by removing
the secondary trees from the second abstract syntax
tree;
obtaining a third iteration of the first source code by
regenerating the first source code based on the modi-
fied second abstract syntax tree; and
performing repair operations with respect to one or
more of the first source code and second source code
of a second software program based on the third
iteration of the first source code.
16. The system of claim 15, wherein performing the repair
operations with respect to the second source code includes:
identifying one or more errors in the second source code
of based on executing a test suite with respect to the
second source code; and
identifying one or more repair candidates for the one or
more errors based on the third iteration of the first
source code.
17. The system of claim 15, wherein the operations further
comprise:
identifying a particular second sub-tree that corresponds
to a particular differing textual representation that is
included in the smallest-sized set, the identifying of the
particular second sub-tree being based on the particular
second sub-tree having a larger number of levels than
the other second sub-trees that correspond to the other
differing textual representations included in the small-
est-sized set;
identifying a plurality of additional sub-trees that are
sub-trees of the particular second sub-tree;
generating a plurality of additional textual representations
in which a respective additional textual representation
is generated for each of the additional sub-trees;
performing an additional difference determination
between the first textual representation and each of the
additional textual representations;
identifying, based on the additional difference determina-
tion, one or more additional differing textual represen-
tations that differ from the first textual representation,
each additional differing textual representation corre-
sponding to one or more respective modifications of the
particular change;
determining an additional smallest-sized set of the differ-
ing textual representations that corresponds to the same
particular event as the first textual representation;
identifying, as additional secondary textual representa-
tions, the additional differing textual representations
that are outside of the additional smallest-sized set, the
additional secondary textual representations corre-
sponding to the secondary modifications of the plural-
ity of modifications; and



US 2020/0257613 Al

identifying, as additional secondary trees, the additional
sub-trees that correspond to the additional secondary
textual representations;
wherein modifying the second abstract syntax tree further
includes removing the additional secondary trees from
the second abstract syntax tree.
18. The system of claim 15, wherein determining the
smallest-sized set includes:
performing an event correspondence determination with
respect to the particular change, the event correspon-
dence determination identifying the particular event as
corresponding to the particular change;
performing the event correspondence determination with
respect to each possible set of a plurality of possible
sets of differing textual representations in which each
possible set of differing textual representations includes
one or more differing textual representation;
identifying, as matching sets and based on the event
correspondence determinations made with respect to
the plurality of possible sets, which of the plurality of
possible sets of differing textual representations corre-
spond to the particular event; and
identifying, as the smallest-sized set, a particular match-
ing set of the plurality of possible sets that includes the
fewest number of differing textual representations.
19. The system of claim 18, wherein performing the event
correspondence determination with respect to the particular
change includes:
identifying the particular event as a fault introduction
event that corresponds to the particular change based
on identifying a first software test of the first source
code that passed without the particular change included
in the first source code and that failed with the particu-
lar change included in the first source code;
identifying the particular event as a fault correction event
that corresponds to the particular change based on
identifying a second software test of the first source
code that failed without the particular change included
in the first source code and that passed with the
particular change included in the first source code;

Aug. 13,2020

identifying the particular event as a defect introduction
event that corresponds to the particular change based
on a first defect not being identified from a first static
analysis performed on the first source code without the
particular change being included in the first source code
and based on the first defect being identified from a
second static analysis performed on the first source
code with the particular change included in the first
source code;

identifying the particular event as a defect correction

event that corresponds to the particular change based
on a second defect that is identified from a third static
analysis performed on the first source code with the
particular change included in the first source code and
based on the second defect not being identified from a
fourth static analysis performed on the first source code
with the particular change included in the first source
code; or

identifying the particular event as a platform migration

event that corresponds to the particular change based
on a first build of the first source code with the
particular change included therein having an error that
is omitted with respect to a second build of the first
source code with the particular change included
therein, the first build being performed using a first
version of a particular platform and the second build
being performed using a second version of the particu-
lar platform.

20. The system of claim 15, wherein the particular change
introduces a particular error in the first source code and the
operations further comprise:

determining that a sub-portion of the particular portion

corresponds to the particular error based on a compari-
son between the first iteration of the first source code
and the third iteration of the first source code;

wherein performing the repair operations includes modi-
fying the sub-portion in response to determining that
the sub-portion corresponds to the particular error.

#* #* #* #* #*



