(19)

US 20200257560A1

12y Patent Application Publication o) Pub. No.: US 2020/0257560 A1

United States

(54)

(71)

(72)

(73)

@

(22)

(1)

Wang et al. 43) Pub. Date: Aug. 13, 2020
ARCHITECTURE AND DEVICE FOR HO4L 12/873 (2006.01)
MULTI-STREAM VISION PROCESSING ON HO4L 29/08 (2006.01)

SHARED DEVICES (52) US. CL
CPC ... GO6F 9/4887 (2013.01); GOGF 9/3851
Applicant: GM GLOBAL TECHNOLOGY (2013.01); HO4L 67/32 (2013.01); HO4L
OPERATIONS LLC, Detroit, MI (US) 47/6275 (2013.01); HO4L 47/52 (2013.01);
HO4L 47/6295 (2013.01)
Inventors: Shige Wang, Northville, MI (US);
Unmesh Dutta Bordoloei, Bloomfiled 7 ABSTRACT
Township, MI (US); Stephen G. A stream manager for managing the distribution of instruc-
Lusko, Warren, MI (US); Stephen N. tions to a plurality of processing devices includes a dis-
McKinnie, Livonia, MI (US) patcher module configured to: receive multiple instruction
streams, wherein each instruction stream includes a plurality
Assignee: GM GLOBAL TECHNOLOGY of requested computations for processing perception data
OPERATIONS LLC, Detroit, MI (US) from a perception data source; partition each instruction
stream into a plurality of partitions based on type of device
Appl. No.: 16/274,685 to perform a requested computation from the instruction
stream; assign a release time and deadline to each partition,
Filed: Feb. 13. 2019 and dispatch partition computations to a plurality of sched-
’ uling queues to distribute processing of the partition com-
o . . putations amongst the plurality of processing devices. The
Publication Classification plurality of scheduling queues include: a plurality of CPU
Int. CL schedulers, wherein each CPU scheduler is assigned to a
GO6F 9/48 (2006.01) specific CPU and a specific scheduling queue; and a plural-
GOG6F 9/38 (2006.01) ity of accelerator schedulers, wherein each accelerator
HO4L 12/863 (2006.01) scheduler is assigned to a specific scheduling queue and a
HO4L 12/865 (2006.01) specific type of accelerator.
400
411
< Mm{”‘\‘
/?>@<} 407 ™,
4 i !
/ * 4/ %
/ S
P
407
405 : 404 404
n/ . 404
. S e 7 Ny
\‘- / L"
A
VAN
402 T
L ; 406
409 /Y 408
A/ 408
/2/ '
4 ;
% /
, o
S I
i 401 J 403 . 403
P ,.»-"..M.,.m\ A, ,,«,»-M---'f:'“ S Y [m:é"'«m-m.ﬂk »
e V:\V o Rt TS 1%
P V{ 3
kS) / % . f‘/ 5, W

Patent Application Publication Aug. 13, 2020 Sheet 1 of 8 US 2020/0257560 A1

I

110

oo i e

.
W

. £
¥ 5

I"""_-.-*:--""""--“"""I

%

PRSI SN
 [42a][420

£E 5

32 i

36 |ef-p| A48

£

5 FESEERERER
30

L
o

Patent Application Publication Aug. 13, 2020 Sheet 2 of 8 US 2020/0257560 A1

78
{f\]l ————————————————————

|

|

|

| 74 78
|

|

|

|

|

: 76 B0
|

|

|

28 34

Patent Application Publication Aug. 13, 2020 Sheet 3 of 8 US 2020/0257560 A1

304b

FIG. 3A

320

w

)

=~
(&%)
N
o

Patent Application Publication

Aug. 13,2020 Sheet 4 of 8

US 2020/0257560 A1

Ny e ~
S 407 ™
-------- 407
e ///,7//
405+ 404 .., 404
407 Y W 404
. TR a
a02 R
406
409 S 408
v 408
"* d

L
o
IS

US 2020/0257560 A1

Aug. 13,2020 Sheet 5 of 8

Patent Application Publication

Z 1998 uo T {30€ uo f1dD uo
3npayas 2NPIYAS oINPIYAs
oom & 680G mom
1es el -y 28esn gainosay
_ €y FT IV T n
Im mv_ u_ € v RALE 12 006
£ ey 7
. o
%8 | Suissanold ¢ weans
b0S 5
8 |
/ o |1 uissanosd 7 weans - 508
208 4.5/
205 1 " Mgussarosd 1 weans

e AU1$5204d
TE 1
B € weass
mc_mmwuoa T weals
dugssanoud
weans

Patent Application Publication Aug. 13, 2020 Sheet 6 of 8 US 2020/0257560 A1

604 i

WA

612
606 " N

620

G
b

Patent Application Publication Aug. 13, 2020 Sheet 7 of 8 US 2020/0257560 A1

//’ 700
701 »

702 i 702

......
704
. S A

Patent Application Publication Aug. 13, 2020 Sheet 8 of 8

, 800
//
4

802

US 2020/0257560 A1

810

812

NN

US 2020/0257560 Al

ARCHITECTURE AND DEVICE FOR
MULTI-STREAM VISION PROCESSING ON
SHARED DEVICES

TECHNICAL FIELD

[0001] The technology described in this patent document
relates generally to computer systems and more particularly
to computers system architectures that allow processing
resources to be shared.

[0002] Advanced autonomous vehicle (AV) and advanced
driver-assistance system (ADAS) applications utilize mul-
tiple perception devices, such as cameras, and consequently
process data from the multiple perception devices. The
processing of a perception stream from a perception device
may involve computations by both a CPU (central process-
ing unit) and an accelerator (e.g., GPUs, DSPs, FPGAs).
When multiple perception streams require computations, the
processing of the multiple perception streams may involve
computations by multiple CPUs and accelerators that are
often shared by the multiple perception streams. The com-
putation on these devices, the CPUs and accelerators, may
not be well synchronized for the multiple perception
streams, resulting in lost processing capacity and higher
costs.

[0003] Accordingly, it is desirable to provide a system and
method for improving the synchronization of computations
on the multiple CPUs and accelerators. Furthermore, other
desirable features and characteristics of the present inven-
tion will become apparent from the subsequent detailed
description of the invention and the appended claims, taken
in conjunction with the accompanying drawings and the
background of the invention.

SUMMARY

[0004] Systems and methods for sharing computing
resources are provided. In one embodiment, an instruction
stream manager for managing the distribution of instructions
to a plurality of processing devices is provided, wherein the
plurality of processing devices includes a plurality of central
processing units (CPUs) and a plurality of accelerator
devices. The instruction stream manager includes a dis-
patcher module configured to: receive multiple instruction
streams, wherein each instruction stream includes a plurality
of requested computations for processing perception data
from a perception data source; partition each instruction
stream into a plurality of partitions based on a device or type
of device to perform a requested computation from the
instruction stream; assign a release time and deadline to each
partition, wherein the release time is the earliest point in
time at which the partition can start to execute and the
deadline is the latest point in time at which the partition must
be completed to ensure performance, and wherein the par-
titions of the same stream are to be scheduled for compu-
tation on different devices assigned a partition from the same
stream, based on time, to reduce synchronization overhead
for synchronizing computation performance by the different
devices; and dispatch partition computations to a plurality of
scheduling queues to distribute processing of the partition
computations amongst the plurality of processing devices,
wherein a partition computation includes a partition with its
assigned release time and deadline. The plurality of sched-
uling queues are arranged in memory, wherein each sched-
uling queue is associated with a unique processing device.

Aug. 13,2020

The plurality of scheduling queues include: a plurality of
CPU schedulers, wherein each CPU scheduler is assigned to
a specific CPU and a specific scheduling queue; and a
plurality of accelerator schedulers, wherein each accelerator
scheduler is assigned to a specific scheduling queue and a
specific accelerator or type of accelerator that shares the
same scheduling policy.

[0005] In one embodiment, the plurality of accelerator
devices include one or more of a graphics processing unit
(GPU), digital signal processor (DSP), and field-program-
mable gate array (FPGA).

[0006] In one embodiment, the multiple perception data
sources include one or more of a camera, radar, and lidar.

[0007] In one embodiment, to assign a release time and
deadline, the dispatcher module is configured to compute the
release time and deadline.

[0008] In one embodiment, to compute the release time
and deadline, the dispatcher module is configured to deter-
mine the release time and deadline for processing a frame of
perception data using proportional time slicing.

[0009] In one embodiment, to compute the release time
and deadline, the dispatcher module is configured to deter-
mine the release time and deadline for processing a frame of
perception data by setting the release time of the first
partition as the start time of a frame, setting the release time
of a subsequent partition as the deadline of the immediately
prior partition, and setting the deadline of a partition equal
to the release time of the partition plus a proportional time
slice of the frame.

[0010] In one embodiment, to compute the release time
and deadline, the dispatcher module is configured to deter-
mine the release time and deadline for processing a frame of
perception data by r,=t,, r,=d, , and

i

wherein r, is the initial release time, t,, is start time of a frame
in the stream, r, is the release time of partition i on its device,
partition i on its device, d, is the deadline of partition i on its
device, D is maximum allowed time to finish processing of
a frame, and e, is processing time of partition i on its device.
[0011] In one embodiment, to dispatch partition compu-
tations, the dispatcher module is configured to assign com-
putations for streams to processing devices according to
predefined strategies and regulate the processing of each
stream when one stream overuses its assigned processing
unit.

[0012] In one embodiment, to dispatch partition compu-
tations, the dispatcher module is configured to scan the
streams according to their rates, provide a static assignment
of CPUs for streams, and provide a static assignment of
accelerators for streams.

[0013] In one embodiment, the dispatcher module is fur-
ther configured to notify a higher level entity that incorpo-
rates the dispatcher module for action, and/or execute a
predefined admission control policy when a stream exceeds
its resource budget.

[0014] In one embodiment, to dispatch partition compu-
tations, the dispatcher module is configured to: read input
from a stream identifier; process a current code segment of
the stream identifier; select a device identifier with minimum
usage to run the code segment of the stream identifier;

US 2020/0257560 Al

determine if the code segment of the stream identifier can be
completed on the device identifier selected to run the code
segment of the stream identifier based on release time,
deadline, and device usage; send the code segment of the
stream identifier to the device identifier selected to run the
code segment of the stream identifier when it is determined
that the code segment of the stream identifier can be com-
pleted on the device identifier selected to run the code
segment of the stream identifier; exclude the device identi-
fier selected to run the code segment of the stream identifier
and select a different device identifier with minimum usage
to run the code segment of the stream identifier, when it is
determined that the code segment of the stream identifier
cannot be completed on the device identifier selected to run
the code segment of the stream identifier and another device
identifier selected to run the code segment of the stream
identifier exists that can be considered for use; send a
notification to a higher level entity and/or execute a strategy
and move to next stream identifier when it is determined that
the code segment of the stream identifier cannot be com-
pleted on the device identifier selected to run the code
segment of the stream identifier and another device identifier
cannot be selected to run the code segment of the stream
identifier; after sending the code segment of the stream
identifier to the device identifier to run the code segment of
the stream identifier, move to the next code segment of the
stream identifier when another code segment of the stream
identifier exists; and after sending the code segment of the
stream identifier to the device identifier to run the code
segment of the stream identifier, move to the next stream
identifier when another code segment of the stream identifier
does not exist.

[0015] In one embodiment, each scheduling queue is
static, organized with a predefined, specific read policy, and
orders computation according to priority.

[0016] In one embodiment, a set of predefined tasks is
assigned to each CPU; a task may execute computations
from one or more streams; for each stream, CPU computa-
tions are always assigned to a specific CPU and the tasks of
the specific CPU; each CPU scheduler is configured to
schedule tasks to its associated CPU based on task priority,
release time, and deadline; and each CPU scheduler is
configured to monitor usage of its associated CPU and report
the usage to the dispatcher module.

[0017] In one embodiment, each accelerator scheduler is
configured to schedule accelerator computations to its asso-
ciated accelerator based on priority, release time, and dead-
line; each accelerator scheduler is configured to schedule
accelerator computations from different streams to its asso-
ciated accelerator for execution in ascending order of their
dispatch when start of execution is not dependent on
completion of precedent CPU task; each accelerator sched-
uler is configured to communicate with a CPU scheduler that
is assigned tasks with computations from a stream serviced
by the accelerator scheduler, but is not configured to com-
municate with other accelerator schedulers; and each accel-
erator scheduler is configured to monitor usage of its asso-
ciated accelerator, use bandwidth server to regulate requests
from different streams, and report the usage to the dispatcher
module.

[0018] In another embodiment, a method in a multipro-
cessor system for managing the distribution of instructions
from a plurality of instruction streams to a plurality of
processing devices is provided. The plurality of processing

Aug. 13,2020

devices include a plurality of central processing units
(CPUs) and a plurality of accelerator devices. The method
includes: receiving the plurality of instruction streams,
wherein each instruction stream including a plurality of
requested computations; partitioning each instruction stream
into a plurality of partitions based on a device or type of
device to perform a requested computation from the instruc-
tion stream; assigning a release time and deadline to each
partition, wherein the release time is the earliest point in
time at which the partition can start to execute and the
deadline is the latest point in time at which the partition must
be completed to ensure performance, wherein the partitions
of the same stream are to be scheduled for computation on
different devices assigned a partition from the same stream,
based on release time and deadline, to reduce synchroniza-
tion overhead for synchronizing computation performance
by the different devices; and dispatching partition compu-
tations to a plurality of scheduling queues to distribute
processing of the partition computations amongst the plu-
rality of processing devices, wherein a partition computation
includes a partition with its assigned release time and
deadline, the plurality of scheduling queues are arranged in
memory, and each scheduling queue is associated with a
unique processing device.

[0019] In one embodiment, assigning a release time and
deadline includes computing the release time and deadline.
[0020] In one embodiment, computing the release time
and deadline includes determining the release time and
deadline for processing a frame of perception data using
proportional time slicing.

[0021] In one embodiment, computing the release time
and deadline includes determining the release time and
deadline for processing a frame of perception data by setting
the release time of the first partition as the start time of a
frame, setting the release time of a subsequent partition as
the deadline of the immediately prior partition, and setting
the deadline of a partition equal to the release time of the
partition plus a proportional time slice of the frame.
[0022] In one embodiment, computing the release time
and deadline includes determining the release time and
deadline for processing a frame of perception data by r,=t,,
r=d;_,, and

wherein r, is the initial release time, t, is start time of a frame
in the stream, r, is the release time of partition i on its device,
partition i on its device, d, is the deadline of partition i on its
device, D is maximum allowed time to finish processing of
a frame, and e, is processing time of partition i on its device.
[0023] In one embodiment, dispatching partition compu-
tations includes assigning computations for streams to pro-
cessing devices according to predefined strategies and regu-
lating the processing of each stream when one stream
overuses its assigned processing unit.

[0024] In one embodiment, dispatching partition compu-
tations includes scanning the streams according to their
rates, providing a static assignment of CPUs for streams, and
providing a static assignment of accelerators for streams.
[0025] In one embodiment, the plurality of scheduling
queues includes: a plurality of CPU schedulers, wherein
each CPU scheduler is assigned to a specific CPU and a

US 2020/0257560 Al

specific scheduling queue; and a plurality of accelerator
schedulers, wherein each accelerator scheduler is assigned
to a specific scheduling queue and a specific accelerator or
type of accelerator that shares the same scheduling policy.

[0026] In one embodiment, a set of predefined tasks is
assigned to each CPU; a task may execute computations
from one or more streams; for each stream, CPU computa-
tions are always assigned to a specific CPU and the tasks of
the specific CPU; each CPU scheduler is configured to
schedule tasks to its associated CPU based on task priority,
release time, and deadline; and each CPU scheduler is
configured to monitor usage of its associated CPU and report
the usage to the dispatcher module.

[0027] In one embodiment, each accelerator scheduler is
configured to schedule accelerator computations to its asso-
ciated accelerator based on priority, release time, and dead-
line; each accelerator scheduler is configured to schedule
accelerator computations from different streams to its asso-
ciated accelerator for execution in ascending order of their
dispatch when start of execution is not dependent on
completion of precedent CPU task; each accelerator sched-
uler is configured to communicate with a CPU scheduler that
is assigned tasks with computations from a stream serviced
by the accelerator scheduler, but is not configured to com-
municate with other accelerator schedulers; and each accel-
erator scheduler is configured to monitor usage of its asso-
ciated accelerator, use bandwidth server to regulate requests
from different streams, and report the usage to the dispatcher
module.

[0028] In one embodiment, dispatching partition compu-
tations includes: reading input from a stream identifier;
processing a current code segment of the stream identifier;
selecting a device identifier with minimum usage to run the
code segment of the stream identifier; determining if the
code segment of the stream identifier can be completed on
the device identifier selected to run the code segment of the
stream identifier based on release time, deadline, and device
usage; sending the code segment of the stream identifier to
the device identifier selected to run the code segment of the
stream identifier when it is determined that the code segment
of the stream identifier can be completed on the device
identifier selected to run the code segment of the stream
identifier; excluding the device identifier selected to run the
code segment of the stream identifier and selecting a differ-
ent device identifier with minimum usage to run the code
segment of the stream identifier, when it is determined that
the code segment of the stream identifier cannot be com-
pleted on the device identifier selected to run the code
segment of the stream identifier and another device identifier
selected to run the code segment of the stream identifier
exists that can be considered for use; sending a notification
to a higher level entity and/or executing a strategy and
moving to next stream identifier when it is determined that
the code segment of the stream identifier cannot be com-
pleted on the device identifier selected to run the code
segment of the stream identifier and another device identifier
cannot be selected to run the code segment of the stream
identifier; after sending the code segment of the stream
identifier to the device identifier to run the code segment of
the stream identifier, moving to the next code segment of the
stream identifier when another code segment of the stream
identifier exists; and after sending the code segment of the
stream identifier to the device identifier to run the code

Aug. 13,2020

segment of the stream identifier, moving to the next stream
identifier when another code segment of the stream identifier
does not exist.

[0029] In another embodiment, a perception processing
system configured for processing perception data from mul-
tiple perception data sources is provided. The system
includes: a plurality of processing units including a plurality
of central processing units (CPUs) and a plurality of accel-
erator modules; a vision processing controller (VPC) con-
figured to perform computations from multiple instruction
streams using the plurality of processing units; and a dis-
patcher module. The dispatcher module is configured to:
receive the multiple instruction streams, each instruction
stream including a plurality of requested computations for
processing perception data from a perception data source;
partition each instruction stream into a plurality of partitions
based on a device or type of device to perform a requested
computation from the instruction stream; assign a release
time and deadline to each partition, the release time being
the earliest point in time at which the partition can start to
execute, the deadline being the latest point in time at which
the partition must be completed to ensure performance,
wherein the partitions of the same stream are to be scheduled
for computation on different devices assigned a partition
from the same stream, based on time, to reduce synchroni-
zation overhead for synchronizing computation performance
by the different devices; and dispatch partition computations
to a plurality of scheduling queues to distribute processing
of the partition computations amongst the plurality of pro-
cessing devices, a partition computation including a parti-
tion with its assigned release time and deadline, the plurality
of scheduling queues arranged in memory, wherein each
scheduling queue is associated with a unique processing
device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] The exemplary embodiments will hereinafter be
described in conjunction with the following drawing figures,
wherein like numerals denote like elements, and wherein:

[0031] FIG. 1 depicts an example vehicle that includes a
stream manager for managing the distribution of instructions
from perception streams to a plurality of processing devices,
in accordance with various embodiments;

[0032] FIG. 2 is a functional block diagram illustrating an
autonomous driving system (ADS) associated with an
autonomous vehicle, in accordance with various embodi-
ments;

[0033] FIG. 3A depicts an example vehicle having a
plurality of perception devices for performing detection and
viewing operations for the vehicle, in accordance with
various embodiments;

[0034] FIG. 3B is a block diagram of an example process-
ing module in the vehicle for processing multiple streams of
perception data, in accordance with various embodiments;

[0035] FIG. 4 is a block diagram depicting an example
instruction stream manager in a vision processing controller
(VPC), in accordance with various embodiments;

[0036] FIG. 5A is a diagram illustrating parameters that
can be used to compute the release time and deadline, in
accordance with various embodiments;

[0037] FIG. 5B is a diagram illustrating example stream
processing, in accordance with various embodiments;

US 2020/0257560 Al

[0038] FIG. 5C is a block diagram illustrating the dis-
patching of computations from various streams to various
scheduling queues, in accordance with various embodi-
ments;

[0039] FIG. 6 is a process flow chart depicting an example
process performed by an example dispatcher, in accordance
with various embodiments;

[0040] FIG. 7A is a block diagram depicting an example
environment associated with an instruction stream manager,
in accordance with various embodiments;

[0041] FIG. 7B is a block diagram depicting an example
environment associated with an instruction stream manager,
in accordance with various embodiments; and

[0042] FIG. 8 is a process flow chart depicting an example
process in an example instruction stream manager for man-
aging the distribution of instructions to a plurality of pro-
cessing devices, in accordance with various embodiments.

DETAILED DESCRIPTION

[0043] The following detailed description is merely exem-
plary in nature and is not intended to limit the application
and uses. Furthermore, there is no intention to be bound by
any expressed or implied theory presented in the preceding
technical field, background, summary, or the following
detailed description. As used herein, the term “module”
refers to any hardware, software, firmware, electronic con-
trol component, processing logic, and/or processor device,
individually or in any combination, including without limi-
tation: application specific integrated circuit (ASIC), a field-
programmable gate-array (FPGA), an electronic circuit, a
processor (shared, dedicated, or group) and memory that
executes one or more software or firmware programs, a
combinational logic circuit, and/or other suitable compo-
nents that provide the described functionality.

[0044] Embodiments of the present disclosure may be
described herein in terms of functional and/or logical block
components and various processing steps. It should be
appreciated that such block components may be realized by
any number of hardware, software, and/or firmware com-
ponents configured to perform the specified functions. For
example, an embodiment of the present disclosure may
employ various integrated circuit components, e.g., memory
elements, digital signal processing elements, logic elements,
look-up tables, or the like, which may carry out a variety of
functions under the control of one or more microprocessors
or other control devices. In addition, those skilled in the art
will appreciate that embodiments of the present disclosure
may be practiced in conjunction with any number of sys-
tems, and that the systems described herein is merely
exemplary embodiments of the present disclosure.

[0045] For the sake of brevity, conventional techniques
related to signal processing, data transmission, signaling,
control, machine learning models, radar, lidar, image analy-
sis, and other functional aspects of the systems (and the
individual operating components of the systems) may not be
described in detail herein. Furthermore, the connecting lines
shown in the various figures contained herein are intended to
represent example functional relationships and/or physical
couplings between the various elements. It should be noted
that many alternative or additional functional relationships
or physical connections may be present in an embodiment of
the present disclosure.

[0046] The subject matter described herein discloses appa-
ratus, systems, techniques and articles that describe an

Aug. 13,2020

architecture supporting multiple streams of perception (e.g.,
vision) processing of perception data from multiple percep-
tion devices (e.g., cameras, lidar, radar) on a shared pro-
cessing device using a hybrid scheduling method. The
following disclosure provides an architecture design sup-
porting multiple schedules for different devices, a mecha-
nism to dynamically assign devices for a stream combined
with stream affinity, multiple cooperative schedulers for
CPU and accelerators, fine-grain partitioning of computa-
tions on accelerators, and a bandwidth server to control
computation on each accelerator.

[0047] FIG. 1 depicts an example vehicle 100 that
includes a stream manager 110 for managing the distribution
of instructions from perception streams to a plurality of
processing devices. As depicted in FIG. 1, the vehicle 100
generally includes a chassis 12, a body 14, front wheels 16,
and rear wheels 18. The body 14 is arranged on the chassis
12 and substantially encloses components of the vehicle
100. The body 14 and the chassis 12 may jointly form a
frame. The wheels 16-18 are each rotationally coupled to the
chassis 12 near a respective corner of the body 14.

[0048] In various embodiments, the vehicle 100 may be an
autonomous vehicle or a semi-autonomous vehicle. An
autonomous vehicle 100 is, for example, a vehicle that is
automatically controlled to carry passengers from one loca-
tion to another. The vehicle 100 is depicted in the illustrated
embodiment as a passenger car, but other vehicle types,
including motorcycles, trucks, sport utility vehicles (SUVs),
recreational vehicles (RVs), marine vessels, aircraft, etc.,
may also be used.

[0049] As shown, the vehicle 100 generally includes a
propulsion system 20, a transmission system 22, a steering
system 24, a brake system 26, a sensor system 28, an
actuator system 30, at least one data storage device 32, at
least one controller 34, and a communication system 36. The
propulsion system 20 may, in various embodiments, include
an internal combustion engine, an electric machine such as
a traction motor, and/or a fuel cell propulsion system. The
transmission system 22 is configured to transmit power from
the propulsion system 20 to the vehicle wheels 16 and 18
according to selectable speed ratios. According to various
embodiments, the transmission system 22 may include a
step-ratio automatic transmission, a continuously-variable
transmission, or other appropriate transmission.

[0050] The brake system 26 is configured to provide
braking torque to the vehicle wheels 16 and 18. Brake
system 26 may, in various embodiments, include friction
brakes, brake by wire, a regenerative braking system such as
an electric machine, and/or other appropriate braking sys-
tems.

[0051] The steering system 24 influences a position of the
vehicle wheels 16 and/or 18. While depicted as including a
steering wheel 25 for illustrative purposes, in some embodi-
ments contemplated within the scope of the present disclo-
sure, the steering system 24 may not include a steering
wheel.

[0052] The sensor system 28 includes one or more sensing
devices 40a-40n that sense observable conditions of the
exterior environment and/or the interior environment of the
vehicle 100 (such as the state of one or more occupants) and
generate sensor data relating thereto. Sensing devices 40a-
407 might include, but are not limited to, radars (e.g.,
long-range, medium-range-short range), lidars, global posi-
tioning systems, optical cameras (e.g., forward facing, 360-

US 2020/0257560 Al

degree, rear-facing, side-facing, stereo, etc.), thermal (e.g.,
infrared) cameras, ultrasonic sensors, odometry sensors
(e.g., encoders) and/or other sensors that might be utilized in
connection with systems and methods in accordance with
the present subject matter.

[0053] The actuator system 30 includes one or more
actuator devices 42a-42n that control one or more vehicle
features such as, but not limited to, the propulsion system
20, the transmission system 22, the steering system 24, and
the brake system 26. In various embodiments, vehicle 100
may also include interior and/or exterior vehicle features not
illustrated in FIG. 1, such as various doors, a trunk, and
cabin features such as air, music, lighting, touch-screen
display components (such as those used in connection with
navigation systems), and the like.

[0054] The data storage device 32 stores data for use in
automatically controlling the vehicle 100. As will be appre-
ciated, the data storage device 32 may be part of the
controller 34, separate from the controller 34, or part of the
controller 34 and part of a separate system.

[0055] The controller 34 includes at least one processor 44
and a computer-readable storage device or media 46. The
processor 44 may be any custom-made or commercially
available processor, a central processing unit (CPU), a
graphics processing unit (GPU), an application specific
integrated circuit (ASIC) (e.g., a custom ASIC implement-
ing a neural network), a field programmable gate array
(FPGA), an auxiliary processor among several processors
associated with the controller 34, a semiconductor-based
microprocessor (in the form of a microchip or chip set), any
combination thereof, or generally any device for executing
instructions. The computer readable storage device or media
46 may include volatile and nonvolatile storage in read-only
memory (ROM), random-access memory (RAM), and keep-
alive memory (KAM), for example. KAM is a persistent or
non-volatile memory that may be used to store various
operating variables while the processor 44 is powered down.
The computer-readable storage device or media 46 may be
implemented using any of a number of known memory
devices such as PROMs (programmable read-only memory),
EPROMs (electrically PROM), EEPROMSs (electrically
erasable PROM), flash memory, or any other electric, mag-
netic, optical, or combination memory devices capable of
storing data, some of which represent executable instruc-
tions, used by the controller 34 in controlling the vehicle
100. In various embodiments, controller 34 is configured to
implement a stream manager 110 as discussed in detail
below.

[0056] The instructions may include one or more separate
programs, each of which comprises an ordered listing of
executable instructions for implementing logical functions.
The instructions, when executed by the processor 44, receive
and process signals (e.g., sensor data) from the sensor
system 28, perform logic, calculations, methods and/or
algorithms for automatically controlling the components of
the vehicle 100, and generate control signals that are trans-
mitted to the actuator system 30 to automatically control the
components of the vehicle 100 based on the logic, calcula-
tions, methods, and/or algorithms. Although only one con-
troller 34 is shown in FIG. 1, embodiments of the vehicle
100 may include any number of controllers 34 that commu-
nicate over any suitable communication medium or a com-
bination of communication mediums and that cooperate to
process the sensor signals, perform logic, calculations,

Aug. 13,2020

methods, and/or algorithms, and generate control signals to
automatically control features of the vehicle 100.

[0057] The communication system 36 is configured to
wirelessly communicate information to and from other enti-
ties 48, such as but not limited to, other vehicles (“V2V”
communication), infrastructure (“V2I” communication),
networks (“V2N” communication), pedestrian (“V2P” com-
munication), remote transportation systems, and/or user
devices. In an exemplary embodiment, the communication
system 36 is a wireless communication system configured to
communicate via a wireless local area network (WLAN)
using IEEE 802.11 standards or by using cellular data
communication. However, additional or alternate commu-
nication methods, such as a dedicated short-range commu-
nications (DSRC) channel, are also considered within the
scope of the present disclosure. DSRC channels refer to
one-way or two-way short-range to medium-range wireless
communication channels specifically designed for automo-
tive use and a corresponding set of protocols and standards.

[0058] In accordance with various embodiments, control-
ler 34 may implement an autonomous driving system (ADS)
70 as shown in FIG. 2. That is, suitable software and/or
hardware components of controller 34 (e.g., processor 44
and computer-readable storage device 46) may be utilized to
provide an autonomous driving system 70 that is used in
conjunction with vehicle 100.

[0059] In various embodiments, the instructions of the
autonomous driving system 70 may be organized by func-
tion or system. For example, as shown in FIG. 2, the
autonomous driving system 70 can include a perception
system 74, a positioning system 76, a path planning system
78, and a vehicle control system 80. As can be appreciated,
in various embodiments, the instructions may be organized
into any number of systems (e.g., combined, further parti-
tioned, etc.) as the disclosure is not limited to the present
examples.

[0060] In various embodiments, the perception system 74
synthesizes and processes the acquired sensor data and
predicts the presence, location, classification, and/or path of
objects and features of the environment of the vehicle 100.
In various embodiments, the perception system 74 can
incorporate information from multiple sensors (e.g., sensor
system 28), including but not limited to cameras, lidars,
radars, and/or any number of other types of sensors.

[0061] The positioning system 76 processes sensor data
along with other data to determine a position (e.g., a local
position relative to a map, an exact position relative to a lane
of'a road, a vehicle heading, etc.) of the vehicle 100 relative
to the environment. As can be appreciated, a variety of
techniques may be employed to accomplish this localization,
including, for example, simultaneous localization and map-
ping (SLAM), particle filters, Kalman filters, Bayesian fil-
ters, and the like.

[0062] The path planning system 78 processes sensor data
along with other data to determine a path for the vehicle 100
to follow. The vehicle control system 80 generates control
signals for controlling the vehicle 100 according to the
determined path.

[0063] In various embodiments, the controller 34 imple-
ments machine learning techniques to assist the functionality
of the controller 34, such as feature detection/classification,
obstruction mitigation, route traversal, mapping, sensor inte-
gration, ground-truth determination, and the like.

US 2020/0257560 Al

[0064] FIG. 3A depicts an example vehicle 300 having a
plurality of perception devices for performing detection and
viewing operations for the vehicle. The detection operations
may provide object detection, pedestrian detection, sign
detection, traffic detection, lane detection, free space detec-
tion, occupant/seat belt/child seat detection, and others. The
viewing operations may provide a surround view, rear view,
blind spot view, in-cabin view, and others. The perception
devices, in this example, include a front radar 302 for
adaptive cruise control and distance warning, surround view
cameras 304a/30454 for displaying in an infotainment system
a view on either side of the vehicle, blind spot detection
radars 306a/3065, a front view camera 308, a rear view
camera 310, a front camera 312 with visual or haptic
warning, and a driver monitoring camera 314 with haptic or
acoustic warning. The multiple perception devices generate
multiple streams of perception data. The multiple streams of
perception data may be processed by a common set of
resources.

[0065] FIG. 3B is a block diagram of an example process-
ing module 320 in the vehicle 300 for processing multiple
streams 321-1 to 321-n of perception data. The example
processing module 320 includes an I/O controller 322 for
receiving the streams 321-1 to 321- and storing the streams
in memory 324. The example processing module 320 further
includes a plurality of processing devices 326 for processing
the data in the memory 324 and generating processed data
323. The plurality of processing devices 326 includes a
plurality of CPUs 328 and a plurality of accelerators 330,
each of which is under the control of a CPU 328. Examples
of an accelerator 330 include a graphics processing unit
(GPU), digital signal processor (DSP), field programmable
gate array (FPGA), a math co-processor, and others. The
CPUs 328 are configured to perform tasks and the accelera-
tors 330 are configured to perform computations.

[0066] To generate the processed data 323, multiple
instruction streams—one for each stream of perception data
from a perception device—contend for the same set of
resources (both hardware and software library functions). A
different algorithm may be used to process each instruction
stream and may require different devices that are suitable for
different types of computations. Each algorithm may require
cooperative CPUs and accelerators. Scheduling a CPU to
perform a task may require a different methodology than
scheduling an accelerator to perform a computation—com-
putations on a CPU can be preempted, but computations on
accelerators may not; and CPU execution may only be
concurrent (e.g., time multiplex), whereas accelerator
execution may be true parallel execution.

[0067] FIG. 4 is a block diagram depicting an example
instruction stream manager 400 in a vision processing
controller (VPC). The example instruction stream manager
400 may be implemented via hardware or as a software
service. The example instruction stream manager 400 is
configured to manage the distribution of instructions (e.g.,
for processing perception data from multiple perception data
sources) to a plurality of processing devices, wherein the
plurality of processing devices include a plurality of CPUs
401 and a plurality of accelerator devices 403. The multiple
perception data sources may include one or more of a
camera, radar, and lidar. The plurality of accelerator devices
may include one or more of a graphics processing unit
(GPU), digital signal processor (DSP), and field-program-
mable gate array (FPGA). The example instruction stream

Aug. 13,2020

manager 400 includes a dispatcher 402, a plurality of
scheduling queues 404, a plurality of CPU schedulers 406,
and a plurality of accelerator schedulers 408.

[0068] The example dispatcher 402 is configured to
receive multiple instruction streams, each instruction stream
including a plurality of requested computations for process-
ing data (e.g., perception data such as vision data) from a
data source (e.g., a perception data source such as a camera,
lidar, radar). The example dispatcher 402 is further config-
ured to partition each instruction stream into a plurality of
partitions based on a device or type of device to perform a
requested computation from the partition.

[0069] The example dispatcher 402 is configured to assign
a release time and deadline to each partition, wherein the
release time is the earliest point in time at which the partition
can start to execute and the deadline is the latest point in time
at which the partition must be completed to ensure perfor-
mance. The partitions of the same stream that are scheduled
for computation on different devised are to be scheduled
based on time (release time and deadline) to reduce syn-
chronization overhead for synchronizing computation per-
formance by the different devices.

[0070] Before assigning a release time and deadline, the
example dispatcher 402 is configured to compute the release
time and deadline. To compute the release time and deadline,
the example dispatcher 402 is configured to determine the
release time and deadline for processing a frame of percep-
tion data using proportional time slicing. The example
dispatcher 402 is configured to determine the release time
and deadline for processing a frame of perception data by
setting the release time of the first partition as the start time
of a frame, setting the release time of a subsequent partition
as the deadline of the immediately prior partition, and setting
the deadline of a partition equal to the release time of the
partition plus a proportional time slice of the frame.
[0071] FIG. 5A is a diagram illustrating parameters that
can be used to compute the release time and deadline. To
compute the release time and deadline, the example dis-
patcher 402 is configured to determine the release time and
deadline for processing a frame of perception data using the
following mathematical formulation: r,=t,, r,=d,_,, and

D—Ee;
#

di=ri+
P Ze;

€i»

wherein r, is the initial release time, t,, is start time of a frame
in the stream, r, is the release time of partition i on its device,
d, is the deadline of partition i on its device, D is maximum
allowed time to finish processing of a frame, and e, is
processing time of partition i on its device.

[0072] Referring back to FIG. 4, the example dispatcher
402 is configured to dispatch partition computations 407 to
a plurality of scheduling queues 404 to distribute processing
of the partition computations 407 amongst the plurality of
processing devices 401, 403. In this example, a partition
computation includes a partition with its assigned release
time and deadline.

[0073] The example dispatcher 402 is further configured
to notify via notification 409 a higher level entity that
incorporates the example dispatcher 402 (e.g., VPC) for
action (e.g., disable feature), and/or execute a predefined
admission control policy (e.g., skip a frame, or reassign
computations of one or more partitions) when a stream

US 2020/0257560 Al

exceeds its resource budget. The example dispatcher 402
receives resource usage information 411 from device sched-
ulers 406, 408 to determine the usage of various CPUs 401
and accelerators 403.

[0074] FIG. 5B is a diagram illustrating example stream
processing and FIG. 5C is a block diagram illustrating the
dispatching of computations 407 from various streams 405
to various scheduling queues 404. To dispatch partition
computations 407, the example dispatcher 402 is configured
to assign computations 407 for streams to processing
devices according to predefined strategies and regulate the
processing of each stream when one stream overuses its
assigned processing unit. The example dispatcher 402 is
configured to scan the streams according to their rates,
provide a static assignment of CPUs 401 for streams, and
provide a static assignment of accelerators 403 for streams.
The example dispatcher 402 is further configured to notify
via notification 501 a higher level entity that incorporates the
example dispatcher 402 for action (e.g., disable feature),
and/or execute a predefined admission control policy (e.g.,
skip a frame, or reassign computations of one or more
partitions) when a stream exceeds its resource budget. The
example dispatcher 402 receives resource usage information
503 from device schedulers (not shown) to determine the
usage of various CPUs 401 and accelerators 403. Compu-
tations 407 provided to the queues 404 are subsequently
provided to schedulers (not shown) to schedule actions 409
by their associated devices.

[0075] The example dispatcher 402 uses information col-
lected offline and stored in a table (e.g. as calibration) for
assigning calculations 407 to queues 404. Depicted in the
table below is example information that may be collected.

Aug. 13,2020

selected to run the code segment of the stream identifier
(operation 610), when it is determined that the code segment
of the stream identifier can be completed on the device
identifier selected to run the code segment of the stream
identifier (yes at decision 608). The example process 600
includes excluding the device identifier selected to run the
code segment of the stream identifier (operation 612) and
selecting a different device identifier to run the code segment
of the stream identifier that has minimum usage (operation
606), when it is determined that code segment of stream
identifier cannot be completed on the device identifier
selected to run the code segment of the stream identifier (no
at decision 608) and another device identifier can be selected
to run the code segment of the stream identifier (yes at
decision 614).

[0078] The example process 600 includes sending a noti-
fication to the higher level entity (e.g., VPC) and/or execut-
ing a predefined admission control policy (e.g., skip a frame,
or reassign computations of one or more partitions) (opera-
tion 616) and moving to the next stream identifier (operation
618), when it is determined that the code segment of the
stream identifier cannot be completed on a device identifier
selected to run the code segment of the stream identifier (no
at decision 608) and no other device identifier can be
selected to run the code segment of the stream identifier (no
at decision 614).

[0079] After sending the code segment of the stream
identifier to the selected device identifier to run the code
segment of the stream identifier (operation 610), the
example process 600 includes moving to the next code
segment of the stream identifier (operation 620), when
another code segment of the stream identifier exists (yes at

strm__id seg_comp dev_id time_ ¢ s_time e_time mem comm

1 cl cpuO, 1 1 0 5 1 8

al gpul 0.4 5 10 10 10

al cpul 3 5 12 2 3

c2 cpuO, 1 2 12 20 6 3

2 cl cpul 2 0 4 2 10

al gpul 1 4 7 3 10

a2 gpul 2 7 10 3 3

4 7 13 1 6

a2 cpul

strm__id: stream identifier

seg_comp: code segment of strm_ id

dev_id: device identifier to run seg_ comp

time__c: computation time of seg_comp on dev_id
s_time: seg_comp earliest start time

e_time: seg_comp latest completion time

mem: memory resource usage for seg_comp

comm: communication resource usage for seg_comp

[0076] FIG. 6 is a process flow chart depicting an example
process 600 performed by an example dispatcher 402. The
example process 600 includes reading input from a stream
identifier (operation 602); processing a current code segment
of the stream identifier (operation 604); selecting a device
identifier with minimum usage to run the code segment of
the stream identifier (operation 606); and determining if the
code segment of the stream identifier can be completed on
the device identifier selected to run the code segment of the
stream identifier based on release time, deadline, and device
usage (decision 608).

[0077] The example process 600 includes sending a code
segment of the stream identifier to the device identifier

decision 622). After sending the code segment of the stream
identifier to the device identifier selected to run the code
segment of the stream identifier (operation 610), the
example process includes moving to the next stream iden-
tifier (operation 618), when another code segment of the
stream identifier does not exist (no at decision 622). After
moving to the next stream identifier (operation 618), the
example process 600 includes reading input from the stream
identifier (operation 602). After moving to next code seg-
ment of the stream identifier (operation 620), the example
process 600 includes processing the current code segment of
the stream identifier (operation 604).

[0080] Referring back to FIG. 4, the example scheduling
queues 404 are arranged in memory, wherein each example

US 2020/0257560 Al

scheduling queue 404 is associated with a unique processing
device 401, 403. The example scheduling queues 404 are
arranged as priority queues. Each example scheduling queue
404 is static, organized with a predefined, specific read
policy (e.g., FIFO, prioritized, etc), and orders computation
according to priority.

[0081] FIG. 7A is a block diagram depicting an example
environment 700 associated with an instruction stream man-
ager. The example environment 700 includes a plurality of
CPU queues 702, a plurality of CPU schedulers 704, and a
plurality of CPUs 706, that have received tasks (e.g., Taskl,
Task2, Task3) from the CPU schedulers 704. Each of the
example CPU schedulers 704 is assigned to a specific CPU
706 and a specific scheduling queue 702. A set of predefined
tasks is assigned to each CPU 706, and a task may require
the execution of computations from one or more streams.
For each stream, CPU computations 701 are always
assigned to a specific CPU 706 and the tasks of the specific
CPU 706. Each example CPU scheduler 704 is configured to
schedule tasks to its associated CPU 706 based on task
priority, release time, and deadline. Each example CPU
scheduler 704 is configured to monitor usage of its associ-
ated CPU 706 and report the usage 705 to the dispatcher
module (e.g., example dispatcher 402).

[0082] FIG. 7B is a block diagram depicting another
example environment 710 associated with an instruction
stream manager. The example environment 710 includes a
plurality of accelerator queues 712, a plurality of accelerator
schedulers 714, and a plurality of accelerators 716. Each of
the example accelerator schedulers 704 is assigned to a
specific scheduling queue 712 and a specific accelerator 716
or type of accelerator that shares the same scheduling policy.
Each example accelerator scheduler 714 is configured to
schedule accelerator computations 711 to its associated
accelerator 716 based on priority, release time, and deadline.
Each example accelerator scheduler 714 is configured to
schedule accelerator computations 711 from different
streams to its associated accelerator 716 for execution in
ascending order of their dispatch when the start of execution
is not dependent on the completion of a precedent CPU task.
Each example accelerator scheduler 714 is configured to
communicate with a CPU scheduler 704 that is assigned
tasks with computations from a stream serviced by the
accelerator scheduler 714, but is not configured to commu-
nicate with other accelerator schedulers 714. Each example
accelerator scheduler 714 can communicate with a CPU
scheduler 704 that is assigned tasks with computations from
a stream serviced by the accelerator scheduler 714 to deter-
mine when computations dependent on completion of tasks
by a CPU 706 can be scheduled. Each example accelerator
scheduler 714 is configured to monitor usage of its associ-
ated accelerator 716, use a bandwidth server (not shown) to
regulate requests from different streams, and report the
usage 715 to the dispatcher module (e.g., example dis-
patcher 402).

[0083] FIG. 8 is a process flow chart depicting an example
process 800 in an example instruction stream manager 400
(e.g., in a vision processing controller (VPC)) for managing
the distribution of instructions (e.g., for processing percep-
tion data from multiple perception data sources using) to a
plurality of processing devices. The order of operation
within process 800 is not limited to the sequential execution

Aug. 13,2020

as illustrated in the figure, but may be performed in one or
more varying orders as applicable and in accordance with
the present disclosure.

[0084] The example process 800 includes receiving the
plurality of instruction streams, wherein each instruction
stream including a plurality of requested computations (op-
eration 802).

[0085] The example process 800 includes partitioning
each instruction stream into a plurality of partitions based on
a de