US 20200252608A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0252608 A1

RAMASUBRAMONIAN et al. (43) Pub. Date: Aug. 6, 2020
(54) SUB-PARTITION INTRA PREDICTION HO4N 19/59 (2006.01)
HO4N 19/61 (2006.01)
(71) Applicant: QUALCOMM Incorporated, San HO4N 19/593 (2006.01)
Diego, CA (US) (52) U.S. CL
. CPC ... HO4N 19/119 (2014.11); HO4N 19/176
(72) Inventors: Adarsh Krishnan , (2014.11); HO4N 19/593 (2014.11); HO4N
RAMASUBRAMONIAN, Irvine, CA 19/61 (2014.11); HO4N 19/59 (2014.11)
(US); Geert Van der Auwera, Del Mar,
CA (US); Luong PHAM VAN, San (57) ABSTRACT
Diego, CA (US); Marta . . . o .
KARCZEWICZ, San Diego, CA (US) Technlques are descnbeq for improving 1nt.ra-subpart1t10n-
ing (ISP) mode for splitting coding blocks into sub-blocks.
(21) Appl. No.: 16/777,732 In some cases, whether ISP mode is enabled for a coding
block is based on size constraints pertaining to data units
(22) Filed: Jan. 30, 2020 (e.g., VPDUs, transform blocks, among others). For
instance, based on a size constraint related to a VPDU, the
Related U.S. Application Data ISP mode can be disabled for coding blocks crossing VPDU
.. L. boundaries. In some cases, whether to enable ISP mode may
(60) Provisional application No. 62/801,625, filed on Feb. be based on comparison of the width and/or height of the
5, 2019. coding block to size thresholds corresponding to one or
A . . more maximum transform block sizes. In some cases, where
Publication Classification the ISP mode is enabled for a coding block, a value of a flag
(51) Int. CL used for defining a type of split, horizontal or vertical, for the
HO4N 19/119 (2006.01) coding block, can be inferred based on the width and/or
HO4N 19/176 (2006.01) height of the coding block relative to one or more thresholds.

~J
(@]

OBTAIN AN ENCODED VIDEO BITSTREAM INCLUDING VIDEO DATA
702

DETERMINE THAT AN INTRA-SUBPARTITIONS SPLIT FLAG IS NOT PRESENT IN THE
VIDEO BITSTREAM FOR A CURRENT BLOCK OF VIDEO DATA, THE INTRA-
SUBPARTITIONS SPLIT FLAG SPECIFYING WHETHER A TYPE OF SPLIT FOR AN INTRA-
SUBPARTITIONS MODE USED FOR THE CURRENT BLOCK IS HORIZONTAL OR VERTICAL

704

DETERMINE THAT AT LEAST ONE OF A WIDTH AND A HEIGHT OF THE CURRENT BLOCK
IS GREATER THAN A SIZE THRESHOLD CORRESPONDING TO A MAXIMUM TRANSFORM
BLOCK SIZE

706

DETERMINE A VALUE FOR THE INTRA-SUBPARTITIONS SPLIT FLAG FOR THE CURRENT
BLOCK BASED ON WHETHER THE WIDTH OR THE HEIGHT OF THE CURRENT BLOCK IS
GREATER THAN THE SIZE THRESHOLD

708

Patent Application Publication Aug. 6,2020 Sheet 1 of 11 US 2020/0252608 A1

100
VIDEO Egﬁg”[z]ER STORAGE OUTPUT
102 e
A
ENCODING DEVICE 104
120
v
VIDEO
DESTINATION STORAGE DESS&ER INPUT
DEVICE 118 116 114
122 —
DECODING DEVICE 112

FIG. 1

Aug. 6,2020 Sheet 2 of 11 US 2020/0252608 A1

Patent Application Publication

N|dg [eoiep

490¢ e90C
%9019 dSI %9019 dSI

¢IM > ¢/

J|dg [ejuozLioH

aroc
%90Iq dSI

ev0c
%90Iq dSI

M

¢/H

—> -

¢/H

¢ Old

uoniled pA X H [eulblLO

[43r4
3o0|g Jualing

M

Aug. 6,2020 Sheet 3 of 11 US 2020/0252608 A1

Patent Application Publication

N|dg [eoiep
P90E 290¢ J90¢ B90¢
%oo|g %oo|g %oo|g %oo|g
dsl dslI dslI dsl

/My /\\ > /\\ > [\

J|dg [ejuozLioH

PY0€ %20|9 dSI

F0€ X209 dSI

a0€ %°0I9 dSI

By0€ %90[9 dSI

/H
/H
/H

/H
\j

€ Old

uoniled pA X H [eulblLO

20€

3o0|g Jualing

M

Patent Application Publication Aug. 6,2020 Sheet 4 of 11 US 2020/0252608 A1

- cbWidth >
A
Coding Block
cbHeight 402
\J

FIG. 4

Patent Application Publication Aug. 6,2020 Sheet 5 of 11

4—— cbWidth——»

A
cbHeight FirS;LEgOCk Seco& Block
\
Third Block Fourth Block
=4 526

<«+— SizeV_width

VPDU
200

FIG. 5

US 2020/0252608 A1

SizeV_height

Patent Application Publication Aug. 6,2020 Sheet 6 of 11 US 2020/0252608 A1

- cbWidth >
A
- SizeV——»
. First VPDU Second VPDU
SizeV 630 632
coHeight Y
Third VPDU Fourth VPDU
634 636
\J
Coding Block
602

FIG. 6

Patent Application Publication Aug. 6,2020 Sheet 7 of 11 US 2020/0252608 A1

~J
o

OBTAIN AN ENCODED VIDEO BITSTREAM INCLUDING VIDEO DATA
702

l

DETERMINE THAT AN INTRA-SUBPARTITIONS SPLIT FLAG IS NOT PRESENT IN THE
VIDEO BITSTREAM FOR A CURRENT BLOCK OF VIDEO DATA, THE INTRA-
SUBPARTITIONS SPLIT FLAG SPECIFYING WHETHER A TYPE OF SPLIT FOR AN INTRA-
SUBPARTITIONS MODE USED FOR THE CURRENT BLOCK IS HORIZONTAL OR VERTICAL
704

DETERMINE THAT AT LEAST ONE OF A WIDTH AND A HEIGHT OF THE CURRENT BLOCK
IS GREATER THAN A SIZE THRESHOLD CORRESPONDING TO A MAXIMUM TRANSFORM

BLOCK SIZE
706

l

DETERMINE A VALUE FOR THE INTRA-SUBPARTITIONS SPLIT FLAG FOR THE CURRENT
BLOCK BASED ON WHETHER THE WIDTH OR THE HEIGHT OF THE CURRENT BLOCK IS
GREATER THAN THE SIZE THRESHOLD
708

FIG. 7

Patent Application Publication Aug. 6,2020 Sheet 8 of 11 US 2020/0252608 A1

(09}
o
o

OBTAIN AN ENCODED VIDEO BITSTREAM INCLUDING VIDEO DATA
802

l

DETERMINE THAT AN INTRA-SUBPARTITION MODE FOR PARTITIONING A CURRENT
BLOCK OF THE VIDEO DATA 1S ENABLED FOR THE CURRENT BLOCK
804

l

DETERMINE A PARTITIONING STRUCTURE FOR PARTITIONING THE CURRENT BLOCK
INTO SUB-BLOCKS, WHEREIN DIMENSIONS OF THE SUB-BLOCKS RESULTING FROM
THE PARTITIONING DO NOT EXCEED A SIZE THRESHOLD
806

FIG. 8

Patent Application Publication Aug. 6,2020 Sheet 9 of 11 US 2020/0252608 A1

00

OBTAIN A CURRENT BLOCK OF A PICTURE OF VIDEO DATA
902

l

DETERMINE WHETHER AT LEAST ONE OF A WIDTH OF THE CURRENT BLOCK OF THE
PICTURE IS GREATER THAN A WIDTH SIZE THRESHOLD AND A HEIGHT OF THE
CURRENT BLOCK IS GREATER THAN A HEIGHT SIZE THRESHOLD, THE WIDTH SIZE
THRESHOLD CORRESPONDING TO A WIDTH OF A DATA UNIT AND THE HEIGHT SIZE
THRESHOLD CORRESPONDING TO A HEIGHT OF THE DATA UNIT
904

DETERMINE WHETHER AN INTRA-SUBPARTITIONS MODE FLAG IS TO BE SIGNALED FOR
THE CURRENT BLOCK BASED ON WHETHER AT LEAST ONE OF THE WIDTH OF THE
CURRENT BLOCK IS GREATER THAN THE WIDTH SIZE THRESHOLD AND THE HEIGHT OF
THE CURRENT BLOCK IS GREATER THAN THE HEIGHT SIZE THRESHOLD, WHEREIN A
VALUE OF THE INTRA-SUBPARTITIONS MODE FLAG INDICATES WHETHER THE
CURRENT BLOCK IS PARTITIONED INTO RECTANGULAR TRANSFORM BLOCK

SUBPARTITIONS
906

l

GENERATE, BASED ON DETERMINING WHETHER THE INTRA-SUBPARTITIONS MODE
FLAG IS TO BE SIGNALED FOR THE CURRENT BLOCK, AN ENCODED BITSTREAM
INCLUDING AT LEAST THE CURRENT BLOCK
908

FIG. 9

US 2020/0252608 A1

Aug. 6,2020 Sheet 10 of 11

Patent Application Publication

AHpererrerrars

15
30IA3a
ONISSIO0NUd . L
150d oL ©OId vOr
JOIA3A ONIAOONS
- 0018 .79
% % 09 as3y SH0018 03aIn
LNN /NOOTM *, Q3LONYLSNODTY =
1INN , 1INN ONISSON I 5
ONIGOONT | %™ NOLLYZILNVND WX j LINN 3L
AJOMING SSSEAN INHOSNVHL Ly
ISHIANI
o172
LINNONISSI00Nd
NOLLOIQTId-VlLNI
¥9
AHOWNEIN
W FUNLOId
LINN
NOILYSN3dINOD
NOILOW
- B
F472
SLNIWT T3 XVLNAS LINA NOLLVINLLSS
NOILOW
I
1INN ONISSI00Nd
SINZIOIHH309 NOILOIdTd
INHOSNYL 05 i
WNaIS3y - o -
QIZINVND | 7 &n \ \+ | -
NOILYZILNYNO ONISSF00Ud / oy /+ Y0019 03AIN /LINN ONINOILILYY
NAOASNVEL I vnaisad

vivad
O=AdIN

US 2020/0252608 A1

Aug. 6,2020 Sheet 11 of 11

Patent Application Publication

L1 "Old

OZdin
d3aoo3d

SHM001d
\Eu<:o_wmm o7 -
16 /L LINN ONISS300Nd
LINN ¥3LT4 M_..\ INHOJSNVHL 1INN Mw_m%“ﬂr__z,%o
\ 4 ISYIANI
06~
% 78
mmw_\ﬁ_m,_ LINN ONISSTO0Hd
NOILOIgId-VHLNI SIN3I0I44300
azZILNYND
|N-|w|. [
NG 1INN wmm_waoomo
NOILYSNIJNOD
NOLLOW SINIWI T XYLNAS AJOMINT
T8
LINN ONISSTO0Nd
NOLLOIa=d

Zit
JIIAIA ONIAOA

6L
ALLLNSA
HHOMLEN

o iffrrrensnrnennerncraecarenresne

Wvddisld
O3AIA A3A0INE

US 2020/0252608 Al

SUB-PARTITION INTRA PREDICTION

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/801,625, filed on Feb. 5, 2019,
which is hereby incorporated by reference, in its entirety and
for all purposes.

FIELD

[0002] This application is related to video coding. More
specifically, this application relates to systems, methods, and
computer-readable media for performing improved video
coding.

BACKGROUND

[0003] Many devices and systems allow video data to be
processed and output for consumption. Digital video data
includes large amounts of data to meet the demands of
consumers and video providers. For example, consumers of
video data desire video of the utmost quality, with high
fidelity, resolutions, frame rates, and the like. As a result, the
large amount of video data that is required to meet these
demands places a burden on communication networks and
devices that process and store the video data.

[0004] Various video coding techniques may be used to
compress video data. Video coding is performed according
to one or more video coding standards. For example, video
coding standards include high-efficiency video coding
(HEVC), advanced video coding (AVC), MPEG-2 Part 2
coding (MPEG stands for moving picture experts group),
VP9, Alliance of Open Media (AOMedia) Video 1 (AV1),
Essential Video Coding (EVC), or the like. Video coding
generally utilizes prediction methods (e.g., inter-prediction,
intra-prediction, or the like) that take advantage of redun-
dancy present in video images or sequences. An important
goal of video coding techniques is to compress video data
into a form that uses a lower bit rate, while avoiding or
minimizing degradations to video quality. With ever-evolv-
ing video services becoming available, encoding techniques
with better coding efficiency are needed.

BRIEF SUMMARY

[0005] Systems and methods are described herein for
improving the use of an intra-subpartitioning (ISP) mode for
splitting coding blocks of video data into sub-blocks. In
some examples, a decision on whether an ISP mode can be
allowed for a coding block may be based on size constraints.
The size constraints can be implemented based on one or
more size thresholds defined based on a size of a data unit.
For example, a width size threshold can be defined as a
width of a data unit and a height size threshold can be
defined as a height of the data unit. In some cases, a single
threshold can be defined (e.g., when the width and height of
the data unit are equal). The data unit can include a Virtual
Pipeline Data Unit (VPDU), a transform block, or other data
unit or block. In one illustrative example, one or more size
thresholds can be used to prevent the ISP mode from being
enabled for coding blocks which cross VPDU boundaries.
Such constraints, referred to as VPDU constraints, improve
the processing efficiencies of VPDUs by ensuring that
sub-blocks obtained from splitting a coding block are not
processed separately in different VPDUs.

Aug. 6, 2020

[0006] In some examples, a determination of whether to
enable splitting of a coding block using the ISP mode may
be based on a comparison of the width and height of the
coding block to size thresholds corresponding to one or
more maximum transform block sizes. In some examples,
where the ISP mode is enabled for a coding block, an
optimal type of split (horizontal or vertical) can be deter-
mined based on the width and height of the coding block.

[0007] In some examples, a partitioning structure for the
ISP mode is provided. The partitioning structure ensures that
the dimensions of sub-blocks obtained by partitioning a
coding block do not violate a size threshold such as the
maximum transform block size. In some examples, a recur-
sive tree structure is provided for ensuring that the sub-
partition split type is determined to be horizontal or vertical
in a manner which leads to sizes of the sub-blocks being
compliant with the maximum transform block size threshold
requirements. In some examples, the number of sub-blocks
that a coding block is split into is determined such that the
dimensions of the sub-blocks are compliant with the maxi-
mum transform block size threshold requirements. In some
examples, enabling the ISP mode is adjusted to ensure that
dimensions of sub-blocks obtained from splitting a coding
block are compliant with the maximum transform block size
threshold requirements.

[0008] According to at least one example, an apparatus for
encoding video data is provided. The apparatus includes a
memory and a processor implemented in circuitry. The
processor is configured to and can obtain a current block of
a picture of video data; determine whether at least one of a
width of the current block of the picture is greater than a
width size threshold and a height of the current block is
greater than a height size threshold, the width size threshold
corresponding to a width of a data unit and the height size
threshold corresponding to a height of the data unit; deter-
mine whether an intra-subpartitions mode flag is to be
signaled for the current block based on whether at least one
of the width of the current block is greater than the width
size threshold and the height of the current block is greater
than the height size threshold, wherein a value of the
intra-subpartitions mode flag indicates whether the current
block is partitioned into rectangular transform block sub-
partitions; and generate, based on determining whether the
intra-subpartitions mode flag is to be signaled for the current
block, an encoded video bitstream including at least the
current block.

[0009] In another example, a method for encoding video
data is provided. The method includes obtaining a current
block of a picture of video data; determining whether at least
one of a width of the current block of the picture is greater
than a width size threshold and a height of the current block
is greater than a height size threshold, the width size
threshold corresponding to a width of a data unit and the
height size threshold corresponding to a height of the data
unit; determining whether an intra-subpartitions mode flag is
to be signaled for the current block based on whether at least
one of the width of the current block is greater than the width
size threshold and the height of the current block is greater
than the height size threshold, wherein a value of the
intra-subpartitions mode flag indicates whether the current
block is partitioned into rectangular transform block sub-
partitions; and generating, based on determining whether the

US 2020/0252608 Al

intra-subpartitions mode flag is to be signaled for the current
block, an encoded video bitstream including at least the
current block.

[0010] In another example, a non-transitory computer-
readable medium is provided that has stored thereon instruc-
tions that, when executed by one or more processors, cause
the one or more processors to: obtain a current block of a
picture of video data; determine whether at least one of a
width of the current block of the picture is greater than a
width size threshold and a height of the current block is
greater than a height size threshold, the width size threshold
corresponding to a width of a data unit and the height size
threshold corresponding to a height of the data unit; deter-
mine whether an intra-subpartitions mode flag is to be
signaled for the current block based on whether at least one
of the width of the current block is greater than the width
size threshold and the height of the current block is greater
than the height size threshold, wherein a value of the
intra-subpartitions mode flag indicates whether the current
block is partitioned into rectangular transform block sub-
partitions; and generate, based on determining whether the
intra-subpartitions mode flag is to be signaled for the current
block, an encoded video bitstream including at least the
current block.

[0011] In another example, an apparatus for encoding
video data is provided. The apparatus includes means for
obtaining a current block of a picture of video data; means
for determining whether at least one of a width of the current
block of the picture is greater than a width size threshold and
a height of the current block is greater than a height size
threshold, the width size threshold corresponding to a width
of a data unit and the height size threshold corresponding to
a height of the data unit; means for determining whether an
intra-subpartitions mode flag is to be signaled for the current
block based on whether at least one of the width of the
current block is greater than the width size threshold and the
height of the current block is greater than the height size
threshold, wherein a value of the intra-subpartitions mode
flag indicates whether the current block is partitioned into
rectangular transform block subpartitions; and means for
generating, based on determining whether the intra-subpar-
titions mode flag is to be signaled for the current block, an
encoded video bitstream including at least the current block.
[0012] In some aspects of the methods, apparatuses, and
computer-readable media described above, the width size
threshold is equal to the height size threshold.

[0013] In some aspects of the methods, apparatuses, and
computer-readable media described above, the width size
threshold is different than the height size threshold.

[0014] In some aspects of the methods, apparatuses, and
computer-readable media described above, a value of the
intra-subpartitions mode flag being equal to a first value
specifies that the current block is partitioned into rectangular
transform block subpartitions, and the value of the intra-
subpartitions mode flag being equal to a second value
specifies that the current block is not partitioned into rect-
angular transform block subpartitions.

[0015] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining the width of the current block is greater than the
width size threshold or the height of the current block is
greater than the height size threshold; and based on the
determination that the width of the current block is greater
than the width size threshold or the height of the current

Aug. 6, 2020

block is greater than the height size threshold, determining
the value of the intra-subpartitions mode flag for the current
block to be equal to the second value.

[0016] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining the width of the current block is less than or
equal to the width size threshold and the height of the current
block is less than or equal to the height size threshold; and
based on the determination that the width of the current
block is less than or equal to the width size threshold and the
height of the current block is less than or equal to the height
size threshold, determining to signal the intra-subpartitions
mode flag for the current block. For example, the intra-
subpartitions mode flag for the current block can be set to be
equal to the first value or the second value.

[0017] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining the width of the current block is less than or
equal to a size threshold and the height of the current block
is less than or equal to the size threshold, the size threshold
corresponding to a maximum transform block size; and
based on the determination that the width of the current
block is less than or equal to the size threshold and the height
of'the current block is less than or equal to the size threshold,
determining to signal the intra-subpartitions mode flag for
the current block. For example, the intra-subpartitions mode
flag for the current block can be set to be equal to the first
value or the second value.

[0018] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining the width of the current block is less than or
equal to a size threshold or the height of the current block is
less than or equal to the size threshold, the size threshold
corresponding to a maximum transform block size; and
based on the determination that the width of the current
block is less than or equal to the size threshold or the height
of'the current block is less than or equal to the size threshold,
determining that the value of the intra-subpartitions mode
flag for the current block is the second value.

[0019] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining the width of the current block is less than or
equal to the width size threshold and the height of the current
block is less than or equal to the height size threshold; and
based on the determination that the width of the current
block is less than or equal to the width size threshold and the
height of the current block is less than or equal to the height
size threshold, determining the value of the intra-subparti-
tions mode flag for the current block to be equal to the first
value.

[0020] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining the width of the current block is less than or
equal to a size threshold and the height of the current block
is less than or equal to the size threshold, the size threshold
corresponding to a maximum transform block size; and
based on the determination that the width of the current
block is less than or equal to the size threshold and the height
of'the current block is less than or equal to the size threshold,
determining that value of the intra-subpartitions mode flag
for the current block to be equal to the first value.

[0021] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining the width of the current block is less than or

US 2020/0252608 Al

equal to a size threshold or the height of the current block is
less than or equal to the size threshold, the size threshold
corresponding to a maximum transform block size; and
based on the determination that the width of the current
block is less than or equal to the size threshold or the height
of'the current block is less than or equal to the size threshold,
determining that the value of the intra-subpartitions mode
flag for the current block is the second value.

[0022] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining the intra-subpartitions mode flag is to be sig-
naled for the current block; and based on the determination
that the intra-subpartitions mode flag is to be signaled for the
current block, including the intra-subpartitions mode flag for
the current block in the encoded video bitstream.

[0023] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining that at least one of a width and a height of the
current block is greater than a size threshold corresponding
to a maximum transform block size; and based on the
determination that the width or the height of the current
block is greater than the size threshold corresponding to the
maximum transform block size, determining a value for an
intra-subpartitions split flag for the current block, the intra-
subpartitions split flag specifying whether a type of split for
partitioning the current block is horizontal or vertical.
[0024] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining the width of the current block is greater than the
size threshold; and based on the determination that the width
of the current block is greater than the size threshold,
determining a first split value for the intra-subpartitions split
flag, the first split value corresponding to a vertical split
type.

[0025] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining the height of the current block is greater than
the size threshold; and based on the determination that the
height of the current block is greater than the size threshold,
determining a second split value for the intra-subpartitions
split flag, the second split value corresponding to a horizon-
tal split type.

[0026] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
dividing the current block vertically or horizontally into
sub-partitions based on the value of the intra-subpartitions
split flag for the current block.

[0027] In some aspects of the methods, apparatuses, and
computer-readable media described above, the current block
is an intra-predicted block.

[0028] In some aspects of the methods, apparatuses, and
computer-readable media described above, the data unit is a
Virtual Pipeline Data Unit (VPDU).

[0029] In some aspects of the methods, apparatuses, and
computer-readable media described above, the data unit is a
transform block. In some cases, the width size threshold and
the height size threshold are equal to a maximum transform
block size.

[0030] In another example, a method of decoding video
data is provided. The method includes obtaining an encoded
video bitstream including video data; determining that an
intra-subpartitions split flag is not present in the encoded
video bitstream for a current block of video data, the
intra-subpartitions split flag specifying whether a type of

Aug. 6, 2020

split for an intra-subpartitions mode used for the current
block is horizontal or vertical; determining that at least one
of' a width and a height of the current block is greater than
a size threshold corresponding to a maximum transform
block size; and determining a value for the intra-subparti-
tions split flag for the current block based on whether the
width or the height of the current block is greater than the
size threshold.

[0031] In another example, an apparatus for decoding
video data is provided. The apparatus includes a memory
and a processor implemented in circuitry. The processor is
configured to and can obtain an encoded video bitstream
including video data; determine that an intra-subpartitions
split flag is not present in the encoded video bitstream for a
current block of video data, the intra-subpartitions split flag
specifying whether a type of split for an intra-subpartitions
mode used for the current block is horizontal or vertical;
determine that at least one of a width and a height of the
current block is greater than a size threshold corresponding
to a maximum transform block size; and determine a value
for the intra-subpartitions split flag for the current block
based on whether the width or the height of the current block
is greater than the size threshold.

[0032] In another example, a non-transitory computer-
readable medium is provided that has stored thereon instruc-
tions that, when executed by one or more processors, cause
the one or more processors to: obtain an encoded video
bitstream including video data; determine that an intra-
subpartitions split flag is not present in the encoded video
bitstream for a current block of video data, the intra-
subpartitions split flag specifying whether a type of split for
an intra-subpartitions mode used for the current block is
horizontal or vertical; determine that at least one of a width
and a height of the current block is greater than a size
threshold corresponding to a maximum transform block
size; and determine a value for the intra-subpartitions split
flag for the current block based on whether the width or the
height of the current block is greater than the size threshold.

[0033] In another example, an apparatus for decoding
video data is provided. The apparatus includes means for
obtaining an encoded video bitstream including video data;
means for determining that an intra-subpartitions split flag is
not present in the encoded video bitstream for a current
block of video data, the intra-subpartitions split flag speci-
fying whether a type of split for an intra-subpartitions mode
used for the current block is horizontal or vertical; means for
determining that at least one of a width and a height of the
current block is greater than a size threshold corresponding
to a maximum transform block size; and means for deter-
mining a value for the intra-subpartitions split flag for the
current block based on whether the width or the height of the
current block is greater than the size threshold

[0034] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining an intra-subpartitions mode flag is enabled for
the current block; and determining that the intra-subparti-
tions split flag is not present in the encoded video bitstream
based on the determination that the intra-subpartitions mode
flag is enabled for the current block, wherein the current
block is partitioned into rectangular transform block sub-
partitions using the intra-subpartitions mode based on the
intra-subpartitions mode flag being enabled for the current
block.

US 2020/0252608 Al

[0035] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining the width of the current block is greater than the
size threshold; and based on the determination that the width
of the current block is greater than the size threshold,
determining a first split value for the intra-subpartitions split
flag, the first split value corresponding to a vertical split
type.

[0036] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
splitting the current block into two or more sub-blocks using
the vertical split type, wherein respective widths of each of
the two or more sub-blocks are smaller than the width of the
current block based on the vertical split type.

[0037] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining the height of the current block is greater than
the size threshold; and based on the determination that the
height of the current block is greater than the size threshold,
determining a second split value for the intra-subpartitions
split flag, the second split value corresponding to a horizon-
tal split type.

[0038] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
splitting the current block into two or more sub-blocks using
the horizontal split type, wherein respective heights of each
of the two or more sub-blocks are smaller than the height of
the current block based on the horizontal split type.

[0039] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
determining that an intra-subpartitions mode flag for
enabling the intra-subpartitions mode for a second block of
the video data is not present in the encoded video bitstream;
and determining a mode value of the intra-subpartitions
mode flag for the second block based on the intra-subpar-
titions mode flag not being present in the encoded video
bitstream for the second block.

[0040] In some aspects of the methods, apparatuses, and
computer-readable media described above, the intra-subpar-
titions mode flag not being present in the encoded video
bitstream for the second block is indicative of at least one of
a width of the second block being greater than a width size
threshold or a height of the second block being greater than
a height size threshold, the width size threshold correspond-
ing to a width of a data unit and the height size threshold
corresponding to a height of the data unit.

[0041] In some aspects of the methods, apparatuses, and
computer-readable media described above, the width size
threshold is equal to the height size threshold.

[0042] In some aspects of the methods, apparatuses, and
computer-readable media described above, the width size
threshold is not equal to the height size threshold.

[0043] In some aspects of the methods, apparatuses, and
computer-readable media described above, the data unit is a
Virtual Pipeline Data Unit (VPDU).

[0044] In some aspects of the methods, apparatuses, and
computer-readable media described above, the data unit is a
transform block. In some cases, the width size threshold and
the height size threshold are equal to a maximum transform
block size.

[0045] In some aspects of the methods, apparatuses, and
computer-readable media described above, the current block
is an intra-predicted block.

Aug. 6, 2020

[0046] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
performing block-based partitioning of a block of video data
to generate one or more coding blocks including the current
block; determining the intra-subpartitions mode is enabled
for the current block; and based on determining the intra-
subpartitions mode is enabled for the current block, parti-
tioning the current block into two or more sub-blocks using
the intra-subpartitions mode.

[0047] Some aspects of the methods, apparatuses, and
computer-readable media described above further include
reconstructing the two or more sub-blocks by applying
respective two or more residual values to the two or more
sub-blocks.

[0048] In some aspects of the methods, apparatuses, and
computer-readable media described above, the apparatus
comprises a mobile device with a camera for capturing one
or more pictures.

[0049] Some aspects of the methods, apparatuses, and
computer-readable media described above, further include a
display for displaying one or more pictures.

[0050] This summary is not intended to identify key or
essential features of the claimed subject matter, nor is it
intended to be used in isolation to determine the scope of the
claimed subject matter. The subject matter should be under-
stood by reference to appropriate portions of the entire
specification of this patent, any or all drawings, and each
claim.

[0051] The foregoing, together with other features and
embodiments, will become more apparent upon referring to
the following specification, claims, and accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0052] Illustrative embodiments of the present application
are described in detail below with reference to the following
figures:

[0053] FIG. 1is ablock diagram illustrating an example of
an encoding device and a decoding device, in accordance
with some examples;

[0054] FIG. 2 is a conceptual diagram illustrating an
example of a division of blocks, in accordance with some
examples;

[0055] FIG. 3 is a conceptual diagram illustrating another
example of a division of blocks, in accordance with some
examples;

[0056] FIG. 4 is a conceptual diagram illustrating an
example of a coding block, in accordance with some
examples;

[0057] FIG. 5 is a conceptual diagram illustrating an
example of a VPDU containing four blocks, in accordance
with some examples;

[0058] FIG. 6 is a conceptual diagram illustrating an
example of current block spanning multiple VPDUs, in
accordance with some examples;

[0059] FIG. 7 is a flowchart illustrating an example of a
process of processing video data, in accordance with some
embodiments;

[0060] FIG. 8 is a flowchart illustrating an example of a
process of processing video data, in accordance with some
embodiments;

[0061] FIG. 9 is a flowchart illustrating an example of a
process of processing video data, in accordance with some
embodiments;

US 2020/0252608 Al

[0062] FIG. 10 is a block diagram illustrating an example
video encoding device, in accordance with some examples;
and

[0063] FIG. 11 is a block diagram illustrating an example
video decoding device, in accordance with some examples.

DETAILED DESCRIPTION

[0064] Certain aspects and embodiments of this disclosure
are provided below. Some of these aspects and embodiments
may be applied independently and some of them may be
applied in combination as would be apparent to those of skill
in the art. In the following description, for the purposes of
explanation, specific details are set forth in order to provide
a thorough understanding of embodiments of the applica-
tion. However, it will be apparent that various embodiments
may be practiced without these specific details. The figures
and description are not intended to be restrictive.

[0065] The ensuing description provides exemplary
embodiments only, and is not intended to limit the scope,
applicability, or configuration of the disclosure. Rather, the
ensuing description of the exemplary embodiments will
provide those skilled in the art with an enabling description
for implementing an exemplary embodiment. It should be
understood that various changes may be made in the func-
tion and arrangement of elements without departing from the
spirit and scope of the application as set forth in the
appended claims.

[0066] Video coding devices implement video compres-
sion techniques to encode and decode video data efficiently.
Video compression techniques may include applying differ-
ent prediction modes, including spatial prediction (e.g.,
intra-frame prediction or intra-prediction), temporal predic-
tion (e.g., inter-frame prediction or inter-prediction), inter-
layer prediction (across different layers of video data, and/or
other prediction techniques to reduce or remove redundancy
inherent in video sequences. A video encoder can partition
each picture of an original video sequence into rectangular
regions referred to as video blocks or coding units (de-
scribed in greater detail below). These video blocks may be
encoded using a particular prediction mode.

[0067] Video blocks may be divided in one or more ways
into one or more groups of smaller blocks. Blocks can
include coding tree blocks, prediction blocks, transform
blocks, or other suitable blocks. References generally to a
“block,” unless otherwise specified, may refer to such video
blocks (e.g., coding tree blocks, coding blocks, prediction
blocks, transform blocks, or other appropriate blocks or
sub-blocks, as would be understood by one of ordinary skill.
Further, each of these blocks may also interchangeably be
referred to herein as “units” (e.g., coding tree unit (CTU),
coding unit, prediction unit (PU), transform unit (TU), or the
like). In some cases, a unit may indicate a coding logical unit
that is encoded in a bitstream, while a block may indicate a
portion of video frame buffer a process is target to.

[0068] For inter-prediction modes, a video encoder can
search for a block similar to the block being encoded in a
frame (or picture) located in another temporal location,
referred to as a reference frame or a reference picture. The
video encoder may restrict the search to a certain spatial
displacement from the block to be encoded. A best match
may be located using a two-dimensional (2D) motion vector
that includes a horizontal displacement component and a
vertical displacement component. For intra-prediction
modes, a video encoder may form the predicted block using

Aug. 6, 2020

spatial prediction techniques based on data from previously
encoded neighboring blocks within the same picture.
[0069] The video encoder may determine a prediction
error. For example, the prediction can be determined as the
difference between the pixel values in the block being
encoded and the predicted block. The prediction error can
also be referred to as the residual. The video encoder may
also apply a transform to the prediction error (e.g., a discrete
cosine transform (DCT) or other suitable transform) to
generate transform coefficients. After transformation, the
video encoder may quantize the transform coefficients. The
quantized transform coefficients and motion vectors may be
represented using syntax elements, and, along with control
information, form a coded representation of a video
sequence. In some instances, the video encoder may entropy
code syntax elements, thereby further reducing the number
of bits needed for their representation.

[0070] A video decoder may, using the syntax elements
and control information discussed above, construct predic-
tive data (e.g., a predictive block) for decoding a current
frame. For example, the video decoder may add the pre-
dicted block and the compressed prediction error. The video
decoder may determine the compressed prediction error by
weighting the transform basis functions using the quantized
coeflicients. The difference between the reconstructed frame
and the original frame is called reconstruction error.

[0071] Systems and methods are described herein for
improving the use of an intra sub-partitioning or intra-
subpartitioning (ISP) mode for splitting coding blocks of
video data into sub-blocks, subject to one or more restric-
tions and/or constraints. In some examples, a decision of
whether to perform an ISP mode for a coding block is based
on size constraints. The size constraints can be based on one
or more size thresholds defined using a size of a data unit.
For example, as described in more detail below, a width size
threshold can be defined as a width of a data unit and a
height size threshold can be defined as a height of the data
unit. In some cases, a single threshold can be defined (e.g.,
when the width and height of the data unit are equal). The
data unit can include a Virtual Pipeline Data Unit (VPDU),
a transform block, or other data unit or block. In one
illustrative example, VPDU constraints are defined herein
that prevent the ISP mode from being enabled for coding
blocks that cross Virtual Pipeline Data Unit (VPDU) bound-
aries. Such VPDU constraints can improve the processing
efficiencies of VPDUs by ensuring that sub-blocks obtained
from splitting a coding block using ISP are not processed
separately in different VPDUs. In some examples, the
VPDU constraints may be applied by an encoder, where an
ISP mode flag is not signaled for a coding block in or with
an encoded video bitstream when the VPDU constraints are
violated by the coding block. In such examples, based on the
ISP mode flag not being signaled in or with the encoded
video bitstream, a value of the ISP mode flag can be inferred
by a decoder to be a value (e.g., a value of 0) that indicates
that the ISP mode is not enabled for the coding block.

[0072] A split flag (in some cases referred to herein as an
intra-subpartitions split flag) can be signaled in an encoded
video bitstream and used to determine an ISP split type (e.g.,
a horizontal type or vertical type) to perform for a coding
block for which the ISP mode is enabled. In example
aspects, improved techniques are provided for determining
and signaling the split flag. For example, the optimal ISP
split type can be determined for a coding block based on the

US 2020/0252608 Al

particular dimensions of the coding block relative to a
maximum transform block size, which can avoid an unde-
sirable split type that may result according existing imple-
mentations. In one example, when the ISP mode is enabled
for a coding block, a determination of an ISP split type (e.g.,
a horizontal type or vertical type) to perform for the coding
block may be based on a comparison of the width and/or
height of the coding block to size thresholds corresponding
to a maximum transform block size. For instance, a value of
the split flag for a coding block can be determined based on
a comparison of the width and/or height of the coding block
to the maximum transform block size thresholds, and the
value of the split flag can be used to determine the ISP split
type (e.g., as horizontal or vertical).

[0073] In some examples, a partition structure for the ISP
mode can be provided to ensure that dimensions of sub-
blocks obtained by partitioning a coding block do not violate
a size threshold, such as the maximum transform block size.
In some examples, a recursive tree structure is provided for
ensuring that the sub-partition split type is determined to be
horizontal or vertical in a manner which leads to sizes of the
sub-blocks being compliant with the maximum transform
block size threshold requirements. In some examples, the
number of sub-blocks that a coding block is split into is
determined such that the dimensions of the sub-blocks are
compliant with the maximum transform block size threshold
requirements. In some examples, enabling the ISP mode is
adjusted to ensure that the dimensions of sub-blocks
obtained from splitting a coding block are compliant with
the maximum transform block size threshold requirements.

[0074] FIG.1is ablock diagram illustrating an example of
a system 100 including an encoding device 104 and a
decoding device 112. The encoding device 104 may be part
of'a source device, and the decoding device 112 may be part
of'a receiving device. The source device and/or the receiving
device may include an electronic device, such as a mobile or
stationary telephone handset (e.g., smartphone, cellular tele-
phone, or the like), a desktop computer, a laptop or notebook
computer, a tablet computer, a set-top box, a television, a
camera, a display device, a digital media player, a video
gaming console, a video streaming device, an Internet
Protocol (IP) camera, or any other suitable electronic device.
In some examples, the source device and the receiving
device may include one or more wireless transceivers for
wireless communications. The coding techniques described
herein are applicable to video coding in various multimedia
applications, including streaming video transmissions (e.g.,
over the Internet), television broadcasts or transmissions,
encoding of digital video for storage on a data storage
medium, decoding of digital video stored on a data storage
medium, or other applications. In some examples, system
100 can support one-way or two-way video transmission to
support applications such as video conferencing, video
streaming, video playback, video broadcasting, gaming,
and/or video telephony.

[0075] The encoding device 104 (or encoder) can be used
to encode video data using a video coding standard or
protocol to generate an encoded video bitstream. Examples
of video coding standards include ITU-T H.261, ISO/IEC
MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual,
ITU-T H.263, ISO/IEC MPEG-4 Visual, ITU-T H.264 (also
known as ISO/IEC MPEG-4 AVC), including its Scalable
Video Coding (SVC) and Multiview Video Coding (MVC)
extensions, and High Efficiency Video Coding (HEVC) or

Aug. 6, 2020

ITU-T H.265. Various extensions to HEVC deal with multi-
layer video coding exist, including the range and screen
content coding extensions, 3D video coding (3D-HEVC)
and multiview extensions (MV-HEVC) and scalable exten-
sion (SHVC). The HEVC and its extensions have been
developed by the Joint Collaboration Team on Video Coding
(JCT-VC) as well as Joint Collaboration Team on 3D Video
Coding Extension Development (JCT-3V) of ITU-T Video
Coding Experts Group (VCEG) and ISO/IEC Motion Pic-
ture Experts Group (MPEG).

[0076] MPEG and ITU-T VCEG have also formed a joint
exploration video team (JVET) to explore new coding tools
for the next generation of video coding standard, named
Versatile Video Coding (VVC). The reference software is
called VVC Test Model (VIM). An objective of VVC is to
provide a significant improvement in compression perfor-
mance over the existing HEVC standard, aiding in deploy-
ment of higher-quality video services and emerging appli-
cations (e.g., such as 360° omnidirectional immersive
multimedia, high-dynamic-range (HDR) video, among oth-
ers). VP9, Alliance of Open Media (AOMedia) Video 1
(AV1), and Essential Video Coding (EVC) are other video
coding standards for which the techniques described herein
can be applied.

[0077] Many embodiments described herein can be per-
formed using video codecs such as VIM, VVC, HEVC,
AVC, and/or extensions thereof. However, the techniques
and systems described herein may also be applicable to other
coding standards, such as MPEG, JPEG (or other coding
standard for still images), VP9, AV1, extensions thereof, or
other suitable coding standards already available or not yet
available or developed. Accordingly, while the techniques
and systems described herein may be described with refer-
ence to a particular video coding standard, one of ordinary
skill in the art will appreciate that the description should not
be interpreted to apply only to that particular standard.
[0078] Referring to FIG. 1, a video source 102 may
provide the video data to the encoding device 104. The video
source 102 may be part of the source device, or may be part
of a device other than the source device. The video source
102 may include a video capture device (e.g., a video
camera, a camera phone, a video phone, or the like), a video
archive containing stored video, a video server or content
provider providing video data, a video feed interface receiv-
ing video from a video server or content provider, a com-
puter graphics system for generating computer graphics
video data, a combination of such sources, or any other
suitable video source.

[0079] The video data from the video source 102 may
include one or more input pictures or frames. A picture or
frame is a still image that, in some cases, is part of a video.
In some examples, data from the video source 102 can be a
still image that is not a part of a video. In HEVC, VVC, and
other video coding specifications, a video sequence can
include a series of pictures. A picture may include three
sample arrays, denoted S;, S, and S.,. S; is a two-
dimensional array of luma samples, S, is a two-dimen-
sional array of Cb chrominance samples, and S, is a
two-dimensional array of Cr chrominance samples. Chromi-
nance samples may also be referred to herein as “chroma”
samples. In other instances, a picture may be monochrome
and may only include an array of luma samples.

[0080] The encoder engine 106 (or encoder) of the encod-
ing device 104 encodes the video data to generate an

US 2020/0252608 Al

encoded video bitstream. In some examples, an encoded
video bitstream (or “video bitstream” or “bitstream”) is a
series of one or more coded video sequences. A coded video
sequence (CVS) includes a series of access units (AUs)
starting with an AU that has a random access point picture
in the base layer and with certain properties up to and not
including a next AU that has a random access point picture
in the base layer and with certain properties. For example,
the certain properties of a random access point picture that
starts a CVS may include a RASL flag (e.g., NoRaslOut-
putFlag) equal to 1. Otherwise, a random access point
picture (with RASL flag equal to 0) does not start a CVS. An
access unit (AU) includes one or more coded pictures and
control information corresponding to the coded pictures that
share the same output time. Coded slices of pictures are
encapsulated in the bitstream level into data units called
network abstraction layer (NAL) units. For example, an
HEVC video bitstream may include one or more CVSs
including NAL units. Each of the NAL units has a NAL unit
header. In one example, the header is one-byte for H.264/
AVC (except for multi-layer extensions) and two-byte for
HEVC. The syntax elements in the NAL unit header take the
designated bits and therefore are visible to all kinds of
systems and transport layers, such as Transport Stream,
Real-time Transport (RTP) Protocol, File Format, among
others.

[0081] Two classes of NAL units exist in the HEVC
standard, including video coding layer (VCL) NAL units
and non-VCL NAL units. A VCL NAL unit includes one
slice or slice segment (described below) of coded picture
data, and a non-VCL NAL unit includes control information
that relates to one or more coded pictures. In some cases, a
NAL unit can be referred to as a packet. An HEVC AU
includes VCL NAL units containing coded picture data and
non-VCL NAL units (if any) corresponding to the coded
picture data.

[0082] NAL units may contain a sequence of bits forming
a coded representation of the video data (e.g., an encoded
video bitstream, a CVS of a bitstream, or the like), such as
coded representations of pictures in a video. The encoder
engine 106 generates coded representations of pictures by
partitioning each picture into multiple slices. A slice is
independent of other slices so that information in the slice is
coded without dependency on data from other slices within
the same picture. A slice includes one or more slice segments
including an independent slice segment and, if present, one
or more dependent slice segments that depend on previous
slice segments.

[0083] In HEVC, the slices are then partitioned into cod-
ing tree blocks (CTBs) of luma samples and chroma
samples. A CTB of luma samples and one or more CTBs of
chroma samples, along with syntax for the samples, are
referred to as a coding tree unit (CTU). A CTU may also be
referred to as a “tree block™ or a “largest coding unit”
(LCU). A CTU is the basic processing unit for HEVC
encoding. A CTU can be split into multiple coding units
(CUs) of varying sizes. A CU contains luma and chroma
sample arrays that are referred to as coding blocks (CBs).

[0084] The luma and chroma CBs can be further split into
prediction blocks (PBs). A PB is a block of samples of the
luma component or a chroma component that uses the same
motion parameters for inter-prediction or intra-block copy
(IBC) prediction (when available or enabled for use). The
luma PB and one or more chroma PBs, together with

Aug. 6, 2020

associated syntax, form a prediction unit (PU). For inter-
prediction, a set of motion parameters (e.g., one or more
motion vectors, reference indices, or the like) is signaled in
the bitstream for each PU and is used for inter-prediction of
the luma PB and the one or more chroma PBs. The motion
parameters can also be referred to as motion information. A
CB can also be partitioned into one or more transform blocks
(TBs). A TB represents a square block of samples of a color
component on which a residual transform (e.g., the same
two-dimensional transform in some cases) is applied for
coding a prediction residual signal. A transform unit (TU)
represents the TBs of luma and chroma samples, and cor-
responding syntax elements. Transform coding is described
in more detail below.

[0085] A size of a CU corresponds to a size of the coding
mode and may be square in shape. For example, a size of a
CU may be 8x8 samples, 16x16 samples, 32x32 samples,
64x64 samples, or any other appropriate size up to the size
of'the corresponding CTU. The phrase “NxN” is used herein
to refer to pixel dimensions of a video block in terms of
vertical and horizontal dimensions (e.g., 8 pixelsx8 pixels).
The pixels in a block may be arranged in rows and columns.
In some embodiments, blocks may not have the same
number of pixels in a horizontal direction as in a vertical
direction. Syntax data associated with a CU may describe,
for example, partitioning of the CU into one or more PUs.
Partitioning modes may differ between whether the CU is
intra-prediction mode encoded or inter-prediction mode
encoded. PUs may be partitioned to be non-square in shape.
Syntax data associated with a CU may also describe, for
example, partitioning of the CU into one or more TUs
according to a CTU. A TU can be square or non-square in
shape.

[0086] According to the HEVC standard, transformations
may be performed using transform units (TUs). TUs may
vary for different CUs. The TUs may be sized based on the
size of PUs within a given CU. The TUs may be the same
size or smaller than the PUs. In some examples, residual
samples corresponding to a CU may be subdivided into
smaller units using a quadtree structure known as residual
quad tree (RQT). Leaf nodes of the RQT may correspond to
TUs. Pixel difference values associated with the TUs may be
transformed to produce transform coefficients. The trans-
form coefficients may then be quantized by the encoder
engine 106.

[0087] Once the pictures of the video data are partitioned
into CUs, the encoder engine 106 predicts each PU using a
prediction mode. The prediction unit or prediction block is
then subtracted from the original video data to get residuals
(described below). For each CU, a prediction mode may be
signaled inside the bitstream using syntax data. A prediction
mode may include intra-prediction (or intra-picture predic-
tion) or inter-prediction (or inter-picture prediction). Intra-
prediction utilizes the correlation between spatially neigh-
boring samples within a picture. For example, using intra-
prediction, each PU is predicted from neighboring image
data in the same picture using, for example, DC prediction
to find an average value for the PU, planar prediction to fit
aplanar surface to the PU, direction prediction to extrapolate
from neighboring data, or any other suitable types of pre-
diction. Inter-prediction uses the temporal correlation
between pictures in order to derive a motion-compensated
prediction for a block of image samples. For example, using
inter-prediction, each PU is predicted using motion com-

US 2020/0252608 Al

pensation prediction from image data in one or more refer-
ence pictures (before or after the current picture in output
order). The decision whether to code a picture area using
inter-picture or intra-picture prediction may be made, for
example, at the CU level.

[0088] The encoder engine 106 and decoder engine 116
(described in more detail below) may be configured to
operate according to VVC. According to VVC, a video coder
(such as encoder engine 106 and/or decoder engine 116)
partitions a picture into a plurality of coding tree units
(CTUs) (where a CTB of luma samples and one or more
CTBs of chroma samples, along with syntax for the samples,
are referred to as a CTU). The video coder can partition a
CTU according to a tree structure, such as a quadtree-binary
tree (QTBT) structure or Multi-Type Tree (MTT) structure.
The QTBT structure removes the concepts of multiple
partition types, such as the separation between CUs, PUs,
and TUs of HEVC. A QTBT structure includes two levels,
including a first level partitioned according to quadtree
partitioning, and a second level partitioned according to
binary tree partitioning. A root node of the QTBT structure
corresponds to a CTU. Leaf nodes of the binary trees
correspond to coding units (CUs).

[0089] In an MTT partitioning structure, blocks may be
partitioned using a quadtree partition, a binary tree partition,
and one or more types of triple tree partitions. A triple tree
partition is a partition where a block is split into three
sub-blocks. In some examples, a triple tree partition divides
a block into three sub-blocks without dividing the original
block through the center. The partitioning types in MTT
(e.g., quadtree, binary tree, and tripe tree) may be symmetri-
cal or asymmetrical.

[0090] Insome examples, the video coder can use a single
QTBT or MTT structure to represent each of the luminance
and chrominance components, while in other examples, the
video coder can use two or more QTBT or MTT structures,
such as one QTBT or MTT structure for the luminance
component and another QTBT or MTT structure for both
chrominance components (or two QTBT and/or MTT struc-
tures for respective chrominance components).

[0091] The video coder can be configured to use quadtree
partitioning per HEVC, QTBT partitioning, MTT partition-
ing, or other partitioning structures. For illustrative pur-
poses, the description herein may refer to QTBT partition-
ing. However, it should be understood that the techniques of
this disclosure may also be applied to video coders config-
ured to use quadtree partitioning, or other types of parti-
tioning as well.

[0092] In some examples, the one or more slices of a
picture are assigned a slice type. Slice types include an I
slice, a P slice, and a B slice. An I slice (intra-frames,
independently decodable) is a slice of a picture that is only
coded by intra-prediction, and therefore is independently
decodable since the I slice requires only the data within the
frame to predict any prediction unit or prediction block of
the slice. A P slice (uni-directional predicted frames) is a
slice of a picture that may be coded with intra-prediction and
with uni-directional inter-prediction. Each prediction unit or
prediction block within a P slice is either coded with Intra
prediction or inter-prediction. When the inter-prediction
applies, the prediction unit or prediction block is only
predicted by one reference picture, and therefore reference
samples are only from one reference region of one frame. A
B slice (bi-directional predictive frames) is a slice of a

Aug. 6, 2020

picture that may be coded with intra-prediction and with
inter-prediction (e.g., either bi-prediction or uni-prediction).
A prediction unit or prediction block of a B slice may be
bi-directionally predicted from two reference pictures,
where each picture contributes one reference region and
sample sets of the two reference regions are weighted (e.g.,
with equal weights or with different weights) to produce the
prediction signal of the bi-directional predicted block. As
explained above, slices of one picture are independently
coded. In some cases, a picture can be coded as just one
slice.

[0093] As noted above, intra-picture prediction utilizes the
correlation between spatially neighboring samples within a
picture. There are a plurality of intra-prediction modes (also
referred to as “intra modes”). In some examples, the intra
prediction of a luma block includes 35 modes, including the
Planar mode, DC mode, and 33 angular modes (e.g., diago-
nal intra prediction modes and angular modes adjacent to the
diagonal intra prediction modes). The 35 modes of the intra
prediction are indexed as shown in Table 1 below. In other
examples, more intra modes may be defined including
prediction angles that may not already be represented by the
33 angular modes. In other examples, the prediction angles
associated with the angular modes may be different from
those used in HEVC.

TABLE 1

Specification of intra prediction mode and associated names

Intra-prediction mode Associated name

0 INTRA_PLANAR
1 INTRA_DC
2...34 INTRA_ANGULAR2. ..

INTRA_ANGULAR34

[0094] Inter-picture prediction uses the temporal correla-
tion between pictures in order to derive a motion-compen-
sated prediction for a block of image samples. Using a
translational motion model, the position of a block in a
previously decoded picture (a reference picture) is indicated
by a motion vector (Ax, Ay), with Ax specifying the hori-
zontal displacement and Ay specifying the vertical displace-
ment of the reference block relative to the position of the
current block. In some cases, a motion vector (Ax, Ay) can
be in integer sample accuracy (also referred to as integer
accuracy), in which case the motion vector points to the
integer-pel grid (or integer-pixel sampling grid) of the
reference frame. In some cases, a motion vector (Ax, Ay) can
be of fractional sample accuracy (also referred to as frac-
tional-pel accuracy or non-integer accuracy) to more accu-
rately capture the movement of the underlying object, with-
out being restricted to the integer-pel grid of the reference
frame. Accuracy of motion vectors may be expressed by the
quantization level of the motion vectors. For example, the
quantization level may be integer accuracy (e.g., 1-pixel) or
fractional-pel accuracy (e.g., Y4-pixel, Y2-pixel, or other
sub-pixel value). Interpolation is applied on reference pic-
tures to derive the prediction signal when the corresponding
motion vector has fractional sample accuracy. For example,
samples available at integer positions can be filtered (e.g.,
using one or more interpolation filters) to estimate values at
fractional positions. The previously decoded reference pic-
ture is indicated by a reference index (refldx) to a reference
picture list. The motion vectors and reference indices can be

US 2020/0252608 Al

referred to as motion parameters. Two kinds of inter-picture
prediction can be performed, including uni-prediction and
bi-prediction.

[0095] With inter-prediction using bi-prediction, two sets
of motion parameters (AX,, y,, refldx, and Ax,, y,, refldx,)
are used to generate two motion compensated predictions
(from the same reference picture or possibly from different
reference pictures). For example, with bi-prediction, each
prediction block uses two motion compensated prediction
signals, and generates B prediction units. The two motion
compensated predictions are then combined to get the final
motion compensated prediction. For example, the two
motion compensated predictions can be combined by aver-
aging. In another example, weighted prediction can be used,
in which case different weights can be applied to each
motion compensated prediction. The reference pictures that
can be used in bi-prediction are stored in two separate lists,
denoted as list 0 and list 1. Motion parameters can be derived
at the encoder using a motion estimation process.

[0096] With inter-prediction using uni-prediction, one set
of motion parameters (Ax,, y,, refldx,) is used to generate
a motion compensated prediction from a reference picture.
For example, with uni-prediction, each prediction block uses
at most one motion compensated prediction signal, and
generates P prediction units.

[0097] A PU may include the data (e.g., motion param-
eters or other suitable data) related to the prediction process.
For example, when the PU is encoded using intra-prediction,
the PU may include data describing an intra-prediction mode
for the PU. As another example, when the PU is encoded
using inter-prediction, the PU may include data defining a
motion vector for the PU. The data defining the motion
vector for a PU may describe, for example, a horizontal
component of the motion vector (Ax), a vertical component
of the motion vector (Ay), a resolution for the motion vector
(e.g., integer precision, one-quarter pixel precision or one-
eighth pixel precision), a reference picture to which the
motion vector points, a reference index, a reference picture
list (e.g., List 0, List 1, or List C) for the motion vector, or
any combination thereof.

[0098] After performing prediction using intra- and/or
inter-prediction, the encoding device 104 can perform trans-
formation and quantization. For example, following predic-
tion, the encoder engine 106 may calculate residual values
corresponding to the PU. Residual values may comprise
pixel difference values between the current block of pixels
being coded (the PU) and the prediction block used to
predict the current block (e.g., the predicted version of the
current block). For example, after generating a prediction
block (e.g., issuing inter-prediction or intra-prediction), the
encoder engine 106 can generate a residual block by sub-
tracting the prediction block produced by a prediction unit
from the current block. The residual block includes a set of
pixel difference values that quantify differences between
pixel values of the current block and pixel values of the
prediction block. In some examples, the residual block may
be represented in a two-dimensional block format (e.g., a
two-dimensional matrix or array of pixel values). In such
examples, the residual block is a two-dimensional represen-
tation of the pixel values.

[0099] Any residual data that may be remaining after
prediction is performed is transformed using a block trans-
form, which may be based on discrete cosine transform,
discrete sine transform, an integer transform, a wavelet

Aug. 6, 2020

transform, other suitable transform function, or any combi-
nation thereof. In some cases, one or more block transforms
(e.g., sizes 32x32, 16x16, 8x8, 4x4, or other suitable size)
may be applied to residual data in each CU. In some
embodiments, a TU may be used for the transform and
quantization processes implemented by the encoder engine
106. A given CU having one or more PUs may also include
one or more TUs. As described in further detail below, the
residual values may be transformed into transform coeffi-
cients using the block transforms, and then may be quantized
and scanned using TUs to produce serialized transform
coeflicients for entropy coding.

[0100] Insome embodiments following intra-predictive or
inter-predictive coding using PUs of a CU, the encoder
engine 106 may calculate residual data for the TUs of the
CU. The PUs may comprise pixel data in the spatial domain
(or pixel domain). The TUs may comprise coefficients in the
transform domain following application of a block trans-
form. As previously noted, the residual data may correspond
to pixel difference values between pixels of the unencoded
picture and prediction values corresponding to the PUs.
Encoder engine 106 may form the TUs including the
residual data for the CU, and may then transform the TUs to
produce transform coefficients for the CU.

[0101] The encoder engine 106 may perform quantization
of the transform coefficients. Quantization provides further
compression by quantizing the transform coefficients to
reduce the amount of data used to represent the coefficients.
For example, quantization may reduce the bit depth associ-
ated with some or all of the coefficients. In one example, a
coefficient with an n-bit value may be rounded down to an
m-bit value during quantization, with n being greater than m.
[0102] Once quantization is performed, the coded video
bitstream includes quantized transform coefficients, predic-
tion information (e.g., prediction modes, motion vectors,
block vectors, or the like), partitioning information, and any
other suitable data, such as other syntax data. The different
elements of the coded video bitstream may then be entropy
encoded by the encoder engine 106. In some examples, the
encoder engine 106 may utilize a predefined scan order to
scan the quantized transform coefficients to produce a seri-
alized vector that can be entropy encoded. In some
examples, encoder engine 106 may perform an adaptive
scan. After scanning the quantized transform coefficients to
form a vector (e.g., a one-dimensional vector), the encoder
engine 106 may entropy encode the vector. For example, the
encoder engine 106 may use context adaptive variable
length coding, context adaptive binary arithmetic coding,
syntax-based context-adaptive binary arithmetic coding,
probability interval partitioning entropy coding, or another
suitable entropy encoding technique.

[0103] As previously described, an HEVC bitstream
includes a group of NAL units, including VCL. NAL units
and non-VCL NAL units. VCL NAL units include coded
picture data forming a coded video bitstream. For example,
a sequence of bits forming the coded video bitstream is
present in VCL NAL units. Non-VCL. NAL units may
contain parameter sets with high-level information relating
to the encoded video bitstream, in addition to other infor-
mation. For example, a parameter set may include a video
parameter set (VPS), a sequence parameter set (SPS), and a
picture parameter set (PPS). Examples of goals of the
parameter sets include bit rate efficiency, error resiliency,
and providing systems layer interfaces. Each slice references

US 2020/0252608 Al

a single active PPS, SPS, and VPS to access information that
the decoding device 112 may use for decoding the slice. An
identifier (ID) may be coded for each parameter set, includ-
ing a VPS ID, an SPS ID, and a PPS ID. An SPS includes
an SPS ID and a VPS ID. A PPS includes a PPS ID and an
SPS ID. Each slice header includes a PPS ID. Using the IDs,
active parameter sets can be identified for a given slice.

[0104] A PPS includes information that applies to all slices
in a given picture. Because of this, all slices in a picture refer
to the same PPS. Slices in different pictures may also refer
to the same PPS. An SPS includes information that applies
to all pictures in a same coded video sequence (CVS) or
bitstream. As previously described, a coded video sequence
is a series of access units (AUs) that starts with a random
access point picture (e.g., an instantaneous decode reference
(IDR) picture or broken link access (BLA) picture, or other
appropriate random access point picture) in the base layer
and with certain properties (described above) up to and not
including a next AU that has a random access point picture
in the base layer and with certain properties (or the end of
the bitstream). The information in an SPS may not change
from picture to picture within a coded video sequence.
Pictures in a coded video sequence may use the same SPS.
The VPS includes information that applies to all layers
within a coded video sequence or bitstream. The VPS
includes a syntax structure with syntax elements that apply
to entire coded video sequences. In some embodiments, the
VPS, SPS, or PPS may be transmitted in-band with the
encoded bitstream. In some embodiments, the VPS, SPS, or
PPS may be transmitted out-of-band in a separate transmis-
sion than the NAL units containing coded video data.

[0105] A video bitstream can also include Supplemental
Enhancement Information (SEI) messages. For example, an
SEI NAL unit can be part of the video bitstream. In some
cases, an SEI message can contain information that is not
needed by the decoding process. For example, the informa-
tion in an SEI message may not be essential for the decoder
to decode the video pictures of the bitstream, but the decoder
can be use the information to improve the display or
processing of the pictures (e.g., the decoded output). The
information in an SEI message can be embedded metadata.
In one illustrative example, the information in an SEI
message could be used by decoder-side entities to improve
the viewability of the content. In some instances, certain
application standards may mandate the presence of such SEI
messages in the bitstream so that the improvement in quality
can be brought to all devices that conform to the application
standard (e.g., the carriage of the frame-packing SEI mes-
sage for frame-compatible plano-stereoscopic 3DTV video
format, where the SEI message is carried for every frame of
the video, handling of a recovery point SEI message, use of
pan-scan scan rectangle SEI message in DVB, in addition to
many other examples).

[0106] The output 110 of the encoding device 104 may
send the NAL units making up the encoded video bitstream
data over the communications link 120 to the decoding
device 112 of the receiving device. The input 114 of the
decoding device 112 may receive the NAL units. The
communications link 120 may include a channel provided
by a wireless network, a wired network, or a combination of
a wired and wireless network. A wireless network may
include any wireless interface or combination of wireless
interfaces and may include any suitable wireless network
(e.g., the Internet or other wide area network, a packet-based

Aug. 6, 2020

network, WiFi™; radio frequency (RF), UWB, WiFi-Direct,
cellular, Long-Term Evolution (LTE), WiMax™, or the
like). A wired network may include any wired interface (e.g.,
fiber, ethernet, powerline ethernet, ethernet over coaxial
cable, digital signal line (DSL), or the like). The wired
and/or wireless networks may be implemented using various
equipment, such as base stations, routers, access points,
bridges, gateways, switches, or the like. The encoded video
bitstream data may be modulated according to a communi-
cation standard, such as a wireless communication protocol,
and transmitted to the receiving device.

[0107] In some examples, the encoding device 104 may
store encoded video bitstream data in storage 108. The
output 110 may retrieve the encoded video bitstream data
from the encoder engine 106 or from the storage 108.
Storage 108 may include any of a variety of distributed or
locally accessed data storage media. For example, the stor-
age 108 may include a hard drive, a storage disc, flash
memory, volatile or non-volatile memory, or any other
suitable digital storage media for storing encoded video
data. The storage 108 can also include a decoded picture
buffer (DPB) for storing reference pictures for use in inter-
prediction. In a further example, the storage 108 can corre-
spond to a file server or another intermediate storage device
that may store the encoded video generated by the source
device. In such cases, the receiving device including the
decoding device 112 can access stored video data from the
storage device via streaming or download. The file server
may be any type of server capable of storing encoded video
data and transmitting that encoded video data to the receiv-
ing device. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage
(NAS) devices, or a local disk drive. The receiving device
may access the encoded video data through any standard
data connection, including an Internet connection. This may
include a wireless channel (e.g., a Wi-Fi connection), a
wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded
video data stored on a file server. The transmission of
encoded video data from the storage 108 may be a streaming
transmission, a download transmission, or a combination
thereof.

[0108] The input 114 of the decoding device 112 receives
the encoded video bitstream data and may provide the video
bitstream data to the decoder engine 116, or to storage 118
for later use by the decoder engine 116. For example, the
storage 118 can include a DPB for storing reference pictures
for use in inter-prediction. The receiving device including
the decoding device 112 can receive the encoded video data
to be decoded via the storage 108. The encoded video data
may be modulated according to a communication standard,
such as a wireless communication protocol, and transmitted
to the receiving device. The communication medium for
transmitted the encoded video data can comprise any wire-
less or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmis-
sion lines. The communication medium may form part of a
packet-based network, such as a local area network, a
wide-area network, or a global network such as the Internet.
The communication medium may include routers, switches,
base stations, or any other equipment that may be useful to
facilitate communication from the source device to the
receiving device.

US 2020/0252608 Al

[0109] The decoder engine 116 may decode the encoded
video bitstream data by entropy decoding (e.g., using an
entropy decoder) and extracting the elements of one or more
coded video sequences making up the encoded video data.
The decoder engine 116 may then rescale and perform an
inverse transform on the encoded video bitstream data.
Residual data is then passed to a prediction stage of the
decoder engine 116. The decoder engine 116 then predicts a
block of pixels (e.g., a PU). In some examples, the predic-
tion is added to the output of the inverse transform (the
residual data).

[0110] The decoding device 112 may output the decoded
video to a video destination device 122, which may include
a display or other output device for displaying the decoded
video data to a consumer of the content. In some aspects, the
video destination device 122 may be part of the receiving
device that includes the decoding device 112. In some
aspects, the video destination device 122 may be part of a
separate device other than the receiving device.

[0111] In some embodiments, the video encoding device
104 and/or the video decoding device 112 may be integrated
with an audio encoding device and audio decoding device,
respectively. The video encoding device 104 and/or the
video decoding device 112 may also include other hardware
or software that is necessary to implement the coding
techniques described above, such as one or more micropro-
cessors, digital signal processors (DSPs), application spe-
cific integrated circuits (ASICs), field programmable gate
arrays (FPGAs), discrete logic, software, hardware, firm-
ware or any combinations thereof. The video encoding
device 104 and the video decoding device 112 may be
integrated as part of a combined encoder/decoder (codec) in
a respective device. An example of specific details of the
encoding device 104 is described below with reference to
FIG. 10. An example of specific details of the decoding
device 112 is described below with reference to FIG. 11.
[0112] The example system shown in FIG. 1 is one illus-
trative example that can be used herein. Techniques for
processing video data using the techniques described herein
can be performed by any digital video encoding and/or
decoding device. Although generally the techniques of this
disclosure are performed by a video encoding device or a
video decoding device, the techniques may also be per-
formed by a combined video encoder-decoder, typically
referred to as a “CODEC.” Moreover, the techniques of this
disclosure may also be performed by a video preprocessor.
The source device and the receiving device are merely
examples of such coding devices in which the source device
generates coded video data for transmission to the receiving
device. In some examples, the source and receiving devices
may operate in a substantially symmetrical manner such that
each of the devices include video encoding and decoding
components. Hence, example systems may support one-way
or two-way video transmission between video devices, e.g.,
for video streaming, video playback, video broadcasting, or
video telephony.

[0113] Extensions to the HEVC standard include the Mul-
tiview Video Coding extension, referred to as MV-HEVC,
and the Scalable Video Coding extension, referred to as
SHVC. The MV-HEVC and SHVC extensions share the
concept of layered coding, with different layers being
included in the encoded video bitstream. Each layer in a
coded video sequence is addressed by a unique layer iden-
tifier (ID). A layer ID may be present in a header of a NAL

Aug. 6, 2020

unit to identify a layer with which the NAL unit is associ-
ated. In MV-HEVC, different layers can represent different
views of the same scene in the video bitstream. In SHVC,
different scalable layers are provided that represent the video
bitstream in different spatial resolutions (or picture resolu-
tion) or in different reconstruction fidelities. The scalable
layers may include a base layer (with layer ID=0) and one
or more enhancement layers (with layer IDs=1, 2, .. . n). The
base layer may conform to a profile of the first version of
HEVC, and represents the lowest available layer in a bit-
stream. The enhancement layers have increased spatial reso-
Iution, temporal resolution or frame rate, and/or reconstruc-
tion fidelity (or quality) as compared to the base layer. The
enhancement layers are hierarchically organized and may
(or may not) depend on lower layers. In some examples, the
different layers may be coded using a single standard codec
(e.g., all layers are encoded using HEVC, SHVC, or other
coding standard). In some examples, different layers may be
coded using a multi-standard codec. For example, a base
layer may be coded using AVC, while one or more enhance-
ment layers may be coded using SHVC and/or MV-HEVC
extensions to the HEVC standard.

[0114] In general, a layer includes a set of VCL NAL units
and a corresponding set of non-VCL NAL units. The NAL
units are assigned a particular layer ID value. Layers can be
hierarchical in the sense that a layer may depend on a lower
layer. A layer set refers to a set of layers represented within
a bitstream that are self-contained, meaning that the layers
within a layer set can depend on other layers in the layer set
in the decoding process, but do not depend on any other
layers for decoding. Accordingly, the layers in a layer set can
form an independent bitstream that can represent video
content. The set of layers in a layer set may be obtained from
another bitstream by operation of a sub-bitstream extraction
process. A layer set may correspond to the set of layers that
is to be decoded when a decoder wants to operate according
to certain parameters.

[0115] A picture order count (POC) can be used in video
coding standards to identify a display order of a picture.
Although there are cases for which two pictures within one
coded video sequence may have the same POC value, it
typically does not happen within a coded video sequence.
When multiple coded video sequences are present in a
bitstream, pictures with a same value of POC may be closer
to each other in terms of decoding order. POC values of
pictures can be used for reference picture list construction,
derivation of reference picture set as in HEVC, and motion
vector scaling.

[0116] As previously described, various prediction modes
may be used in a video coding process, including intra-
prediction and inter-prediction. As previously explained, a
video coder can partition a coding block such as a CTU
according to a tree structure, such as a quadtree-binary tree
(QTBT) structure or Multi-Type Tree (MTT) structure to
yield two or more sub-blocks, where the two or more
sub-blocks can be independently coded. For example, the
different sub-blocks resulting from a coding block parti-
tioned using a tree structure can be coded with planar mode,
DC mode, etc., without inheriting a common prediction
mode requirement for the different sub-blocks.

[0117] In some examples, an intra sub-partition or intra-
subpartition (ISP) mode can be used as a coding tool for
splitting a coding block into two or more partitions The ISP
mode can be used in addition to the regular or tree parti-

US 2020/0252608 Al

tioning structures in some cases. For example, a picture can
be split into coding units or blocks using a QTBT structure
or MTT structure, and a coding unit or coding block can be
further split using ISP. In the ISP mode, the two or more
partitions resulting from splitting the coding block share the
same intra-prediction mode. For example, the two or more
partitions of a coding block can be encoded or decoded
separately (e.g., in a sequential order) but the same intra-
prediction mode is used for each of the two or more
partitions. For example, in some implementations, if the ISP
mode is enabled or chosen to be applied for a coding block,
then the coding block can be partitioned and the same
intra-prediction mode can be applied to each of the parti-
tions.

[0118] In various examples, the ISP mode can be used to
divide a coding block such as a luma intra-predicted block
into two or four ISP partitions (or ISP sub-blocks or sub-
blocks) depending on the size or dimensions of the coding
block. In some examples, the division can be vertical or
horizontal based on the dimensions of the coding block. The
number of ISP sub-blocks that the coding block is split into
can be based on the number of samples that would be present
in the ISP sub-blocks. For example, in some implementa-
tions, an ISP sub-block may be required to have a minimum
number of samples, such as 16 samples or other number of
samples. Accordingly, if dividing a block into four ISP
sub-blocks can result in each of the four sub-blocks having
at least the minimum number of samples (e.g., 16 samples),
then the ISP mode may decide to split the block into four ISP
sub-blocks. However, if partitioning the block into four ISP
sub-blocks may not result in each of the four sub-blocks
having at least the minimum number of samples (e.g., 16
samples), then the ISP mode may split the block into two ISP
sub-blocks if each of the two sub-blocks can have at least the
minimum number of samples (e.g., 16 samples). ISP sub-
blocks will be referred to hereinafter as sub-blocks, which as
noted above, can be different than the sub-blocks that may
be generated using a regular or tree partitioning structures
(e.g., using a QTBT structure or MTT structure).

[0119] FIG. 2 is a block diagram which illustrates an
example of splitting a coding block into sub-blocks. A
current block 202 can be split in an ISP mode into a number
of sub-blocks. The sub-blocks resulting from splitting a
block using ISP are also referred to as ISP sub-block or ISP
blocks. The current block 202 is shown to have dimensions
of width W and height H. In an example, the current block
202 can have a number of samples corresponding to HxW.
For example, the current block 202 of dimensions 4x8 can
have 32 samples. If the current block 202 is split into four
sub-blocks using the ISP mode, then each of the four
resultant sub-blocks would have one-fourth of 32 samples,
i.e., 8 samples each. With a minimum number of samples
being 16 as noted above, such a division would violate the
requirement for each sub-block to have at least 16 samples.
Therefore, for the values of H and W noted above, the
current block 202 is split into two sub-blocks, each having
one-half of 32 samples, i.e., 16 samples, satisfying the
minimum sample requirement. It is noted that for similar
reasons, a block of dimensions 8x4 may also be divided into
two sub-blocks to satisfy the minimum sample requirement
of 16 samples in each sub-block.

[0120] As shown in FIG. 2, a horizontal ISP split of the
current block 202 can result in the two ISP blocks 204a and
204b, each of the same width (W) as that of the current block

Aug. 6, 2020

202 and half the height (H/2) of the current block 202.
Similarly, a vertical ISP split of the current block 202 can
result in the two ISP blocks 2064 and 2065, each of the same
height (H) as that of the current block 202 and half the width
(W/2) of the current block 202.

[0121] FIG. 3 is a block diagram which illustrates an
example of splitting a coding block into four sub-blocks. A
current block 302 can be split in an ISP mode into four
sub-blocks or ISP blocks. The current block 302 is shown to
have dimensions of width W and height H. The example of
splitting the current block 302 into four sub-blocks may be
applicable for dimensions of the current block 302 which,
when split into four sub-blocks can yield at least 16 samples
in each of the resultant sub-blocks. For example, with a
minimum number of samples being 16 for each sub-block,
the current block 302 can have dimensions other than (e.g.,
greater than) 4x8 or 8x4 noted above with respect to FIG. 2.
A dimension of 4x4 for the current block 302, which would
be the smallest allowable size for coding blocks in some
implementations may also be excluded from splitting into
sub-blocks using the ISP mode.

[0122] In an example, a horizontal ISP split of the current
block 302 can result in the four ISP blocks 3044, 3045, 304c¢,
and 3044, each of the same width (W) as that of the current
block 202 and one-fourth the height (H/4) of the current
block 202. Similarly, a vertical ISP split of the current block
302 can result in the four ISP blocks 306a, 3065, 306¢, and
306d, each of the same height (H) as that of the current block
202 and one-fourth the width (W/4) of the current block 302.
[0123] Inexample implementations of the ISP mode, once
the number of partitions (e.g., two or four) and the ISP split
type indicating the type of partition (e.g., horizontal or
vertical split) have been determined for a block, the current
block or coding block may be split accordingly and the
resultant ISP sub-blocks may be processed in order. For
example, the two or more sub-blocks resulting from apply-
ing an ISP mode to a coding block can be processed
sequentially. Processing the sub-blocks can include predict-
ing each sub-block using intra-prediction, applying trans-
form coding, and then reconstructing the sub-blocks as
discussed previously.

[0124] In some implementations, various syntax elements
can be used for coding and signaling the ISP mode. A syntax
table for coding units using the ISP mode is shown in Table
2 and discussed further below. According to example imple-
mentations, one bit for a coding block (in some cases
referred to as intra_subpartitions_mode_flag[x0][y0]) can be
used to signal whether the coding block is split into ISP
blocks. A second bit (in some cases referred to as intra_
subpartitions_split_flag[x0][y0]) can be used to indicate the
ISP split type that will be performed for the coding block,
e.g., whether the split type is horizontal or vertical.

[0125] In some examples, different classes of processing
orders may be used for processing the ISP blocks obtained
by splitting a coding block using the ISP mode. The pro-
cessing orders can be based on the intra-prediction mode and
the split type used for the coding block. For example, two
different classes of processing orders, referred to as normal
order and reversed order, can be used in processing the two
or more ISP blocks obtained from splitting a coding block.
[0126] In the normal order, the first sub-partition to be
processed is the sub-partition containing the top-left sample
of the coding block and then continuing downwards (in the
case of a horizontal split) or rightwards (in the case of a
vertical split). For example, in FIG. 2, the normal processing
order for the horizontal split can include processing the ISP

US 2020/0252608 Al

block 2044 first and then proceeding downwards to process
the ISP block 2044. Similarly, in FIG. 2, the normal pro-
cessing order for the vertical split can include processing the
ISP block 206a first and then proceeding rightwards to
process the ISP block 2065. In FIG. 3, the normal processing
order for the horizontal split can include processing the ISP
block 3044 first and then proceeding downwards to process
the ISP blocks 3045, 304c¢, and 304d in sequential order.
Similarly, in FIG. 3, the normal processing order for the
vertical split can include processing the ISP block 3064 first
and then proceeding rightwards to process the ISP blocks
3065, 306c¢, and 306d in sequential order.

[0127] The reverse processing order can include starting
with the sub-partition containing the bottom-left sample of
the coding block and continuing upwards (in the case of a
horizontal split) or starting with the sub-partition containing
the top-right sample of the coding block and continuing
leftwards (in the case of the vertical split). For example, in
FIG. 2, the reverse processing order for the horizontal split
can include processing the ISP block 2045 first and then
proceeding upwards to process the ISP block 2044. Simi-
larly, in FIG. 2, the reverse processing order for the vertical
split can include processing the ISP block 20654 first and then
proceeding leftwards to process the ISP block 206a. In FIG.
3, the reverse processing order for the horizontal split can
include processing the ISP block 3044 first and then pro-
ceeding upwards to process the ISP blocks 304c¢, 3045, and
304a in sequential order. Similarly, in FIG. 3, the reverse
processing order for the vertical split can include processing
the ISP block 3064 first and then proceeding leftwards to
process the ISP blocks 306¢, 3065, and 306a in sequential
order.

[0128] A variation of ISP that uses only the normal pro-
cessing order is used in JVET Working Draft 4 (WD4,
available at http://phenix.it-sudparis.ev/jvet/doc_end_user/
documents/13_Marrakech/wg11/JVET-M1001-v1.zip),
which is hereby incorporated by reference in its entirety and
for all purposes. It is to be noted that the terms sub-block (as
used with respect to ISP), sub-partitions (as used with
respect to ISP), and ISP blocks are used interchangeably
herein, and all of these terms refer to the blocks obtained by
partitioning a coding block using the ISP mode.

[0129] Examples of syntax and semantics associated with
the ISP mode in JVET WD4 are shown in Table 2 below. The
syntax emphasized using italicized text corresponds to ISP
mode for a coding unit located at (X, y) coordinates [x0][y0]
of a picture. A reference line index selected by an encoder
for a reference line candidate to predict the coding unit is
indicated by the syntax element intra_luma_ref idx. The
syntax elements cbWidth and cbHeight correspond to width
and height dimensions of the coding unit (e.g., the width W
and height H, as shown in FIG. 2 and FIG. 3 for the
respective current blocks 202 and 203). A variable MaxT-
bSizeY refers to a maximum transform block size and is
used as a size threshold for the cbWidth and cbHeight
dimensions. As previously mentioned, intra_subpartitions_
mode_flag[x0][y0] is a syntax element used to signal
whether the coding unit is split into sub-blocks (or ISP
blocks) using the ISP mode. The syntax element intra_
subpartitions_split_flag[x0][y0] is used to indicate the ISP
split type (the type of split that will be performed), for
example, whether the coding block is split using a horizontal
split or a vertical split.

Aug. 6, 2020
TABLE 2
Syntax table of coding unit
De-
scrip-

tor

coding_unit(x0, y0, cbWidth, cbHeight, treeType) {

}else {
if(treeType = = SINGLE_TREE | | treeType = =
DUAL_TREE_LUMA) {
if{ (yO % CtbSizeY) >0)
intra_ luma_ ref idx[x0][y0] ae(v)
if (intra_luma_vef idx[x0][y0] ==0 &&
(cbWidth < = MaxTbSizeY | | cbHeight < =
MaxThSizeY) &&
(chbWidth * cbHeight > MinTbhSizeY *
MinTbSizeY))
intra_subpartitions_mode_ flag[x0 1[¥0] ae(v)
ifl intra_subpartitions_mode_flag[x0 [y0 1 ==1 &&
cbWidth <= MaxTbSizeY && cbHeight < =
MaxThSizeY)
intra_subpartitions_split_flag[x0 [y0] ae(v)
if(intra_ luma_ ref idx[X0 J[y0]==0 &&
intra_ subpartitions_mode_ flag[x0][
Y0 1==0)
intra_ luma_ mpm_ flag[x0][y0] ae(v)
if(intra_ luma_mpm_ flag[x0][y0])
intra_ luma_ mpm__idx[X0][yO] ae(v)

[0130] As seen from Table 2, the intra_subpartitions_
mode_flag[x0][y0] is signaled when at least the condition
(cbWidth<=MaxTbSizeY|/cbHeight<=MaxTbSizeY) is sat-
isfied, i.e., when either the cbWidth or the cbHeight (or both)
are less than the MaxTbSizeY. On the other hand, the
intra_subpartitions_split_flag[x0][y0] is signaled when at
least the condition cbWidth<=MaxTbSizeY &&
cbHeight<=MaxTbSizeY is satisfied, i.e., both cbWidth and
the cbHeight are less than the MaxTbSizeY. Thus, in imple-
mentations which use the semantics specified in Table 2,
when one of cbWidth or the cbHeight, but not both, are
greater than MaxTbhSizeY, only the intra_subpartitions_
mode_{flag[x0][y0] is signaled, but the intra_subpartitions_
split_flag[x0][y0] is not signaled. As will be further
explained below, when intra_subpartitions_mode_flag[x0]
[yO] is not signaled, the value of the intra_subpartitions_
mode_{flag[x0][y0] is inferred to be equal to 0; and similarly,
when intra_subpartitions_split_flag[x0][y0] is not signaled,
the value of the intra_subpartitions_split_flag[x0][y0] is
inferred to be equal to 0.

[0131] In addition to the intra_subpartitions_mode_flag
[x0][y0] and intra_subpartitions_split_flag[x0][y0], a vari-
able IntraSubPartitionsSplitType is defined, which specifies
the type of split used for the current luma coding block. The
values for IntraSubPartitionsSplitType and corresponding
name associations are illustrated Table 3 below.

TABLE 3

Name association for IntraSubPartitionsSplitType

IntraSubPartitionsSplitType Name of IntraSubPartitionsSplitType

0 ISP_NO_SPLIT
1 ISP_HOR_SPLIT
2 ISP_VER_SPLIT

US 2020/0252608 Al

[0132] As seen from Table 3, IntraSubPartitionsSplitType
is a variable used to indicate whether there is no ISP split
(IntraSubPartitionsSplit Type=0), whether a horizontal ISP
split is to be applied (IntraSubPartitionsSplitType=1), or
whether a vertical ISP split is to be applied (IntraSubParti-
tionsSplitType=2). When there is no ISP split (IntraSubPar-
titionsSplitType=0), the regular transform tree parsing struc-
tures are used for partitioning blocks, e.g., according to
QTBT, MTT, etc. For the cases of the horizontal or vertical
ISP split, a variable NumlIntraSubPartitions is used to indi-
cate the number of sub-blocks or ISP blocks (e.g., 2 ISP
blocks as in FIG. 2 or 4 ISP blocks as in FIG. 3). The
corresponding number of sub-blocks are successively parsed
for the transform unit corresponding to the coding unit.
Table 4 below provides the syntax of for a transform tree
using the ISP mode.

TABLE 4

Syntax table of transform tree

De-
scrip-
tor

transform__tree(X0, y0, tbWidth, tbHeight, treeType) {
InferTuChfLuma = 1
ifl IntraSubPartSplitType = = NO_ISP_SPLIT) {
if(tbWidth > MaxTbSizeY | | tbHeight >
MaxTbSizeY) {
trafoWidth = (tbWidth > MaxTbSizeY) ?
(tbWidth / 2) : tbWidth
trafoHeight = (tbHeight > MaxTbSizeY) ?
(tbHeight / 2) : tbHeight
transform__tree(x0, y0, trafoWidth, trafoHeight)
if(tbWidth > MaxTbSizeY)
transform__tree(X0 + trafoWidth, yo0,
trafoWidth, trafoHeight, treeType)
if(tbHeight > MaxTbSizeY)
transform__tree(x0, yO + trafoHeight,
trafoWidth, trafoHeight, treeType)
if{ tbWidth > MaxTbSizeY && tbHeight >
MaxTbSizeY)
transform__tree(X0 + trafoWidth, y0 + trafoHeight,
trafoWidth, trafoHeight, tree

Type)
}else {
transform__unit(x0, y0, toWidth, tbHeight,
treeType, 0)

} else ifl IntraSubPartitionsSplitType = =
ISP_HOR_SPLIT) {
trafoHeight = thHeight | NumlntraSubPartitions
Sor(partldx = 0; partldx < NumIntraSubPartitions;
partldx+ +)
transform_unit(x0, y0 + trafoHeight * partldx, tbWidth,
trafoHeight, treeType,
partldx)
} else ifl IntraSubPartitionsSplitType = =
ISP_VER_SPLIT) {
trafoWidth = thWidth | NumlIntraSubPartitions
Sfor(partldx = 0; partldx < NumIntraSubPartitions;
partldx+ +)
transform_unit(x0 + trafoWidth * partldx, y0, trafoWidth,
tbHeight, treeType, p
artldx)

¥
¥

[0133] Based on the above description of the syntax
elements and variables associated with the ISP mode, the
following semantics may be used for applying ISP to a
coding unit:

Aug. 6, 2020

intra_subpartitions_mode_flag[x0][y0] equal to 1 specifies
that the current intra coding unit is partitioned into NumlIn-
traSubPartitions[x0][y0] rectangular transform block sub-
partitions. intra_subpartitions_mode_flag[x0][y0] equal to O
specifies that the current intra coding unit is not partitioned
into rectangular transform block subpartitions.
When intra_subpartitions_mode_flag[x0][y0] is not present,
it is inferred to be equal to 0. intra_subpartitions_split_flag
[x0][y0] specifies whether the intra subpartitions split type is
horizontal or vertical. When intra_subpartitions_split_flag
[x0][y0] is not present, it is inferred to be equal to O.
The variable IntraSubPartitionsSplitType specifies the type
of split used for the current luma coding block as illustrated
in Table 3. IntraSubPartitionsSplitType is derived as fol-
lows:

[0134] If intra_subpartitions_mode_flag[x0][y0] is

equal to 0, IntraSubPartitionsSplitType is set equal to O.
[0135] Otherwise, the IntraSubPartitionsSplitType is set
equal to 1+intra_subpartitions_split_flag[x0][yO0].

[0136] As seen from the above semantics, a value of the
intra_subpartitions_mode_flag[x0][y0] equal to 1 can be
used to specify that a coding unit is partitioned into a number
of sub-blocks indicated by the variable NumIntraSubParti-
tions[x0][y0], where these sub-blocks are rectangular trans-
form block sub-partitions such as the ISP blocks shown in
FIG. 2 and FIG. 3. A value of the intra_subpartitions_mode_
flag[x0][y0] equal to 0 can be used to specify that the coding
unit is not partitioned into rectangular transform block
sub-partitions using an ISP mode. In some implementations,
when the intra_subpartitions_mode_flag[x0][y0] is not pres-
ent for the coding unit, the value of the intra_subpartitions_
mode_{flag[x0][y0] for the coding unit is inferred to be equal
to 0.
[0137] As previously described, the intra_subpartitions_
split_flag[x0][y0] can be used to specity whether the ISP
split type is horizontal or vertical. In some implementations,
when the intra_subpartitions_split_flag[x0][y0] is not pres-
ent for a coding unit, the value of the intra_subpartitions_
split_flag[x0][y0] is inferred to be equal to 0.
[0138] The variable IntraSubPartitionsSplitType specifies
the type of split used for the coding block, as described with
reference to Table 3 above. The value of this variable
IntraSubPartitionsSplitType can be derived as follows: if the
value of the intra_subpartitions_mode_flag[x0][y0] is equal
to 0, then IntraSubPartitionsSplitType is set to be equal to 0;
otherwise, the value of the IntraSubPartitionsSplitType is set
to be equal to 1+intra_subpartitions_split_flag[x0][yO0].
[0139] In some implementations, the variable NumlIntra-
SubPartitions which is used to specify the number of sub-
blocks a coding unit is divided into can be derived as
follows: if the variable IntraSubPartitionsSplitType has a
value equal to 0, indicating ISP_NO_SPLIT, then the value
of the variable NumntraSubPartitions is set equal to 1
(which is a default value indicating that there is no ISP
applied to the coding unit). Otherwise, if the variable
IntraSubPartitionsSplitType has a value equal to 1 (horizon-
tal split ISP_HOR_SPLIT) or 2 (vertical split ISP_VER_
SPLIT), the value of the variable NumIntraSubPartitions is
set equal to 2 or 4 based on the dimensions of the coding unit
or current block as explained with reference to FIG. 2 and
FIG. 3. For example, if the current block 202 is a 4x8 block
(cbWidth is equal to 4 and cbHeight is equal to 8) or an 8x4
block (cbWidth is equal to 8 and cbHeight is equal to 4), then
the NumlIntraSubPartitions is set to 2, to implement splitting

US 2020/0252608 Al

the current block 202 into two ISP blocks which have the
minimum number of 16 samples each, based on a horizontal
or a vertical split which can be indicated by the variable
IntraSubPartitionsSplitType. On the other hand, if the
dimensions of the coding unit are other than (greater than)
the 8x4, 4x8, and 4x4 block sizes, then the NumlntraSu-
bPartitions is set equal to 4 (for example, as discussed with
reference to splitting the current block 302 of FIG. 3 into
four ISP blocks based on a horizontal or a vertical split
which can be indicated by the variable IntraSubPartitions-
SplitType).

[0140] Several problems exist in implementations of the
ISP mode based on the above-noted semantics and syntax as
described with reference to Tables 2-4. In one example, (e.g.,
based on VVC), when the width (cbWidth) or the height
(cbHeight) of a luma coding block (CB) is larger than the
maximum transform block size (denoted as MaxTbSizeY,
with Y indicating luma samples), the coding block is split
into two or more transform units as discussed above with
reference to the transform tree syntax structure of Table 4. It
is noted that, some implementations can include a fixed
value for MaxTbSizeY (e.g., JIVET WD4 specifies a fixed
value of 64 for MaxTbSizeY). It is possible for some
implementations or future standards to allow the value of
MaxTbSizeY to be another fixed value (e.g., a value of 32
or other value) or to be a variable. In some examples, the
value of MaxTbhSizeY may be signaled in the bitstream, or
may be derived from other syntax elements in the bitstream.
Accordingly, the comparisons of cbWidth and cbHeight to
the MaxTbSizeY in determining the signaling of the above-
noted syntax elements can be based on the fixed or variable
value of the MaxTbSizeY.

[0141] As previously mentioned, a mode flag for the ISP
mode, the intra_subpartitions_mode_flag, is signaled for a
coding block when the coding block width (cbWidth) or the
coding block height (cbHeight) is less than or equal to the
maximum transform block size, MaxTbSizeY, or if both the
cbWidth and the cbHeight are less than or equal to MaxT-
bSizeY. Accordingly, in examples where one of the cbWidth
or the cbHeight is greater than MaxTbSizeY and the other is
smaller, the intra_subpartitions_mode_flag is signaled (e.g.,
with a value indicating that the ISP mode is enabled for the
coding block, such as with a value of 1). In such implemen-
tations (referring back to the syntax for coding units shown
in Table 2), since one of the cbWidth or the cbHeight is
greater than MaxTbSizeY, the syntax element for the split
flag, intra_subpartitions_split_flag, is not signaled.

[0142] When the intra_subpartitions_split_flag is not sig-
naled for a coding block, the intra_subpartitions_split_flag is
inferred to be equal to 0 according to the existing imple-
mentations. From the semantics provided above, the split
type for the coding block is provided by the value of the
variable, IntraSubPartitionsSplitType, which is set to be
equal to 1+intra_subpartitions_split_flag. Thus, when intra_
subpartitions_split_flag is inferred to be 0, the variable
IntraSubPartitionsSplitType is derived to be equal to 1. From
Table 3 showing the name associations for the IntraSubPar-
titionsSplitType, the IntraSubPartitionsSplitType being of
value 1 corresponds to a horizontal split (ISP_HOR_
SPLIT). As noted previously, this derivation of the IntraSu-
bPartitionsSplitType being equal to 1 (corresponding to the
horizontal split) is for the case when one of the cbWidth or
the cbHeight is larger than MaxTbSizeY and the other is
smaller the MaxTbSizeY. Notably, this derivation of the split

Aug. 6, 2020

type being a horizontal split is the same whether cbWidth is
greater than MaxTbSizeY (and cbHeight is less than MaxT-
bSizeY) or whether cbHeight is greater than MaxTbSizeY
(and cbWidth is less than MaxTbSizeY). The value of the
IntraSubPartitionsSplitType being derived to be equal to 1
irrespective of which one of the two dimensions (the
cbWidth or the cbHeight) of the coding block is greater than
the MaxTbSizeY can lead to undesirable effects.

[0143] For example, when the intra_subpartitions_mode_
flag is equal to 1 and either the cbWidth or the cbHeight of
the coding block is greater than the MaxTbSizeY, the split
type being always derived to be horizontal may not be the
optimal selection of split type for some values of cbWidth or
the cbHeight. To illustrate, an example is considered where
the MaxTbSizeY is equal to 32, cbWidth is equal to 64, and
cbHeight is equal to 32. In this example, the shape of the
coding block would resemble the shape of the current block
202 shown in FIG. 2, where the width W is larger than the
height H. In such cases, an ISP vertical split would be an
optimal choice which can result in sub-blocks (resembling
the shapes of the ISP blocks 206a and 2065) whose indi-
vidual widths and heights are each less than or equal to the
MaxTbSizeY. For example, an ISP vertical split of the
coding block of cbWidth equal to 64 and cbHeight equal to
32 into two sub-partitions would result in two sub-blocks,
each of width equal to 32 and height equal to 32, where the
width and height are both equal to the MaxTbSizeY of 32.
However, an ISP horizontal split will be inferred in the
current implementations as explained above, based on the
intra_subpartitions_split_flag being inferred to a value of 0
and correspondingly the IntraSubPartitionsSplitType being
derived to be equal to 1. An ISP horizontal split in the
example of the coding block of cbWidth equal to 64 and
cbHeight equal to 32 into two sub-partitions would result in
two sub-blocks, each of width equal to 64 and height equal
to 16 (similar to the shapes of the ISP blocks 204a and
2045), where the heights of both sub blocks would violate
the requirement of being greater than the MaxTbhSizeY of
32. Accordingly, there is a need for solutions which can
overcome the above undesirable outcomes associated with
inferring a horizontal split decision irrespective of the spe-
cific values of cbWidth and cbHeight of the coding block.

[0144] Another problem in existing implementations of
the ISP mode can correspond to one or more dimensions of
sub-blocks obtained by splitting a coding block. Another
illustrative example is considered to explain problems asso-
ciated with the width of a sub-block being greater than a
maximum size threshold. In such an example, the following
are assumed for a coding block: MaxTbSizeY is equal to 16,
cbWidth is equal to 32, and cbHeight is equal to 64. As
previously described, this combination of values would
result in both the cbWidth and the cbHeight being greater
than the MaxTbSizeY, which would lead to a decision to
enable the ISP mode for splitting the coding block. Since at
least one of cbWidth and the cbHeight (in fact both cbWidth
and the cbHeight in this case) is greater than the MaxTh-
SizeY, the intra_subpartitions_split_flag is not signaled and
therefore inferred to be equal to O in the current implemen-
tations, resulting in the IntraSubPartitionsSplitType being
derived as 1, corresponding to an ISP horizontal split for the
coding block. The number of sub-partitions in this case can
be 4, given the block dimensions as previously explained,
thus the NumlIntraSubPartitions being derived as 4. The four
resultant sub-blocks obtained from a horizontal split (similar

US 2020/0252608 Al

to the example of FIG. 3 for obtaining four ISP blocks
304a-3044d by splitting the current block 302 using a hori-
zontal split) would each have a width of 32 and a height of
16. Thus, the width of each sub-block being 32 would mean
that each of the sub-blocks has a width which is larger than
the MaxTbSizeY of 16. As explained previously, it is
undesirable to have sub-blocks of width larger than the
maximum transform block size MaxTbSizeY. Correspond-
ingly, there is also a need for ISP solutions where the width
and height dimensions of sub-blocks obtained by applying
an ISP split to a coding block do not exceed the size
threshold of the maximum transform block size MaxTb-
SizeY.

[0145] Yet another problem associated with existing
implementations pertains to the use of the ISP mode in
encoder or decoder designs which utilize Virtual Pipeline
Data Units (VPDUs). VPDUs are non-overlapping cells in a
picture or video frame. For example, VPDUs can be non-
overlapping MxM-luma(L.)/NxN-chroma(C) units in a pic-
ture. In some examples of hardware decoding processes,
consecutive VPDUs can be processed in parallel by multiple
processing/decoding pipeline stages (e.g., different decoding
pipeline stages process different VPDUs simultaneously). To
support parallel processing, each VPDU may include coding
units which can be processed independently. For example,
processing stages such as reconstruction, transform, and
prediction can be performed in different pipeline stages of
processing a coding unit using the VPDUs. In some cases,
a VPDU size can be roughly proportional to the buffer size
in some pipelines. For instance, a VPDU size can be set to
the size of a transform block (TB) size. In some examples,
only a subset of the processing stages (such as transform or
inverse transform) of VPDUs may be processed indepen-
dently.

[0146] In VVC, design choices for VPDUs include sizes
of 64x64 luma samples, where the maximum transform
block size MaxTbSizeY may be 64 samples. When parti-
tioning schemes are used, some implementations can
include one or more constraints which disallow partitioning
boundaries to cut across VPDU boundaries in order to
support the independent processing capabilities mentioned
above. In one illustrative example where the size of the
VPDUs are 64x64 samples each, the VPDUs may be imple-
mented in hardware using pipelines that can handle 64x64
sample units. In such examples, the one or more constraints
may prevent partitioning of coding units which are larger
than 64x64 samples. Such a constraint can ensure that only
the coding blocks which can be accommodated in a VPDU
without being partitioned are allowed to be processed using
the VPDUs. JVET-L1002 includes examples of these and
other constraints on partitioning coding units where VPDUs
are used.

[0147] With the current implementations of the ISP mode,
it is possible to have coding units whose sizes exceed the
64x64 boundaries. For example, some coding units of size
64x128 and 128x64 are supported in VVC. In some cases,
the ISP mode may be enabled to indicate ISP splitting for
such coding units which are larger than the 64x64 bound-
aries. If ISP splitting is applied to such coding units of
64x128 or 128x64, for example, to result in sub-blocks
which are smaller than the 64x64 boundaries, such sub-
blocks can be accommodated within VPDUs for processing.
The different sub-blocks of the same coding unit may not
support independent processing in different VPDUs as dis-

Aug. 6, 2020

cussed above. Therefore, processing the different sub-blocks
(obtained by splitting the same coding unit) in separate
VPDUs is not desirable and may violate the restrictions on
coding units crossing VPDU boundaries. Since current
implementations can allow coding units of sizes larger than
64x64 to be coded with ISP mode, there is a need for
solutions which do not violate the VPDU size constraints
when ISP mode is enabled.

[0148] Systems, methods, and computer-readable media
are described herein for improving video coding. For
example, the systems, methods, and computer-readable
media described herein improve the design and use of the
intra sub-block partitioning (ISP) mode and address the
above-described needs in existing implementations. The
various features described herein may be used alone, or in
any suitable combination. As previously noted, the terms
intra sub-block partitioning (ISP), sub-partitioning (as used
with respect to the ISP mode), sub-block intra prediction (as
used with respect to the ISP mode), and other similar terms
may be used interchangeably herein.

[0149] In some examples of implementing an ISP mode,
the semantics and/or syntax of an intra-subpartitions split
flag (also referred to herein as a subpartition split flag) for a
coding block can be provided in a manner which ensures the
optimal value of the intra-subpartitions split flag is deter-
mined for the coding block. One illustrative example of the
intra-subpartitions split flag is the intra_subpartitions_split_
flag noted above. For example, in the above-described
situations where one of the cbWidth or the cbHeight is larger
than the MaxTbSizeY (also referred to herein as a “size
threshold”), even though the intra_subpartitions_split_flag
may not be present, the value of the intra_subpartitions_
split_flag is inferred to be a value which can lead to the
optimal derivation of the split type variable, IntraSubParti-
tionsSplitType. In some examples, depending on whether
the cbWidth is greater than the MaxTbhSizeY or the cbHeight
is greater than the MaxTbSizeY, the value of the intra_
subpartitions_split_flag is inferred such that the IntraSu-
bPartitionsSplitType derived using the inferred value of the
intra_subpartitions_split_flag indicates an ISP vertical split
or an ISP horizontal split, respectively. Illustrative examples
showing changes to the existing syntax and/or semantics of
the JVET WD4 of VVC to obtain the above-noted inference
of the intra_subpartitions_split_flag are provided below.

[0150] In some examples, a partition structure for the ISP
mode can be provided to ensure that dimensions of sub-
blocks obtained by partitioning a coding block do not violate
a size threshold such as the MaxTbSizeY. For example, an
ISP mode can be provided where any dimension (width or
height) of any the sub-blocks does not exceed the value of
MaxTbSizeY. In one example, a recursive structure similar
to a transform tree() syntax structure of Table 4 (also
referred to herein as a “transform tree syntax structure”) can
be implemented when the sub-partition split type is hori-
zontal or vertical. In another example, when the cbWidth or
cbHeight (or both the cbWidth and the chHeight) of a coding
block coded with ISP is larger than the MaxTbSizeY, the
value of the variable, NumlIntraSubPartitions (also referred
to herein as a “subpartition number”) is modified such that
the width or height of the sub-blocks do not exceed the
MaxTbSizeY. In another example, the semantics or syntax
of intra_subpartitions_mode_flag (referred to herein as a
“subpartitions mode flag”) are provided to ensure that
dimensions of a sub-block (width or height or both) do not

US 2020/0252608 Al

exceed the MaxTbSize. In another example, when the
cbWidth or the chHeight of a coding block is larger than
MaxTbSizeY, the coding block is restricted to be coded with
ISP coding. Illustrative examples showing changes to the
existing syntax and/or semantics of the JVET WD4 of VVC
to restrict the sub-block size in the above manner are further
described below.

[0151] In some examples where ISP mode is enabled, one
or more size constraints may be implemented for coding
units which can be processed using VPDUs. In some
examples, the one or more size constraints prevent ISP mode
from being enabled for coding units which cross VPDU
boundaries. Illustrative examples showing additional exist-
ing syntax and/or semantics for the JVET WD4 of VVC are
provided below.

[0152] FIG. 4is a block diagram illustrating an example of
a coding block which can be coded with ISP using example
syntax and/or semantics described herein. In some
examples, various decisions pertaining to enabling the ISP
mode, the type of split (horizontal or vertical) to be applied
if the ISP mode is enabled, the number of ISP sub-partitions,
among others may be based at least in part on one or more
dimensions of the coding block. The coding block 402 is
shown with the dimensions cbWidth and cbHeight corre-
sponding to width and height of the coding block 402
respectively. The coding block 402 can include a coding
block such as a CU or PU (or a CB or PB) of a picture which
can be processed using the ISP mode. In some examples, the
number of samples (e.g., luma samples) in the coding block
402 may be proportional to the size of the coding block 402
obtained by cbWidthxcbHeight. In some examples, an ISP
mode may be used to split the coding block 402 based on a
relationship of the dimensions cbWidth and cbHeight to
respective size thresholds.

[0153] In some examples, the transform blocks used to
split the coding block according to a transform tree structure
(or other partitioning structure) may be square shaped with
the maximum height and width for a transform block being
the same, referred to as the maximum transform block size
MaxTbSizeY. In some examples, applying the ISP mode for
splitting the coding block 402 can be based on the cbWidth
and cbHeight dimensions relative to the MaxTbSizeY. In
some examples, the dimensions of the sub-blocks or ISP
blocks obtained by splitting the coding block 402 (e.g.,
similar to the ISP splitting shown in FIG. 2 and FIG. 3) may
also be restricted based on the MaxTbSizeY, with techniques
herein described for ensuring that the sub-blocks obtained
from splitting the coding block 402 also do not violate
corresponding size thresholds. In some examples where the
coding block 402 may be processed using VPDUs, one or
more constraints on the cbWidth and cbHeight dimensions
of the coding block 402 may be implemented relative to
VPDU boundaries (e.g., based on a maximum width and/or
height of a VPDU). These and other examples will be
discussed in further detail below.

[0154] As previously mentioned, there may be situations
in which the intra_subpartitions_split_flag may not be sig-
naled for coding blocks which are specified for coding using
the ISP mode. In some examples, if the intra-subpartitions
split flag (e.g., intra_subpartitions_split_tlag) for the coding
block 402 is not present, then the value of the intra-
subpartitions split flag (e.g., intra_subpartitions_split_flag)
for the coding block 402 may be inferred to be a first value
or a second value based on the cbWidth and/or the cbHeight

Aug. 6, 2020

relative to a size threshold such as the maximum transform
block size, MaxTbSizeY. In some examples, the split type
(vertical or horizontal) to be applied to the coding block 402
can be based on the first value or the second value.

[0155] Insome examples, the ISP mode flag for the coding
block 402 (e.g., intra_subpartitions_mode_flag) may be sig-
naled when the cbWidth or the cbHeight is less than or equal
to MaxTbSizeY or if both the cbWidth and the cbHeight are
less than or equal to MaxTbhSizeY. Accordingly, in examples
where one of the cbWidth or the cbHeight is larger than
MaxTbSizeY and the other is smaller, the intra_subparti-
tions_mode_{flag is signaled with a value (e.g., a value of 1
indicating that the ISP mode is enabled for the coding block
or a value of 0 indicating that the ISP mode is not performed
for the coding block). In such implementations, since one of
the cbWidth or the cbHeight is greater than MaxTbSizeY,
the intra-subpartitions split flag, intra_subpartitions_split_
flag, may not be present or may not be signaled.

[0156] In some examples, when the ISP mode for the
coding block 402 is enabled (e.g., when the intra_subparti-
tions_mode_{flag is signaled) and the intra-subpartitions split
flag (e.g., intra_subpartitions_split_flag) is not present, then
if cbWidth is greater than MaxTbSizeY, then the intra-
subpartitions split flag (e.g., intra_subpartitions_split_flag)
may be inferred to be equal to a first value (e.g., a value of
1) for the coding block 402. In some examples, applying the
formula for the split type obtained by IntraSubPartitionsS-
plitType being equal to 1+intra_subpartitions_split_flag
(i.e., IntraSubPartitionsSplitType is equal to 2) can indicate
that the wvalue of intra_subpartitions_split_flag being
inferred to be equal to 1 can result in a vertical split (e.g., as
seen in the name association in Table 3 for the IntraSubPar-
titionsSplitType value 2 corresponding to the ISP vertical
split ISP_VER_SPLIT).

[0157] On the other hand, when the ISP mode for the
coding block 402 is enabled (e.g., when the intra_subparti-
tions_mode_{flag is signaled) and the intra-subpartitions split
flag (e.g., intra_subpartitions_split_flag) is not present, then
if cbHeight is greater than MaxTbSizeY, then the intra-
subpartitions split flag (e.g., intra_subpartitions_split_flag)
may be inferred to be equal to a second value (e.g., a value
ot 0) for the coding block 402. In some examples, applying
the formula for the split type obtained by IntraSubPartition-
sSplitType being equal to 1+intra_subpartitions_split_flag
(i.e., IntraSubPartitionsSplitType is equal to 1) can indicate
that the wvalue of intra_subpartitions_split_flag being
inferred to be equal to O in this case can result in a horizontal
split (e.g., as seen in the name association in Table 3 for the
IntraSubPartitionsSplitType value 1 corresponding to the
ISP horizontal split ISP_HOR_SPLIT).

[0158] In some cases, when the ISP mode for the coding
block 402 is enabled (e.g., when the intra_subpartitions_
mode_{flag is signaled with a true value, such as 1) and if
neither cbHeight nor cbWidth is greater than MaxTbSizeY,
then the intra-subpartitions split flag is signaled and the
value of the intra_subpartitions_split_flag indicates whether
the split type is vertical or horizontal as mentioned above.
[0159] Examples are now described showing changes to
the existing syntax and/or semantics of JVET WD4 of VVC
with respect to the intra_subpartitions_split_flag. The addi-
tions to the Specification are shown in italicized text, with
strikethrough text showing removal of text from the Speci-
fication. The following syntax is used to describe the above
implementation for the coding block 402 being present at

US 2020/0252608 Al

coordinates [x0][y0], where the changes to existing imple-
mentations are highlighted in italicized text, with
strikethrough highlighting removal from the Specification.
intra_subpartitions_split_flag[x0][y0] specifies whether the
intra subpartitions split type is horizontal or vertical. When
intra_subpartitions_split_flag[x0][y0] is not present, it is
inferred as follows:
[0160] If cbWidth>MaxTbSizeY, intra subpartitions
split lag[x0][y0] is inferred to be equal to 1.
[0161] Else, if cbHeight>MaxTbSizeY, intra subparti-
tions split lag[x0][y0] is inferred to be equal to 0.
IntraSubPartitionsSplitType is derived as follows:
[0162] If intra_subpartitions_mode_flag[x0][y0] is
equal to 0, IntraSubPartitionsSplitType is set equal to O.
[0163] Otherwise, the IntraSubPartitionsSplitType is set
equal to 1+intra_subpartitions_split_flag[x0][y0].
[0164] As previously described, the variable NumlIntraSu-
bPartitions can be used to specify the number of sub-blocks
that the coding block 402 is divided into based on the
minimum sample requirement for the sub-blocks, the intra_
subpartitions_split_flag, and the intra_subpartitions_mode_
flag. For example, referring to Table 3, if the variable
IntraSubPartitionsSplitType has a value equal to 0, indicat-
ing ISP_NO_SPLIT, then the value of the variable NumIn-
traSubPartitions is set equal to 1 (which is a default value
indicating that there is no ISP applied to the coding block
402). Otherwise, if the variable IntraSubPartitionsSplitType
has a value equal to 1 (horizontal split ISP_HOR_SPLIT) or
2 (vertical split ISP_VER_SPLIT), the value of the variable
NumlntraSubPartitions is set equal to 2 or 4 based on the
dimensions of the coding unit or current block as explained
with reference to FIG. 2 and FIG. 3. For example, if the
coding block 402 is a 4x8 block (cbWidth is equal to 4 and
cbHeight is equal to 8) or an 8x4 block (cbWidth is equal to
8 and cbHeight is equal to 4), then the NumlIntraSubParti-
tions is set to 2, to implement splitting the coding block 402
into two ISP blocks which have the minimum number of 16
samples each, based on a horizontal or a vertical split which
can be indicated by the variable IntraSubPartitionsSplit-
Type. On the other hand, if the dimensions cbWidth and
cbHeight of the coding block 402 correspond to other than
(greater than) the 8x4, 4x8, and 4x4 block sizes, then the
NumlIntraSubPartitions is set equal to 4.
[0165] In another example, when the ISP mode for the
coding block 402 is enabled (e.g., when the intra_subparti-
tions_mode_{flag is signaled) and the intra-subpartitions split
flag, intra_subpartitions_split_flag is not present, then if
cbWidth is greater than MaxTbSizeY and cbHeight is less
than or equal to MaxTbSizeY, then intra_subpartitions_
split_flag may be inferred to be equal to the first value (e.g.,
a value of 1) for the coding block 402. In some examples,
applying the formula for the split type obtained by IntraSu-
bPartitionsSplitType being equal to 1+intra_subpartitions_
split_flag (i.e., IntraSubPartitionsSplitType is equal to 2) can
indicate that the value of intra_subpartitions_split_flag
being inferred to be equal to 1 in this case can result in a
vertical split (e.g., as seen in the name association in Table
3 for the IntraSubPartitionsSplitType value 2 corresponding
to the ISP vertical split ISP_VER_SPLIT).
[0166] On the other hand, when the ISP mode for the
coding block 402 is enabled (e.g., when the intra_subparti-
tions_mode_{flag is signaled) and the intra-subpartitions split
flag, intra_subpartitions_split_flag is not present, then if
cbHeight is greater than MaxTbSizeY and cbWidth is less

Aug. 6, 2020

than or equal to MaxTbSizeY, then intra_subpartitions_
split_flag may be inferred to be equal to the second value
(e.g., a value of 0) for the coding block 402. In some
examples, applying the formula for the split type obtained by
IntraSubPartitionsSplitType being equal to 1+intra_subpar-
titions_split_flag (i.e., IntraSubPartitionsSplitType is equal
to 1) can indicate that the value of intra_subpartitions_split_
flag being inferred to be equal to 1 in this case can result in
a horizontal split (e.g., as seen in the name association in
Table 3 for the IntraSubPartitionsSplitType value 1 corre-
sponding to the ISP horizontal split ISP_HOR_SPLIT).
[0167] The following syntax is used to describe the above
implementation for the coding block 402 being present at
coordinates [x0][y0], where the changes to existing imple-
mentations are highlighted in italicized text, with
strikethrough highlighting removal from the Specification.
intra_subpartitions_split_flag[x0][y0] specifies whether the
intra subpartitions split type is horizontal or vertical. When
intra_subpartitions_split_flag[x0][y0] is not present, it is
inferred as follows:

[0168] If cbWidth>MaxTbSizeY and
cbHeight=MaxTbSizeY, intra_subpartitions_split_flag
[x0][y0] is inferred to be equal to 1.

[0169] Otherwise, if cbHeight>MaxTbSizeY and
cbWidth=MaxTbSizeY, intra subpartitions split flag
[x0][y0] is inferred to be equal to 0.

[0170] Otherwise, intra_subpartitions_split_flag[x0]
[y0] to be equal to 0.

[0171] Examples are now described showing changes to
the existing syntax and/or semantics of JVET WD4 of VVC
with respect to defining a partition structure for ISP where
dimensions of sub-blocks obtained from partitioning a cod-
ing block do not exceed the size threshold of MaxTbSizeY.
The additions to the Tables 2 and 4 are shown in italicized
text, with strikethrough text showing removal of text from
the corresponding Specification.

[0172] In a first example of defining a partition structure
for the coding block 402 for which ISP mode is enabled, two
or more sub-blocks may be obtained based on applying a
horizontal or vertical split as appropriate based on the above
discussion of the intra_subpartitions_mode_flag and intra_
subpartitions_split_flag. For example, sub-blocks or ISP
blocks may be obtained as explained with reference to FIG.
2 and FIG. 3. The dimensions of these sub-blocks may be
tested for compliance with the requirement of being less
than MaxTbSizeY. If any dimension (width or height) of the
individual sub-blocks obtained from splitting the coding
block 402 (for which ISP mode is enabled) exceed MaxT-
bSizeY, then they are recursively partitioned until sub-
blocks are obtained whose widths and heights do not exceed
the value of MaxTbSizeY.

[0173] In one example, when the widths or heights of the
sub-blocks exceed MaxTbSizeY, the sub-blocks can be
further split using the transform_tree() structure of Table 4
when the split type is NO_ISP_SPLIT. On the other hand,
when the split type is horizontal for a coding block whose
cbHeight exceeds MaxTbSizeY, for example, then the cod-
ing block may first be split into the default number of four
sub-blocks (assuming minimum sample requirements for the
four sub-blocks can be met, as discussed with reference to
FIG. 3). If the resultant four sub-blocks have a width which
exceeds MaxTbSizeY, then the four sub-blocks would be
split using a vertical split type to result in two or four further
sub-blocks each (depending on the width and minimum

US 2020/0252608 Al

sample requirements for each sub-block) and the dimensions
of these further sub-blocks may be tested for compliance
with the MaxThSizeY size threshold. The above process of
splitting the sub-blocks may proceed recursively until the
final sub-blocks satisty the MaxTbSizeY size threshold.

[0174] In an illustrative example where the MaxTh-
SizeY=32, and the coding block 402 has a cbWidth 64 and
cbHeight 128 (i.e., the coding block 402 is a 64x128 block),
a horizontal ISP split would result in sub-blocks of size
64x32, where the width of the sub-blocks would exceed
MaxTbSizeY. In this case, the transform_tree() syntax
structure of Table 4 would be applied with NO_ISP_SPLIT
mode (this is only for the split and the internal prediction
would follow ISP processing) and each 64x32 sub-block
would be split into two 32x32 blocks.

[0175] For the case of the split type being vertical (ISP_
VER_SPLIT) or horizontal (ISP_HOR_SPLIT) (i.e., when
the split type is set to be a value which is not equal to
ISP_NO_SPLIT) and one of the width or height of a coding
block or sub-block exceeds MaxTbSizeY, the transform
tree() structure of Table 4 can be modified. For example, the
syntax table of coding_unit() and transform_tree() may be
modified from the Tables 2 and 4, respectively, for horizon-
tal and vertical split types, where the modifications are
identified in the italicized text below in Table 2' and Table 4'
respectively.

TABLE 2'

Syntax table of modified coding unit

De-
scrip-
tor
coding_unit(x0, y0, cbWidth, cbHeight, treeType) {
if(tile__group_type !=1) {
cu_cbf ae(v)
if{ cu__cbf)
transform__tree(X0, y0, cbWidth, cbHeight, treeType ,
IntraSubPartSplitTyp
e, idx)
¥
¥
TABLE 4'
Syntax table of modified transform tree
De-
scrip-

tor

transform__tree(X0, y0, tbWidth, tbHeight , treeType, splitTipe,
idx) {
InferTuCbfLuma = 1
if(ntraSubPartSplitFype-splitipe = = NO_ISP_SPLIT) {
if(tbWidth > MaxTbSizeY || tbHeight >
MaxTbSizeY) {
trafoWidth = (tbWidth > MaxTbSizeY) ?
(tbWidth / 2) : tbWidth
trafoHeight = (tbHeight > MaxTbSizeY) ?
(tbHeight / 2) : tbHeight
transform__tree(%0, y0, trafoWidth, trafoHeight)
if(tbWidth > MaxTbSizeY)
transform__tree(X0 + trafoWidth, yo0,
trafoWidth, trafoHeight, treeType)

Aug. 6, 2020

TABLE 4'-continued

Syntax table of modified transform tree

De-
scrip-

if(tbHeight > MaxTbSizeY)
transform__tree(x0, yO + trafoHeight,
trafoWidth, trafoHeight, treeType)
if(tbWidth > MaxTbSizeY && tbHeight >
MaxTbSizeY)
transform__tree(X0 + trafoWidth, y0 + trafoHeight,
trafoWidth, trafoHeight, tree

Type)
}else {

transform__umit(x0, y0, tbWidth, tbHeight,
treeType, ©idx)

¥
} else if((IntraSubPartSplitType splitType = = ISP_HOR_SPLIT) {
trafoHeight = tbHeight / NumIntraSubPartitions
for(partldx = 0; partldx < NumlIntraSubPartitions;
partldx++)
ifl thWidth > MaxTbhSizeY)
transform_tree(x0, y0 + trafoHeight * partldx, thWidth,
trafoHeight, treeType,
ISP_NO_SPLIT, partldx)
else
transform_ unit(x0, yO + trafoHeight * partldx, tbWidth,
trafoHeight, treeType,
partldx)
} else if(intraSubPartSplitPype-splirType = = ISP_VER_SPLIT) {
trafoWidth = tbWidth / NumlIntraSubPartitions
for(partldx = 0; partldx < NumlIntraSubPartitions;
partldx++)
ifl thHeight > MaxTbhSizeY)
transform_tree(x0 + trafoWidth * partldx, y0, trafoWidth,
tbHeight, treeType, I
SP_NO_SPLIT, partldx)
else
transform_ unit(X0 + trafoWidth * partldx, y0, trafoWidth,
tbHeight, treeType,
partldx)

}

[0176] In an alternative implementation, the split type
utilized by the transform_tree() for a sub-block can be set
to a value where the split type may lead to a reduction in
either the width or the height dimension that exceeds MaxT-
bSizeY. In such examples, the number of subpartitions at
each stage of the transform tree reduction may be the same
or derived separately. Considering the same example as
above, where the MaxTbSizeY=32, and a cbWidth 64 and
cbHeight of 128 (i.e., a 64x128 coding block), a horizontal
ISP split would result in sub-blocks of size 64x32, where the
width would exceed MaxTbSizeY. In this case, the trans-
form_tree() syntax structure of Table 4' can be utilized when
the split type is NO_ISP_SPLIT and each 64x32 sub-block
would be split into two 32x32 blocks. For the cases where
the split type is horizontal or vertical, the syntax structure of
the transform_tree() shown in Table 4" below can be
utilized in some alternatives. Table 4" below includes modi-
fications to Table 4 as highlighted in italicized text, where
Table 4" can be utilized for implementations where the split
type is set to horizontal or vertical based on whether a
horizontal or a vertical split, respectively, would lead to a
reduction in the dimension (height or width) that exceeds
MaxTbSizeY:

US 2020/0252608 Al

TABLE 4"

Syntax table of modified transform tree

De-
scrip-
tor

transform__tree(X0, y0, tbWidth, tbHeight , treeType, splitTipe,
idx) {
InferTuCbfLuma = 1
if(IntraSubPartSplitFype splitType = = NO_ISP_SPLIT) {
if(tbWidth > MaxTbSizeY | | tbHeight >
MaxTbSizeY) {
trafoWidth = (tbWidth > MaxTbSizeY) ?
(tbWidth / 2) : tbWidth
trafoHeight = (tbHeight > MaxTbSizeY) ?
(tbHeight / 2) : tbHeight
transform__tree(%0, y0, trafoWidth, trafoHeight)
if(tbWidth > MaxTbSizeY)
transform__tree(X0 + trafoWidth, yo0,
trafoWidth, trafoHeight, treeType)
if(tbHeight > MaxTbSizeY)
transform__tree(x0, yO + trafoHeight,
trafoWidth, trafoHeight, treeType)
if{ tbWidth > MaxTbSizeY && tbHeight >
MaxTbSizeY)
transform__tree(X0 + trafoWidth, y0 + trafoHeight,
trafoWidth, trafoHeight, tree

Type)
}else {

transform__unit(x0, y0, toWidth, tbHeight,
treeType, Sidx)

¥
} else if((ntraSubPartSphitFype splitType = = ISP_HOR_SPLIT) {
trafoHeight = tbHeight / NumIntraSubPartitions
for(partldx = 0; partldx < NumlIntraSubPartitions;
partldx++)
ifl thWidth > MaxThSizeY)
transform_tree(x0, y0 + trafoHeight * partldx, thWidth,
trafoHeight, treeType,
ISP_VER_SPLIT, partldx)
else
transform_ unit(x0, yO + trafoHeight * partldx, tbWidth,
trafoHeight, treeType,
partldx)
} else if(IntraSubPartSplitType splitType = = ISP_VER_SPLIT) {
trafoWidth = tbWidth / NumIntraSubPartitions
for(partldx = 0; partldx < NumlIntraSubPartitions;
partldx++)
ifl thHeight > MaxTbhSizeY)
transform_tree(x0 + trafoWidth * partldx, y0, trafo Width,
tbHeight, treeType, I
SP_HOR_SPLIT, partldx)
else
transform_ unit(x0 + trafoWidth * partldx, y0, trafoWidth,
tbHeight, treeType,
partldx)

}

[0177] In other examples where ISP mode is enabled, for
each sub-block obtained from splitting a block using ISP
mode, both of the transform tree() structures of Table 4' and
Table 4" may be utilized for either of the two split types,
horizontal or vertical split types. A selection between Table
4" and Table 4" for the modified transform_tree() can be
based on a relationship between the width and height of the
blocks and the MaxTbSizeY.

[0178] In the above examples of splitting a coding block
into sub-blocks using the ISP mode, in cases where one or
more resulting sub-blocks are further partitioned, the value
of the partition index (partldx) for sub-blocks may be
assigned based on the processing order for the sub-blocks. In
one example, the partldx may be assigned to the sub-blocks

20

Aug. 6, 2020

such that only the first subpartition (in either the normal or
reverse order as previously described) is assigned a partldx
value of 0 and the remaining subpartitions are assigned
values according to the decoding order of the subpartitions.
In other examples, one or more sub-blocks may be assigned
a partldx value of 0, indicating that the same processing is
applied for all subpartitions currently assigned the partldx
value of 0.
[0179] In another example of splitting a coding block
using ISP when the ISP mode is enabled, the number of
subpartitions that the coding block is split into is assigned
such that neither the width nor the height of any resulting
sub-block exceeds the value of MaxTbSizeY. The following
semantics identify splitting the coding block into the number
of subpartitions which ensures that the resulting sub-blocks
are compliant with the MaxTbSizeY size threshold. The
italicized text identifies modifications from existing imple-
mentations of ISP splitting.
The variable NumlIntraSubPartitions specifies the number of
transform block subpartitions an intra luma coding block is
divided into. NumIntraSubPartitions is derived as follows:
[0180] If IntraSubPartitionsSplitType is equal to ISP_
NO_SPLIT, NumlIntraSubPartitions is set equal to 1.
[0181] Otherwise, if one of the following conditions is
true, NumIntraSubPartitions is set equal to 2:

[0182] cbWidth is equal to 4 and cbHeight is equal to
85

[0183] cbWidth is equal to 8 and cbHeight is equal to
4

[0184] Otherwise, if cbWidth=MaxTbSizeY,
cbHeight>MaxTbSizeY and IntraSubPartitionsSplit-
Type is equal to ISP_HOR_SPLIT, NumlIntraSubPar-
titions is set equal to Max(4,cbHeight/MaxTbSizeY).

[0185] Otherwise, if cbWidth>MaxTbSizeY,
cbHeight=MaxTbSizeY and IntraSubPartitionsSplit-
Type is equal to ISP_VER_SPLIT, NumlIntraSubParti-
tions is set equal to Max(4,cbWidth/MaxTbhSizeY).

[0186] Otherwise, NumlIntraSubPartitions is set equal
to 4.
[0187] In some implementations, in addition to the

changes above, the following constraints are added such the
values of intra_subpartitions_mode_flag and the intra_su-
bpartitions_split_flag are constrained such that both the
width and height of subpartitions resulting from splitting a
coding block are less than or equal to MaxTbSizeY.
[0188] In some implementations of a coding block having
the ISP mode enabled, when the width of the coding block,
cbWidth is greater than the MaxTbSizeY or the height of the
coding block, cbHeight is greater than MaxTbSizeY (or both
the cbWidth and cbHeight are greater than the MaxTh-
SizeY), the coding block may be split both horizontally and
vertically. The number of subpartitions, NumIntraSubParti-
tions for such cases can be assigned to be equal to 4. In some
implementations, NumIntraSubPartitions may be derived to
be equal to the maximum value of 4, and cbh Width*cbHeight/
MaxTbSizeY/MaxTbSizeY, represented by the expression,
Max(4, cbWidth*cbHeight/MaxTbSizeY/MaxTbhSizeY). In
such implementations, the order of decoding the subparti-
tions may be defined to be similar to the order of decoding
the coding units, or another scan order which can be
specified for the ISP mode.

[0189] In another example of partitioning a coding block
when ISP mode is enabled, a constraint can be added such
that the value of intra_subpartitions_mode_flag is disal-

US 2020/0252608 Al

lowed to be 1 when the width or height any of the sub-blocks
resulting from splitting the coding block are larger than
MaxTbSizeY. The following semantics illustrate such
implementations, with the italicized text highlighting modi-
fications from existing implementations:

It is a requirement of bitstream conformance that when
intra_sub_partitions_mode_flag[x0][y0] is equal to 1 for a
coding block with width cbWidth and height cbHeight, the
value of sbWidth and sbHeight shall be both less than or
equal to MaxTbSizeY, where sbWidth and sbHeight are
derived as follows:

[0190] When IntraSubPartitionsSplitType is equal to
ISP_HOR_SPLIT, sbWidth is set equal to width of
cbWidth and sbHeight is set equal to cbHeight/NumlIn-
traSubPartitions.

[0191] When IntraSubPartitionsSplitType is equal to
ISP_VER_SPLIT, sbWidth is set equal to width of
cbWidth/NumIntraSubPartitions and sbHeight is set
equal to cbHeight.

[0192] In another example, the signaling of the syntax
element intra_subpartitions_mode_{flag is constrained such
that the value of intra_subpartitions_mode_flag is not sig-
naled and inferred to be equal to 0 when a sub-block
resulting from splitting a coding block would have a width
or height (or both width and height) greater than MaxThb-
SizeY. For example, if any of the sub-blocks obtained from
splitting a coding block may have one or more of the width
and height be greater than MaxTbhSizeY, then ISP mode for
the coding block can be disabled.

[0193] Examples are now described showing changes to
the existing syntax and/or semantics of JVET WD4 of VVC
with respect to VPDU boundaries. The additions to existing
implementations of the Specification are shown in italicized
text, with strikethrough text showing removal of text from
the Specification. In such examples, a constraint can be
added to ensure that a coding block coded with the ISP mode
enabled does not cross the VPDU boundaries. Semantics can
be added to the Specification as follows:

It is a requirement of bitstream conformance that when
cbWidth or cbHeight is greater than Size V, the value of
intra_subpartitions_mode_{flag shall be equal to 0.

[0194] In some cases, the width and height constraints of
a VPDU may not be equal, in which the case the bitstream
constraint is applied to the width and height separately for
the CU.

[0195] Insome cases, the constraint may be imposed in the
syntax as follows: when cbWidth or cbHeight is greater than
SizeV, the syntax element intra_subpartitions_mode_flag is
not signaled and the value of intra_subpartitions_mode_flag
is inferred to be equal to 0.

[0196] As previously mentioned, virtual pipeline data unit
(VPDUs) are non-overlapping cells in a picture or video
frame which can be used for parallel processing. In some
examples, the VPDU construct can include virtual blocks
that are used for memory access (e.g., to determine which
area of memory is used for processing a particular block or
blocks of data), defining the size of the memory allocated to
implement the Standard-based coding process (e.g., HEVC,
VVC, or other coding process). Although the VPDU con-
struct may not correspond to block partitioning mechanisms
for coding purposes, the VPDUs may be used in video
processing pipelines. For example, in the hardware decoding
process, consecutive VPDUSs can be processed in parallel by
multiple processing/decoding pipeline stages (e.g., different

Aug. 6, 2020

decoding pipeline stages process different VPDUs simulta-
neously). In some cases, a VPDU size can be roughly
proportional to the buffer size in some pipelines. For
instance, a VPDU size can be set to the size of a transform
block (TB) size. In one illustrative example, the size of a
VPDU can be 64x64 samples (e.g., luma samples). In
HEVC, the VPDU size is set to maximum transform block
size which is 32x32-I. (Luma samples) and 16x16-C
(Chroma samples). In VVC, the VPDU size is set to
64x64-1, (Luma samples) and 32x32-C(Chroma samples),
which results in the request of larger VPDU sizes.

[0197] In some examples, a VPDU can contain one or
more multiple blocks (e.g., a CU, PU, TU, or other block).
For example, in some cases, a single CU can be included in
one VPDU (e.g., the size of the CU and the VPDU size are
the same). Referring to FIG. 4, if the size of the coding block
402 corresponds to a VPDU size, then the coding block 402
can be contained within a single VPDU. In an illustrative
example where the coding block 402 and the VPDU are
square blocks with each side of the VPDU being of a size,
SizeV, the width cbWidth and the height cbHeight of the
coding block 402 would each be equal to SizeV. In such
examples where a VPDU may entirely contain a coding
block, the coding block would not cross the VPDU bound-
aries. Thus, if the coding block 402 is coded with ISP mode,
the coding block 402 would not violate the VPDU constraint
by crossing the VPDU boundaries. Accordingly, in such
examples, when cbWidth and the cbHeight are less than or
equal to the size threshold of the VPDU, SizeV, the syntax
element intra_subpartitions_mode_flag can be signaled with
a value of 1 indicating that ISP mode is enabled for the
coding block 402.

[0198] FIG. 5 is a diagram illustrating an example of a
VPDU 500 multiple coding units. In one such example, each
of the multiple CUs contained within the VPDU 500 can
have sizes that are smaller than the VPDU size. As shown,
four blocks or coding units are identified within the VPDU
500, including a first block 520, a second block 522, a third
block 524, and a fourth block 526. Each of the first block
520, the second block 522, the third block 524, and/or the
fourth block 526 can be a CU, a PU, a TU, or other block of
a picture. The dimensions, width cbWidth and height
cbHeight have been identified for the first block 520 to
illustrate the relationship of these dimensions to the size of
the VPDU 500. Correspondingly, a height SizeV_height and
width SizeV_width have also been identified for the VPDU
500, where in some examples, the SizeV_height and the
SizeV_width may be equal to the same value, SizeV.

[0199] In the above example, the width cbWidth of the
first block 520 would be less than the width SizeV_width of
the VPDU 500, and the height cbHeight of the first block
520 would be less than the height SizeV_height of the
VPDU 500. Therefore, if the first block 520 is coded with
ISP mode, the first block 520 would not violate the VPDU
constraint by crossing the VPDU boundaries. Accordingly,
in such examples, when cbWidth and the cbHeight are less
than or equal to the size thresholds corresponding to the
VPDU boundaries, the ISP mode can be allowable for the
first block 520 and the syntax element intra_subpartitions_
mode_{flag can be signaled with a value of 1 indicating that
ISP mode is used for the first block 520. Although not
explicitly shown, the dimensions of the second block 522,
the third block 524, and the fourth block 526 may be the
same as those discussed above with reference to the first

US 2020/0252608 Al

block 520. Accordingly in such examples, the second block
522, the third block 524, and the fourth block 526 may also
be coded with ISP mode enabled. In some examples,
whether the ISP mode can be enabled or used when the ISP
mode is allowable based on the VPDU constraint may be
based on further comparisons of the cbWidth and the
cbHeight with the maximum transform block size threshold
MaxTbSizeY as previously explained, and further described
below.

[0200] In some examples, the size of a coding block (e.g.,
a CU, PU, or other block can span multiple VPDUs. For
example, a coding block may be processed using multiple
VPDUs. For example, a coding block having a size of
128x64 (128 samples widex64 samples high) or a coding
block having a size of 64x128 (64 samples widex128
samples high) can span two VPDUSs that each have a size of
64x64. In another example, a coding block having a size of
128128 (128 samples widex128 samples high) can span
four VPDUs that each have a size of 64x64. The coding
block can be split into a certain number of sub-blocks for
performing inter-prediction by each of the VPDU pipeline
stages. For example, a 128x128 coding block can be split
into for 64x64 sub-blocks for processing by four different
VPDU pipeline stages. The coding block can be split for
inter-prediction because there is no dependency on neigh-
boring blocks for performing inter-prediction. However,
such coding blocks which span multiple VPDUs also cross
VPDU boundaries, which may violate the VPDU constraint
on allowing the intra-subpartition mode to be used for
splitting the coding blocks.

[0201] FIG. 6 is a diagram illustrating an example of a
coding block 602 spanning multiple VPDUs. For example,
the coding block 602 contains the samples associated with
four VPDUs, including a first VPDU 630, a second VPDU
632, a third VPDU 634, and a fourth VPDU 636. The coding
block 602 can have dimensions including a width cbWidth
and a height cbHeight. Each of the four VPDUs may have
dimensions including width and height of SizeV (as repre-
sentatively illustrated for the first VPDU 630). In one
illustrative example, the current block 602 has a size of
128%128, and each of the VPDUs 630-634 have a size of
64x64. The coding block 602 can be a CU, a PU, a TU, or
other block of a picture.

[0202] Inthe example of FIG. 6, both the cbWidth and the
cbHeight of the coding block 602 are greater than the SizeV
of each of the four VPDUs 630-634. Thus, the dimensions
of the coding block 602 would violate the requirements for
the coding block 602 to be coded with ISP mode. As
previously noted, in example implementations, bitstream
conformance can include a requirement that when cbWidth
or cbHeight a coding block is greater than SizeV, the value
of intra_subpartitions_mode_flag shall be equal to 0. In
examples where the width and height of a VPDU may not be
equal (e.g., as discussed with reference to FIG. 6), the
bitstream conformance can include a requirement that when
cbWidth is greater than SizeV_width or cbHeight is greater
than SizeV_height, the value of intra_subpartitions_mode_
flag shall be equal to 0, to indicate that the ISP mode is not
enabled for the coding block 602. In some examples, the
intra_subpartitions_mode_{flag for the coding block 602 can
be set to 0 based on cbWidth and cbHeight of the coding
block 602 being greater than the SizeV of the first VPDU
630 (and similarly, greater than the SizeV of the remaining
VPDUs 632, 634, and 636).

Aug. 6, 2020

[0203] In another alternative as previously noted, a con-
straint may be imposed in the syntax for the ISP mode that
when cbWidth or cbHeight is greater than SizeV, the syntax
element intra_subpartitions_mode_{flag is not signaled and
the value of intra_subpartitions_mode_flag is inferred to be
equal to 0. Thus, in the case of the coding block 602, because
cbWidth and cbHeight are greater than SizeV for one or
more VPDUs, including the four VPDUs 630-636, the
intra_subpartitions_mode_flag is not signaled, e.g., by an
encoding device, for the coding block 602. In such cases
where the intra_subpartitions_mode_flag is not signaled or
included in an encoded bitstream containing the coding
block 602, the value of intra_subpartitions_mode_flag can
be inferred to be equal to 0, e.g., by a decoding device which
receives the encoded bitstream.

[0204] In some examples, determining whether the ISP
mode is allowable based on the above comparison of the
dimensions of the coding block with VPDU boundaries can
be combined with other considerations for enabling the ISP
mode when the ISP mode is allowable. For example, when
the one or more VPDU constraints are satisfied, the intra_
subpartitions_mode_flag may be signaled to indicate that the
ISP mode is enabled for a block. For example, as previously
discussed with reference to existing implementations, the
intra_subpartitions_mode_flag may be signaled (e.g., to
indicate ISP is enabled) for a coding block when one of the
cbWidth or cbHeight is larger than MaxTbhSizeY and the
other one of the cbWidth or cbHeight is smaller than
MaxTbSizeY, or if both cbWidth and cbHeight are smaller
than MaxTbSizeY.

[0205] Thus, in examples where the maximum transform
block size MaxTbSizeY is the same as the VPDU, then if
either the cbWidth or the cbHeight of a coding block is
larger than SizeV (where SizeV is equal to MaxTbhSizeY),
then ISP mode is not allowable and therefore the intra_
subpartitions_mode_flag is not signaled for the coding
block, as the coding block’s dimensions would violate the
one or more VPDU constraints by crossing the VPDU
boundary. For example, if in an illustrative example, SizeV
and MaxTbSizeY are both equal to 64, then for either
cbWidth or the cbHeight being greater than 64, the VPDU
constraint would prevent the ISP mode from being allowable
and the intra_subpartitions_mode_flag is not signaled (i.e.,
the ISP mode is not enabled) for the coding block.

[0206] However, if in another illustrative example, MaxT-
bSizeY is 32 and SizeV is 64, then it is possible for
intra_subpartitions_mode_{flag to be allowable and enabled
in some situations. For example, if cbWidth is equal to 64
and cbHeight is equal to 32 for a coding block, then cbWidth
and cbHeight would be less than SizeV in this example, thus
leading to a determination that the ISP mode is allowed
based on the VPDU constraint being met. Further, since
cbWidth being equal to 64 would make cbWidth greater than
MaxTbSizeY of size 32 and cbHeight being equal to 32
would make cbHeight less than or equal to the MaxTbSizeY
of'size 32, the ISP mode for the coding block can be enabled
and intra_subpartitions_mode_flag can be signaled in a bit
stream, e.g., by an encoding device. However, the intra_
subpartitions_split_flag would not be signaled because
cbWidth is greater than the MaxTbSizeY of 32. In such an
example, existing implementations of a decoding device
receiving the bit stream may infer the value of the intra_
subpartitions_split_flag to be 0 (corresponding to the hori-
zontal split ISP_HOR_SPLIT) as explained with reference

US 2020/0252608 Al

to Table 2, leading to an undesirable outcome. However, by
implementing the modifications for inferring the value of
intra_subpartitions_split_flag to be the vertical split ISP_
VER_SPLIT as discussed with reference to FIG. 7, the
desirable split for the coding block of cbWidth equal to 64
and cbHeight equal to 32 would result in two sub-blocks of
width 32 and height 32 each, where these resulting sub-
blocks would be confined within the MaxTbSizeY of size
32.

[0207] In another example, signaling of the intra_subpar-
titions_mode_flag can also be modified from the existing
implementation to disable the ISP mode (or not signal the
intra_subpartitions_mode_flag) when either the cbWidth or
the cbHeight of the coding block is greater than MaxTh-
SizeY. As previously noted, when the width or the height of
a luma coding block is larger than the maximum transform
size MaxTbhSizeY, the coding block is split into two or more
transform units as specified in the transform_tree() syntax
structure of Table 2. The above-noted problem of the intra_
subpartitions_split_flag being inferred to be 0 (correspond-
ing to the horizontal split ISP_HOR_SPLIT) regardless of
whether the vertical or the horizontal split would be the
optimal choice arises due to the syntax of the intra_subpar-
titions_mode_{flag in existing implementations which allows
the intra_subpartitions_mode_flag to be signaled when one
of the cbWidth and the cbHeight of the coding block is
greater than MaxTbSizeY and the other one of the cbWidth
and the cbHeight is less than or equal to the MaxTbSizeY.
However, if intra_subpartitions_mode_flag is only signaled
when both the cbWidth and the cbHeight are less than or
equal to the MaxTbSizeY, then the syntax for both the
intra_subpartitions_mode_flag and the intra_subpartitions_
split_flag would become consistent with one another. For
example, Table 2" shown below illustrates in italicized text
a modification to the signaling of the intra_subpartitions_
mode_flag when cbWidth<=MaxTbSizeY &&
cbHeight<=MaxTbSizeY (where in the existing implemen-
tation of Table 2, intra_subpartitions_mode_flag was sig-
naled when (cbWidth<=MaxTbSizeY 11
cbHeight<=MaxTbSizeY).

TABLE 2"

Syntax table of modified transform tree

if (intra_luma_ref idx[x0][y0]==0&&
(cbWidth < = MaxTbSizeY && cbHeight <= MaxTbSizeY) &&
(cbWidth * cbHeight > MinTbSizeY * MinTbSizeY))
intra_ subpartitions_ mode__flag[x0][y0]
if(intra_ subpartitions__mode_ flag[x0][y0] == 1 &&
cbWidth <= MaxTbSizeY && cbHeight <= MaxTbSizeY)
intra_ subpartitions_ split_ flag[x0][y0]

[0208] In implementations where intra_subpartitions_mo-
de_flag is signaled for a coding block when cbWidth less
than or equal to the size threshold MaxTbSizeY and
cbHeight is less than or equal to the size threshold MaxT-
bSizeY, it can be appreciated that the signaling of the
intra_subpartitions_mode_flag based on a relationship
between the dimensions of the coding block and the size
threshold is the same for when the size threshold is based on
the VPDU size (SizeV) or the maximum transform block
size (MaxTbSizeY). Thus, intra_subpartitions_mode_flag is
signaled to enable ISP mode for a coding block for which
ISP mode is allowed when cbWidth and cbHeight are both
less than the size threshold, where the size threshold is

Aug. 6, 2020

SizeV equal to MaxTbhSizeY. If either one of the cbWidth or
the cbHeight violates the size threshold then intra_subpar-
titions_mode_flag is not signaled and ISP mode may be
disallowed or disabled for the coding block.

[0209] FIG. 7 is a flowchart illustrating an example of a
process 700 of decoding video data by determining a type of
sub-partition to be applied for a coding block for which
intra_subpartition (ISP) mode is enabled. At 702, the process
700 includes obtaining an encoded video bitstream including
the video data. In some examples, the process of obtaining
the encoded video bitstream can be performed by a decoding
device. The video data can include a plurality of pictures,
and the pictures can be divided into a plurality of blocks, as
previously described. The video data can also include
motion information for the pictures and/or blocks, which can
be used to perform motion compensation.

[0210] At 704, the process 700 includes determining that
an intra-subpartitions split flag is not present in the video
bitstream for a current block of video data, the intra-
subpartitions split flag specifying whether a type of split for
an intra-subpartitions mode used for the current block is
horizontal or vertical. For example, the ISP mode flag for the
coding block 402, intra_subpartitions_mode_flag, may have
been signaled when the cbWidth or the cbHeight is less than
or equal to the size threshold MaxTbSizeY or if both the
cbWidth and the cbHeight are less than or equal to MaxT-
bSizeY. Accordingly in examples where one of the cbWidth
or the cbHeight is larger than MaxTbSizeY and the other is
smaller, the intra_subpartitions_mode_flag would be sig-
naled as true (with a value indicating that the ISP mode is
enabled for the coding block). In such implementations,
where one of the cbWidth or the cbHeight is greater than
MaxTbSizeY, the intra-subpartitions split flag, intra_subpar-
titions_split_flag, may not be present in the signaled bit-
stream.

[0211] At 706, the process 700 includes determining that
at least one of a width and a height of the current block is
greater than a size threshold corresponding to a maximum
transform block size. For example, when the intra_subpar-
titions_split_flag is not present for the coding block 402,
either cbWidth or cbHeight may be determined to be greater
than MaxTbSizeY.

[0212] At 708, the process 700 includes determining a
value for the intra-subpartitions split flag for the current
block based on whether the width or the height of the current
block is greater than the size threshold. For example, if
cbWidth is greater than MaxTbSizeY, then intra_subparti-
tions_split_flag may be inferred to be equal to a first value
(e.g., a value of 1 corresponding to the ISP vertical split
ISP_VER_SPLIT) for the coding block 402. On the other
hand, if cbHeight is greater than MaxTbSizeY, then intra_
subpartitions_split_flag may be inferred to be equal to a
second value (e.g., a value of O corresponding to the ISP
horizontal split ISP_HOR_SPLIT) for the coding block 402.

[0213] FIG. 8 is a flowchart illustrating an example of a
process 800 of decoding video data by defining partitioning
structures for the ISP mode to ensure that dimensions of
sub-blocks obtained from splitting a coding block comply
with size thresholds. At 802, the process 800 includes
obtaining an encoded video bitstream including the video
data. In some examples, the process of obtaining the
encoded video bitstream can be performed by a decoding
device. The video data can include a plurality of pictures,
and the pictures can be divided into a plurality of blocks, as

US 2020/0252608 Al

previously described. The video data can also include
motion information for the pictures and/or blocks, which can
be used to perform motion compensation.

[0214] At 804, the process 800 includes determining that
determining that an intra-subpartition mode for partitioning
a current block of the video data is enabled for the current
block. For example, the ISP mode flag for the coding block
402, intra_subpartitions_mode_flag, may be signaled when
the cbWidth or the cbHeight is less than or equal to the size
threshold MaxTbSizeY or if both the cbWidth and the
cbHeight are less than or equal to MaxTbSizeY. Accordingly
in examples where one of the cbWidth or the cbHeight is
larger than MaxTbSizeY and the other is smaller, the intra_
subpartitions_mode_flag is signaled with a value (e.g., a
value of 1) indicating that the ISP mode is enabled for the
coding block. In some examples, if a dimension (width or
height) of a sub-block resulting from splitting the coding
block into sub-blocks using the ISP mode is greater than the
size threshold MaxTbSizeY, then the intra_subpartitions_
mode_flag may not be signaled.

[0215] At 806, the process 800 includes determining a
partitioning structure for partitioning the current block into
sub-blocks, wherein dimensions of the sub-blocks resulting
from the partitioning do not exceed a size threshold. For
example, in some implementations a recursive structure
according to a modified transform_tree() syntax structure
shown in Table 4' or Table 4" can be used to partition the
sub-blocks obtained from partitioning the coding block 402
if the dimensions of the sub-blocks exceed the size thresh-
old. For example, if the width or height of the sub-blocks
exceeds MaxTbSizeY, vertical or horizontal split types can
be used for partitioning the resulting sub-blocks recursively
until sub-blocks of dimensions which do not exceed the
MaxTbSizeY size threshold are obtained.

[0216] FIG. 9 is a flowchart illustrating an example of a
process 900 of encoding video data by determining whether
the ISP mode is to be enabled for a coding block based on
whether the coding block violates one or more constraints
(e.g., crosses VPDU boundaries). At 902, the process 900
includes obtaining a current block of a picture of video data.
In some examples, the video data can include un-encoded
video data, such as when the process 900 is performed by an
encoding device. The video data can include a plurality of
pictures, and the pictures can be divided into a plurality of
blocks, as previously described. The process 900 can deter-
mine motion information for the pictures and/or blocks,
which can be used to perform motion compensation.

[0217] At 904, the process 900 includes determining
whether at least one of a width of the current block of the
picture is greater than a width size threshold and a height of
the current block is greater than a height size threshold, the
width size threshold corresponding to a width of a data unit
and the height size threshold corresponding to a height of the
data unit. In some cases, the data unit is a Virtual Pipeline
Data Unit (VPDU). In some cases, the data unit is a
transform block. In cases in which the data unit is a
transform block, the width size threshold and the height size
threshold can be defined as being equal to a maximum
transform block size (e.g., MaxTbSizeY). In one illustrative
example when the data unit is a VPDU, referring to FIG. 5,
the cbWidth and cbHeight of the first block 520 may be
compared with the SizeV_width and the SizeV Height,
respectively, of the VPDU 500 to determine whether at least
one of cbWidth is greater than SizeV_width or cbHeight is

Aug. 6, 2020

greater than SizeV_height. In another example, referring to
FIG. 6, the cbWidth and cbHeight of the coding block 602
may be compared with the SizeV (for the width dimension)
and the SizeV (for the height dimension), respectively, of the
VPDU 630 (where the width size threshold is equal to the
height size threshold, equal to SizeV), to determine whether
cbWidth is greater than SizeV or cbHeight is greater than
SizeV.

[0218] At 906, the process 900 includes determining
whether an intra-subpartitions mode flag is to be signaled for
the current block based on whether at least one of the width
of the current block is greater than the width size threshold
and the height of the current block is greater than the height
size threshold, wherein a value of the intra-subpartitions
mode flag indicates whether the ISP mode is applied to the
current block to partition the current block into rectangular
transform block subpartitions. In the example of FIG. 6, both
the cbWidth and the cbHeight of the coding block 602 are
greater than the SizeV of each of the four VPDUs 630-634.
Thus, the dimensions of the coding block 602 would violate
the one or more VPDU constraints for the coding block 602
to be coded with ISP mode. As previously noted, bitstream
conformance can include a requirement that when cbWidth
or cbHeight a coding block is greater than SizeV, the value
of'intra_subpartitions_mode_flag shall be equal to 0. In such
examples, the intra-subpartition mode is not allowed for the
current block when the width of the current block is greater
than the width size threshold or the height of the current
block is greater than the height size threshold. In such
examples, an intra_subpartition_mode_flag is not signaled
in the encoded video bitstream from the encoding device
when the intra-subpartition mode is not allowed for the
coding block and a value of the intra_subpartition_mode_
flag may be inferred to be a first value (0) by a decoding
device, the first value indicative of the intra-subpartition
mode not being allowed for the coding block.

[0219] At block 908, the process 900 includes generating,
based on determining whether the intra-subpartitions mode
flag is to be signaled for the current block, an encoded video
bitstream including at least the current block. For example,
the encoded bitstream can include the current block and the
intra_subpartitions_mode_{flag indicating that the ISP mode
is enabled for the current block when the current block does
not violate the VPDU constraint.

[0220] In the example of FIG. 5, when both cbWidth and
the cbHeight are less than or equal to the size thresholds
corresponding to the VPDU boundaries, the syntax element
intra_subpartitions_mode_{flag can be signaled with a value
indicating whether the ISP mode is enabled for the first
block 520 (e.g., a value of 1 or “true” indicating ISP mode
is enabled for the first block 520 or a value of 0 or “false”
indicating ISP mode is not performed for the first block 520).
In some examples, based on determining that the intra-
subpartition mode is enabled, the process 700 can be used
for determining the value of the intra-subpartitions split flag
when the intra-subpartitions split flag is not signaled.

[0221] In some implementations, the processes (or meth-
ods) described herein, including processes 700, 800, and
900, can be performed by a computing device or an appa-
ratus, such as the system 100 shown in FIG. 1. For example,
the processes can be performed by the encoding device 104
shown in FIG. 1 and FIG. 10, by another video source-side
device or video transmission device, by the decoding device
112 shown in FIG. 1 and FIG. 11, and/or by another

US 2020/0252608 Al

client-side device, such as a player device, a display, or any
other client-side device. In some examples, the computing
device or apparatus may include a camera configured to
capture video data (e.g., a video sequence) including video
frames. In some examples, a camera or other capture device
that captures the video data is separate from the computing
device, in which case the computing device receives or
obtains the captured video data.

[0222] In some cases, the computing device or apparatus
may include one or more input devices, one or more output
devices, one or more processors, one or more microproces-
sors, one or more microcomputers, and/or other component
(s) that is/are configured to carry out the steps of the
processes described herein. In some examples, the comput-
ing device may include a mobile device, a desktop computer,
a server computer and/or server system, or other type of
computing device. The computing device may further
include a network interface configured to communicate the
video data. The network interface may be configured to
communicate Internet Protocol (IP) based data or other type
of data. In some examples, the computing device or appa-
ratus may include a display for displaying output video
content, such as samples of pictures of a video bitstream.

[0223] The components of the computing device (e.g., the
one or more input devices, one or more output devices, one
Or more Processors, one or more Microprocessors, one or
more microcomputers, and/or other component) can be
implemented in circuitry. For example, the components can
include and/or can be implemented using electronic circuits
or other electronic hardware, which can include one or more
programmable electronic circuits (e.g., microprocessors,
graphics processing units (GPUs), digital signal processors
(DSPs), central processing units (CPUs), and/or other suit-
able electronic circuits), and/or can include and/or be imple-
mented using computer software, firmware, or any combi-
nation thereof, to perform the various operations described
herein.

[0224] The processes 700, 800, 900 are illustrated as
logical flow diagrams, the operation of which represent a
sequence of operations that can be implemented in hard-
ware, computer instructions, or a combination thereof. In the
context of computer instructions, the operations represent
computer-executable instructions stored on one or more
computer-readable storage media that, when executed by
one or more processors, perform the recited operations.
Generally, computer-executable instructions include rou-
tines, programs, objects, components, data structures, and
the like that perform particular functions or implement
particular data types. The order in which the operations are
described is not intended to be construed as a limitation, and
any number of the described operations can be combined in
any order and/or in parallel to implement the processes.

[0225] Additionally, the processes described herein,
including processes 800 and 900, may be performed under
the control of one or more computer systems configured
with executable instructions and may be implemented as
code (e.g., executable instructions, one or more computer
programs, or one or more applications) executing collec-
tively on one or more processors, by hardware, or combi-
nations thereof. As noted above, the code may be stored on
a computer-readable or machine-readable storage medium,
for example, in the form of a computer program comprising
a plurality of instructions executable by one or more pro-

Aug. 6, 2020

cessors. The computer-readable or machine-readable storage
medium may be non-transitory.

[0226] The coding techniques discussed herein may be
implemented in an example video encoding and decoding
system (e.g., system 100). In some examples, a system
includes a source device that provides encoded video data to
be decoded at a later time by a destination device. In
particular, the source device provides the video data to
destination device via a computer-readable medium. The
source device and the destination device may comprise any
of a wide range of devices, including desktop computers,
notebook (i.e., laptop) computers, tablet computers, set-top
boxes, telephone handsets such as so-called “smart” phones,
so-called “smart” pads, televisions, cameras, display
devices, digital media players, video gaming consoles, video
streaming device, or the like. In some cases, the source
device and the destination device may be equipped for
wireless communication.

[0227] The destination device may receive the encoded
video data to be decoded via the computer-readable medium.
The computer-readable medium may comprise any type of
medium or device capable of moving the encoded video data
from source device to destination device. In one example,
computer-readable medium may comprise a communication
medium to enable source device to transmit encoded video
data directly to destination device in real-time. The encoded
video data may be modulated according to a communication
standard, such as a wireless communication protocol, and
transmitted to destination device. The communication
medium may comprise any wireless or wired communica-
tion medium, such as a radio frequency (RF) spectrum or
one or more physical transmission lines. The communica-
tion medium may form part of a packet-based network, such
as a local area network, a wide-area network, or a global
network such as the Internet. The communication medium
may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication
from source device to destination device.

[0228] In some examples, encoded data may be output
from output interface to a storage device. Similarly, encoded
data may be accessed from the storage device by input
interface. The storage device may include any of a variety of
distributed or locally accessed data storage media such as a
hard drive, Blu-ray discs, DVDs, CD-ROMs, flash memory,
volatile or non-volatile memory, or any other suitable digital
storage media for storing encoded video data. In a further
example, the storage device may correspond to a file server
or another intermediate storage device that may store the
encoded video generated by source device. Destination
device may access stored video data from the storage device
via streaming or download. The file server may be any type
of server capable of storing encoded video data and trans-
mitting that encoded video data to the destination device.
Example file servers include a web server (e.g., for a
website), an FTP server, network attached storage (NAS)
devices, or a local disk drive. Destination device may access
the encoded video data through any standard data connec-
tion, including an Internet connection. This may include a
wireless channel (e.g., a Wi-Fi connection), a wired con-
nection (e.g., DSL, cable modem, etc.), or a combination of
both that is suitable for accessing encoded video data stored
on a file server. The transmission of encoded video data from
the storage device may be a streaming transmission, a
download transmission, or a combination thereof.

US 2020/0252608 Al

[0229] The techniques of this disclosure are not necessar-
ily limited to wireless applications or settings. The tech-
niques may be applied to video coding in support of any of
a variety of multimedia applications, such as over-the-air
television broadcasts, cable television transmissions, satel-
lite television transmissions, Internet streaming video trans-
missions, such as dynamic adaptive streaming over HTTP
(DASH), digital video that is encoded onto a data storage
medium, decoding of digital video stored on a data storage
medium, or other applications. In some examples, system
may be configured to support one-way or two-way video
transmission to support applications such as video stream-
ing, video playback, video broadcasting, and/or video tele-
phony.

[0230] In one example the source device includes a video
source, a video encoder, and a output interface. The desti-
nation device may include an input interface, a video
decoder, and a display device. The video encoder of source
device may be configured to apply the techniques disclosed
herein. In other examples, a source device and a destination
device may include other components or arrangements. For
example, the source device may receive video data from an
external video source, such as an external camera. Likewise,
the destination device may interface with an external display
device, rather than including an integrated display device.
[0231] The example system above is merely one example.
Techniques for processing video data in parallel may be
performed by any digital video encoding and/or decoding
device. Although generally the techniques of this disclosure
are performed by a video encoding device, the techniques
may also be performed by a video encoder/decoder, typi-
cally referred to as a “CODEC.” Moreover, the techniques of
this disclosure may also be performed by a video prepro-
cessor. Source device and destination device are merely
examples of such coding devices in which source device
generates coded video data for transmission to destination
device. In some examples, the source and destination
devices may operate in a substantially symmetrical manner
such that each of the devices include video encoding and
decoding components. Hence, example systems may sup-
port one-way or two-way video transmission between video
devices, e.g., for video streaming, video playback, video
broadcasting, or video telephony.

[0232] The video source may include a video capture
device, such as a video camera, a video archive containing
previously captured video, and/or a video feed interface to
receive video from a video content provider. As a further
alternative, the video source may generate computer graph-
ics-based data as the source video, or a combination of live
video, archived video, and computer-generated video. In
some cases, if video source is a video camera, source device
and destination device may form so-called camera phones or
video phones. As mentioned above, however, the techniques
described in this disclosure may be applicable to video
coding in general, and may be applied to wireless and/or
wired applications. In each case, the captured, pre-captured,
or computer-generated video may be encoded by the video
encoder. The encoded video information may then be output
by output interface onto the computer-readable medium.
[0233] As noted the computer-readable medium may
include transient media, such as a wireless broadcast or
wired network transmission, or storage media (that is, non-
transitory storage media), such as a hard disk, flash drive,
compact disc, digital video disc, Blu-ray disc, or other

Aug. 6, 2020

computer-readable media. In some examples, a network
server (not shown) may receive encoded video data from the
source device and provide the encoded video data to the
destination device, e.g., via network transmission. Similarly,
a computing device of a medium production facility, such as
a disc stamping facility, may receive encoded video data
from the source device and produce a disc containing the
encoded video data. Therefore, the computer-readable
medium may be understood to include one or more com-
puter-readable media of various forms, in various examples.

[0234] The input interface of the destination device
receives information from the computer-readable medium.
The information of the computer-readable medium may
include syntax information defined by the video encoder,
which is also used by the video decoder, that includes syntax
elements that describe characteristics and/or processing of
blocks and other coded units, e.g., group of pictures (GOP).
A display device displays the decoded video data to a user,
and may comprise any of a variety of display devices such
as a cathode ray tube (CRT), a liquid crystal display (LCD),
a plasma display, an organic light emitting diode (OLED)
display, or another type of display device. Various embodi-
ments of the application have been described.

[0235] Specific details of the encoding device 104 and the
decoding device 112 are shown in FIG. 10 and FIG. 11,
respectively. FIG. 10 is a block diagram illustrating an
example encoding device 104 that may implement one or
more of the techniques described in this disclosure. Encod-
ing device 104 may, for example, generate the syntax
structures described herein (e.g., the syntax structures of a
VPS, SPS, PPS, or other syntax elements). Encoding device
104 may perform intra-prediction and inter-prediction cod-
ing of video blocks within video slices. As previously
described, intra-coding relies, at least in part, on spatial
prediction to reduce or remove spatial redundancy within a
given video frame or picture. Inter-coding relies, at least in
part, on temporal prediction to reduce or remove temporal
redundancy within adjacent or surrounding frames of a
video sequence. Intra-mode (I mode) may refer to any of
several spatial based compression modes. Inter-modes, such
as uni-directional prediction (P mode) or bi-prediction (B
mode), may refer to any of several temporal-based com-
pression modes.

[0236] The encoding device 104 includes a partitioning
unit 35, prediction processing unit 41, filter unit 63, picture
memory 64, summer 50, transform processing unit 52,
quantization unit 54, and entropy encoding unit 56. Predic-
tion processing unit 41 includes motion estimation unit 42,
motion compensation unit 44, and intra-prediction process-
ing unit 46. For video block reconstruction, encoding device
104 also includes inverse quantization unit 58, inverse
transform processing unit 60, and summer 62. Filter unit 63
is intended to represent one or more loop filters such as a
deblocking filter, an adaptive loop filter (ALF), and a sample
adaptive offset (SAO) filter. Although filter unit 63 is shown
in FIG. 10 as being an in loop filter, in other configurations,
filter unit 63 may be implemented as a post loop filter. A post
processing device 57 may perform additional processing on
encoded video data generated by the encoding device 104.
The techniques of this disclosure may in some instances be
implemented by the encoding device 104. In other instances,
however, one or more of the techniques of this disclosure
may be implemented by post processing device 57.

US 2020/0252608 Al

[0237] As shown in FIG. 10, the encoding device 104
receives video data, and partitioning unit 35 partitions the
data into video blocks. The partitioning may also include
partitioning into slices, slice segments, tiles, or other larger
units, as wells as video block partitioning, e.g., according to
a quadtree structure of LCUs and CUs. The encoding device
104 generally illustrates the components that encode video
blocks within a video slice to be encoded. The slice may be
divided into multiple video blocks (and possibly into sets of
video blocks referred to as tiles). Prediction processing unit
41 may select one of a plurality of possible coding modes,
such as one of a plurality of intra-prediction coding modes
or one of a plurality of inter-prediction coding modes, for the
current video block based on error results (e.g., coding rate
and the level of distortion, or the like). Prediction processing
unit 41 may provide the resulting intra- or inter-coded block
to summer 50 to generate residual block data and to summer
62 to reconstruct the encoded block for use as a reference
picture.

[0238] Intra-prediction processing unit 46 within predic-
tion processing unit 41 may perform intra-prediction coding
of the current video block relative to one or more neighbor-
ing blocks in the same frame or slice as the current block to
be coded to provide spatial compression. Motion estimation
unit 42 and motion compensation unit 44 within prediction
processing unit 41 perform inter-predictive coding of the
current video block relative to one or more predictive blocks
in one or more reference pictures to provide temporal
compression.

[0239] Motion estimation unit 42 may be configured to
determine the inter-prediction mode for a video slice accord-
ing to a predetermined pattern for a video sequence. The
predetermined pattern may designate video slices in the
sequence as P slices, B slices, or GPB slices. Motion
estimation unit 42 and motion compensation unit 44 may be
highly integrated, but are illustrated separately for concep-
tual purposes. Motion estimation, performed by motion
estimation unit 42, is the process of generating motion
vectors, which estimate motion for video blocks. A motion
vector, for example, may indicate the displacement of a
prediction unit (PU) of a video block within a current video
frame or picture relative to a predictive block within a
reference picture.

[0240] A predictive block is a block that is found to closely
match the PU of the video block to be coded in terms of pixel
difference, which may be determined by sum of absolute
difference (SAD), sum of square difference (SSD), or other
difference metrics. In some examples, the encoding device
104 may calculate values for sub-integer pixel positions of
reference pictures stored in picture memory 64. For
example, the encoding device 104 may interpolate values of
one-quarter pixel positions, one-cighth pixel positions, or
other fractional pixel positions of the reference picture.
Therefore, motion estimation unit 42 may perform a motion
search relative to the full pixel positions and fractional pixel
positions and output a motion vector with fractional pixel
precision.

[0241] Motion estimation unit 42 calculates a motion
vector for a PU of a video block in an inter-coded slice by
comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture
may be selected from a first reference picture list (List 0) or
a second reference picture list (List 1), each of which
identify one or more reference pictures stored in picture

Aug. 6, 2020

memory 64. Motion estimation unit 42 sends the calculated
motion vector to entropy encoding unit 56 and motion
compensation unit 44.

[0242] Motion compensation, performed by motion com-
pensation unit 44, may involve fetching or generating the
predictive block based on the motion vector determined by
motion estimation, possibly performing interpolations to
sub-pixel precision. Upon receiving the motion vector for
the PU of'the current video block, motion compensation unit
44 may locate the predictive block to which the motion
vector points in a reference picture list. The encoding device
104 forms a residual video block by subtracting pixel values
of the predictive block from the pixel values of the current
video block being coded, forming pixel difference values.
The pixel difference values form residual data for the block,
and may include both luma and chroma difference compo-
nents. Summer 50 represents the component or components
that perform this subtraction operation. Motion compensa-
tion unit 44 may also generate syntax elements associated
with the video blocks and the video slice for use by the
decoding device 112 in decoding the video blocks of the
video slice.

[0243] Intra-prediction processing unit 46 may intra-pre-
dict a current block, as an alternative to the inter-prediction
performed by motion estimation unit 42 and motion com-
pensation unit 44, as described above. In particular, intra-
prediction processing unit 46 may determine an intra-pre-
diction mode to use to encode a current block. In some
examples, intra-prediction processing unit 46 may encode a
current block using various intra-prediction modes, e.g.,
during separate encoding passes, and intra-prediction unit
processing 46 may select an appropriate intra-prediction
mode to use from the tested modes. For example, intra-
prediction processing unit 46 may calculate rate-distortion
values using a rate-distortion analysis for the various tested
intra-prediction modes, and may select the intra-prediction
mode having the best rate-distortion characteristics among
the tested modes. Rate-distortion analysis generally deter-
mines an amount of distortion (or error) between an encoded
block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bit rate (that is, a
number of bits) used to produce the encoded block. Intra-
prediction processing unit 46 may calculate ratios from the
distortions and rates for the various encoded blocks to
determine which intra-prediction mode exhibits the best
rate-distortion value for the block.

[0244] In any case, after selecting an intra-prediction
mode for a block, intra-prediction processing unit 46 may
provide information indicative of the selected intra-predic-
tion mode for the block to entropy encoding unit 56. Entropy
encoding unit 56 may encode the information indicating the
selected intra-prediction mode. The encoding device 104
may include in the transmitted bitstream configuration data
definitions of encoding contexts for various blocks as well as
indications of a most probable intra-prediction mode, an
intra-prediction mode index table, and a modified intra-
prediction mode index table to use for each of the contexts.
The bitstream configuration data may include a plurality of
intra-prediction mode index tables and a plurality of modi-
fied intra-prediction mode index tables (also referred to as
codeword mapping tables).

[0245] After prediction processing unit 41 generates the
predictive block for the current video block via either
inter-prediction or intra-prediction, the encoding device 104

US 2020/0252608 Al

forms a residual video block by subtracting the predictive
block from the current video block. The residual video data
in the residual block may be included in one or more TUs
and applied to transform processing unit 52. Transform
processing unit 52 transforms the residual video data into
residual transform coefficients using a transform, such as a
discrete cosine transform (DCT) or a conceptually similar
transform. Transform processing unit 52 may convert the
residual video data from a pixel domain to a transform
domain, such as a frequency domain.

[0246] Transform processing unit 52 may send the result-
ing transform coefficients to quantization unit 54. Quanti-
zation unit 54 quantizes the transform coefficients to further
reduce bit rate. The quantization process may reduce the bit
depth associated with some or all of the coefficients. The
degree of quantization may be modified by adjusting a
quantization parameter. In some examples, quantization unit
54 may then perform a scan of the matrix including the
quantized transform coefficients. Alternatively, entropy
encoding unit 56 may perform the scan.

[0247] Following quantization, entropy encoding unit 56
entropy encodes the quantized transform coefficients. For
example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive
binary arithmetic coding (CABAC), syntax-based context-
adaptive binary arithmetic coding (SBAC), probability inter-
val partitioning entropy (PIPE) coding or another entropy
encoding technique. Following the entropy encoding by
entropy encoding unit 56, the encoded bitstream may be
transmitted to the decoding device 112, or archived for later
transmission or retrieval by the decoding device 112.
Entropy encoding unit 56 may also entropy encode the
motion vectors and the other syntax elements for the current
video slice being coded.

[0248] Inverse quantization unit 58 and inverse transform
processing unit 60 apply inverse quantization and inverse
transformation, respectively, to reconstruct the residual
block in the pixel domain for later use as a reference block
of a reference picture. Motion compensation unit 44 may
calculate a reference block by adding the residual block to
a predictive block of one of the reference pictures within a
reference picture list. Motion compensation unit 44 may also
apply one or more interpolation filters to the reconstructed
residual block to calculate sub-integer pixel values for use in
motion estimation. Summer 62 adds the reconstructed
residual block to the motion compensated prediction block
produced by motion compensation unit 44 to produce a
reference block for storage in picture memory 64. The
reference block may be used by motion estimation unit 42
and motion compensation unit 44 as a reference block to
inter-predict a block in a subsequent video frame or picture.
[0249] In this manner, the encoding device 104 of FIG. 10
represents an example of a video encoder configured to
perform any of the techniques described herein, including
the processes described above with respect to FIG. 7, FIG.
8 and/or FIG. 9. In some cases, some of the techniques of
this disclosure may also be implemented by post processing
device 57.

[0250] FIG. 11 is a block diagram illustrating an example
decoding device 112. The decoding device 112 includes an
entropy decoding unit 80, prediction processing unit 81,
inverse quantization unit 86, inverse transform processing
unit 88, summer 90, filter unit 91, and picture memory 92.
Prediction processing unit 81 includes motion compensation

Aug. 6, 2020

unit 82 and intra prediction processing unit 84. The decoding
device 112 may, in some examples, perform a decoding pass
generally reciprocal to the encoding pass described with
respect to the encoding device 104 from FIG. 11.

[0251] During the decoding process, the decoding device
112 receives an encoded video bitstream that represents
video blocks of an encoded video slice and associated syntax
elements sent by the encoding device 104. In some embodi-
ments, the decoding device 112 may receive the encoded
video bitstream from the encoding device 104. In some
embodiments, the decoding device 112 may receive the
encoded video bitstream from a network entity 79, such as
a server, a media-aware network element (MANE), a video
editor/splicer, or other such device configured to implement
one or more of the techniques described above. Network
entity 79 may or may not include the encoding device 104.
Some of the techniques described in this disclosure may be
implemented by network entity 79 prior to network entity 79
transmitting the encoded video bitstream to the decoding
device 112. In some video decoding systems, network entity
79 and the decoding device 112 may be parts of separate
devices, while in other instances, the functionality described
with respect to network entity 79 may be performed by the
same device that comprises the decoding device 112.

[0252] The entropy decoding unit 80 of the decoding
device 112 entropy decodes the bitstream to generate quan-
tized coefficients, motion vectors, and other syntax ele-
ments. Entropy decoding unit 80 forwards the motion vec-
tors and other syntax elements to prediction processing unit
81. The decoding device 112 may receive the syntax ele-
ments at the video slice level and/or the video block level.
Entropy decoding unit 80 may process and parse both
fixed-length syntax elements and variable-length syntax
elements in or more parameter sets, such as a VPS, SPS, and
PPS.

[0253] When the video slice is coded as an intra-coded (I)
slice, intra prediction processing unit 84 of prediction pro-
cessing unit 81 may generate prediction data for a video
block of the current video slice based on a signaled intra-
prediction mode and data from previously decoded blocks of
the current frame or picture. When the video frame is coded
as an inter-coded (i.e., B, P or GPB) slice, motion compen-
sation unit 82 of prediction processing unit 81 produces
predictive blocks for a video block of the current video slice
based on the motion vectors and other syntax elements
received from entropy decoding unit 80. The predictive
blocks may be produced from one of the reference pictures
within a reference picture list. The decoding device 112 may
construct the reference frame lists, List O and List 1, using
default construction techniques based on reference pictures
stored in picture memory 92.

[0254] Motion compensation unit 82 determines predic-
tion information for a video block of the current video slice
by parsing the motion vectors and other syntax elements,
and uses the prediction information to produce the predictive
blocks for the current video block being decoded. For
example, motion compensation unit 82 may use one or more
syntax elements in a parameter set to determine a prediction
mode (e.g., intra- or inter-prediction) used to code the video
blocks of the video slice, an inter-prediction slice type (e.g.,
B slice, P slice, or GPB slice), construction information for
one or more reference picture lists for the slice, motion
vectors for each inter-encoded video block of the slice,

US 2020/0252608 Al

inter-prediction status for each inter-coded video block of
the slice, and other information to decode the video blocks
in the current video slice.

[0255] Motion compensation unit 82 may also perform
interpolation based on interpolation filters. Motion compen-
sation unit 82 may use interpolation filters as used by the
encoding device 104 during encoding of the video blocks to
calculate interpolated values for sub-integer pixels of refer-
ence blocks. In this case, motion compensation unit 82 may
determine the interpolation filters used by the encoding
device 104 from the received syntax elements, and may use
the interpolation filters to produce predictive blocks.
[0256] Inverse quantization unit 86 inverse quantizes, or
de-quantizes, the quantized transform coefficients provided
in the bitstream and decoded by entropy decoding unit 80.
The inverse quantization process may include use of a
quantization parameter calculated by the encoding device
104 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse
quantization that should be applied. Inverse transform pro-
cessing unit 88 applies an inverse transform (e.g., an inverse
DCT or other suitable inverse transform), an inverse integer
transform, or a conceptually similar inverse transform pro-
cess, to the transform coefficients in order to produce
residual blocks in the pixel domain.

[0257] After motion compensation unit 82 generates the
predictive block for the current video block based on the
motion vectors and other syntax elements, the decoding
device 112 forms a decoded video block by summing the
residual blocks from inverse transform processing unit 88
with the corresponding predictive blocks generated by
motion compensation unit 82. Summer 90 represents the
component or components that perform this summation
operation. If desired, loop filters (either in the coding loop or
after the coding loop) may also be used to smooth pixel
transitions, or to otherwise improve the video quality. Filter
unit 91 is intended to represent one or more loop filters such
as a deblocking filter, an adaptive loop filter (ALF), and a
sample adaptive offset (SAO) filter. Although filter unit 91
is shown in FIG. 11 as being an in loop filter, in other
configurations, filter unit 91 may be implemented as a post
loop filter. The decoded video blocks in a given frame or
picture are then stored in picture memory 92, which stores
reference pictures used for subsequent motion compensa-
tion. Picture memory 92 also stores decoded video for later
presentation on a display device, such as video destination
device 122 shown in FIG. 1.

[0258] In this manner, the decoding device 112 of FIG. 11
represents an example of a video decoder configured to
perform any of the techniques described herein, including
the processes described above with respect to FIG. 8 and/or
FIG. 9.

[0259] As used herein, the term “computer-readable
medium” includes, but is not limited to, portable or non-
portable storage devices, optical storage devices, and vari-
ous other mediums capable of storing, containing, or carry-
ing instruction(s) and/or data. A computer-readable medium
may include a non-transitory medium in which data can be
stored and that does not include carrier waves and/or tran-
sitory electronic signals propagating wirelessly or over
wired connections. Examples of a non-transitory medium
may include, but are not limited to, a magnetic disk or tape,
optical storage media such as compact disk (CD) or digital
versatile disk (DVD), flash memory, memory or memory

Aug. 6, 2020

devices. A computer-readable medium may have stored
thereon code and/or machine-executable instructions that
may represent a procedure, a function, a subprogram, a
program, a routine, a subroutine, a module, a software
package, a class, or any combination of instructions, data
structures, or program statements. A code segment may be
coupled to another code segment or a hardware circuit by
passing and/or receiving information, data, arguments,
parameters, or memory contents. Information, arguments,
parameters, data, etc. may be passed, forwarded, or trans-
mitted via any suitable means including memory sharing,
message passing, token passing, network transmission, or
the like.

[0260] In some embodiments the computer-readable stor-
age devices, mediums, and memories can include a cable or
wireless signal containing a bit stream and the like. How-
ever, when mentioned, non-transitory computer-readable
storage media expressly exclude media such as energy,
carrier signals, electromagnetic waves, and signals per se.
[0261] Specific details are provided in the description
above to provide a thorough understanding of the embodi-
ments and examples provided herein. However, it will be
understood by one of ordinary skill in the art that the
embodiments may be practiced without these specific
details. For clarity of explanation, in some instances the
present technology may be presented as including individual
functional blocks including functional blocks comprising
devices, device components, steps or routines in a method
embodied in software, or combinations of hardware and
software. Additional components may be used other than
those shown in the figures and/or described herein. For
example, circuits, systems, networks, processes, and other
components may be shown as components in block diagram
form in order not to obscure the embodiments in unneces-
sary detail. In other instances, well-known circuits, pro-
cesses, algorithms, structures, and techniques may be shown
without unnecessary detail in order to avoid obscuring the
embodiments.

[0262] Individual embodiments may be described above
as a process or method which is depicted as a flowchart, a
flow diagram, a data flow diagram, a structure diagram, or
a block diagram. Although a flowchart may describe the
operations as a sequential process, many of the operations
can be performed in parallel or concurrently. In addition, the
order of the operations may be re-arranged. A process is
terminated when its operations are completed, but could
have additional steps not included in a figure. A process may
correspond to a method, a function, a procedure, a subrou-
tine, a subprogram, etc. When a process corresponds to a
function, its termination can correspond to a return of the
function to the calling function or the main function.
[0263] Processes and methods according to the above-
described examples can be implemented using computer-
executable instructions that are stored or otherwise available
from computer-readable media. Such instructions can
include, for example, instructions and data which cause or
otherwise configure a general purpose computer, special
purpose computer, or a processing device to perform a
certain function or group of functions. Portions of computer
resources used can be accessible over a network. The
computer executable instructions may be, for example,
binaries, intermediate format instructions such as assembly
language, firmware, source code, etc. Examples of com-
puter-readable media that may be used to store instructions,

US 2020/0252608 Al

information used, and/or information created during meth-
ods according to described examples include magnetic or
optical disks, flash memory, USB devices provided with
non-volatile memory, networked storage devices, and so on.

[0264] Devices implementing processes and methods
according to these disclosures can include hardware, soft-
ware, firmware, middleware, microcode, hardware descrip-
tion languages, or any combination thereof, and can take any
of'a variety of form factors. When implemented in software,
firmware, middleware, or microcode, the program code or
code segments to perform the necessary tasks (e.g., a com-
puter-program product) may be stored in a computer-read-
able or machine-readable medium. A processor(s) may per-
form the necessary tasks. Typical examples of form factors
include laptops, smart phones, mobile phones, tablet devices
or other small form factor personal computers, personal
digital assistants, rackmount devices, standalone devices,
and so on. Functionality described herein also can be
embodied in peripherals or add-in cards. Such functionality
can also be implemented on a circuit board among different
chips or different processes executing in a single device, by
way of further example.

[0265] The instructions, media for conveying such instruc-
tions, computing resources for executing them, and other
structures for supporting such computing resources are
example means for providing the functions described in the
disclosure.

[0266] In the foregoing description, aspects of the appli-
cation are described with reference to specific embodiments
thereof, but those skilled in the art will recognize that the
application is not limited thereto. Thus, while illustrative
embodiments of the application have been described in
detail herein, it is to be understood that the inventive
concepts may be otherwise variously embodied and
employed, and that the appended claims are intended to be
construed to include such variations, except as limited by the
prior art. Various features and aspects of the above-described
application may be used individually or jointly. Further,
embodiments can be utilized in any number of environments
and applications beyond those described herein without
departing from the broader spirit and scope of the specifi-
cation. The specification and drawings are, accordingly, to
be regarded as illustrative rather than restrictive. For the
purposes of illustration, methods were described in a par-
ticular order. It should be appreciated that in alternate
embodiments, the methods may be performed in a different
order than that described.

[0267] One of ordinary skill will appreciate that the less
than (“<”) and greater than (“>") symbols or terminology
used herein can be replaced with less than or equal to (“<”
and greater than or equal to (“2”) symbols, respectively,
without departing from the scope of this description.

[0268] Where components are described as being “con-
figured to” perform certain operations, such configuration
can be accomplished, for example, by designing electronic
circuits or other hardware to perform the operation, by
programming programmable electronic circuits (e.g., micro-
processors, or other suitable electronic circuits) to perform
the operation, or any combination thereof.

[0269] The phrase “coupled to” refers to any component
that is physically connected to another component either
directly or indirectly, and/or any component that is in
communication with another component (e.g., connected to

Aug. 6, 2020

the other component over a wired or wireless connection,
and/or other suitable communication interface) either
directly or indirectly.

[0270] Claim language or other language reciting “at least
one of” a set and/or “one or more” of a set indicates that one
member of the set or multiple members of the set (in any
combination) satisfy the claim. For example, claim language
reciting “at least one of A and B” means A, B, or A and B.
In another example, claim language reciting “at least one of
A, B,and C”means A, B, C,or Aand B, or A and C, or B
and C, or A and B and C. The language “at least one of” a
set and/or “one or more” of a set does not limit the set to the
items listed in the set. For example, claim language reciting
“at least one of A and B” can mean A, B, or A and B, and
can additionally include items not listed in the set of A and
B.

[0271] The various illustrative logical blocks, modules,
circuits, and algorithm steps described in connection with
the embodiments disclosed herein may be implemented as
electronic hardware, computer software, firmware, or com-
binations thereof. To clearly illustrate this interchangeability
of hardware and software, various illustrative components,
blocks, modules, circuits, and steps have been described
above generally in terms of their functionality. Whether such
functionality is implemented as hardware or software
depends upon the particular application and design con-
straints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for
each particular application, but such implementation deci-
sions should not be interpreted as causing a departure from
the scope of the present application.

[0272] The techniques described herein may also be
implemented in electronic hardware, computer software,
firmware, or any combination thereof. Such techniques may
be implemented in any of a variety of devices such as
general purposes computers, wireless communication
device handsets, or integrated circuit devices having mul-
tiple uses including application in wireless communication
device handsets and other devices. Any features described as
modules or components may be implemented together in an
integrated logic device or separately as discrete but interop-
erable logic devices. If implemented in software, the tech-
niques may be realized at least in part by a computer-
readable data storage medium comprising program code
including instructions that, when executed, performs one or
more of the methods described above. The computer-read-
able data storage medium may form part of a computer
program product, which may include packaging materials.
The computer-readable medium may comprise memory or
data storage media, such as random access memory (RAM)
such as synchronous dynamic random access memory
(SDRAM), read-only memory (ROM), non-volatile random
access memory (NVRAM), electrically erasable program-
mable read-only memory (EEPROM), FLASH memory,
magnetic or optical data storage media, and the like. The
techniques additionally, or alternatively, may be realized at
least in part by a computer-readable communication medium
that carries or communicates program code in the form of
instructions or data structures and that can be accessed, read,
and/or executed by a computer, such as propagated signals
or waves.

[0273] The program code may be executed by a processor,
which may include one or more processors, such as one or
more digital signal processors (DSPs), general purpose

US 2020/0252608 Al

microprocessors, an application specific integrated circuits
(ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Such a
processor may be configured to perform any of the tech-
niques described in this disclosure. A general purpose pro-
cessor may be a microprocessor; but in the alternative, the
processor may be any conventional processor, controller,
microcontroller, or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
microprocessors, one or more MiCroprocessors in conjunc-
tion with a DSP core, or any other such configuration.
Accordingly, the term “processor,” as used herein may refer
to any of the foregoing structure, any combination of the
foregoing structure, or any other structure or apparatus
suitable for implementation of the techniques described
herein. In addition, in some aspects, the functionality
described herein may be provided within dedicated software
modules or hardware modules configured for encoding and
decoding, or incorporated in a combined video encoder-
decoder (CODEC).

[0274] Illustrative examples of the disclosure include:
[0275] Example 1: A method of processing video data, the
method comprising: obtaining a current block of the video
data; determining at least one of a width and a height of the
current block is greater than a size threshold; determining a
subpartitions split flag is not present for the current block;
and determining a value for the subpartitions split flag for
the current block, the subpartitions split flag defining a split
of the current block, wherein the value for the subpartitions
split flag is determined based on whether the width or the
height of the current block is greater than the size threshold.
[0276] Example 2: The method of claim 1, wherein the
subpartitions split flag is determined to have a first value
when the width of the current block is greater than the size
threshold, the first value corresponding to a vertical split.
[0277] Example 3: The method of any one of Examples 1
to 2, wherein the subpartitions split flag is determined to
have a second value when the height of the current block is
greater than the size threshold, the second value correspond-
ing to a horizontal split.

[0278] Example 4: The method of Example 1, wherein the
subpartitions split flag is determined to have a first value
when the width of the current block is greater than the size
threshold and the height of the current block is less than the
size threshold, the first value corresponding to a vertical
split.

[0279] Example 5: The method of any one of Examples 1
or 4, wherein the subpartitions split flag is determined to
have a second value when the height of the current block is
greater than the size threshold and the width of the current
block is less than the size threshold, the second value
corresponding to a horizontal split.

[0280] Example 6: The method of any one of Examples 1
to 5, wherein the subpartitions split flag is not signaled based
on at least one of the width and the height of the current
block being greater than the size threshold.

[0281] Example 7: The method of any one of Examples 1
to 6, further comprising: dividing the current block verti-
cally or horizontally into sub-partitions based on the sub-
partitions split flag.

[0282] Example 8: The method of any one of Examples 1
to 7, wherein the current block is an intra-predicted block.

Aug. 6, 2020

[0283] Example 9: The method of any one of Examples 1
to 8, wherein the current block is a luma intra-predicted
block.

[0284] Example 10: An apparatus comprising a memory
configured to store video data and a processor configured to
process the video data according to any of Examples 1 to 9.
[0285] Example 11: The apparatus of Example 10,
wherein the apparatus includes a decoder.

[0286] Example 12: The apparatus of Example 10,
wherein the apparatus includes an encoder.

[0287] Example 13: The apparatus of any one of Examples
10 to 12, wherein the apparatus is a mobile device.

[0288] Example 14: The apparatus of any one of Examples
10 to 13, wherein the apparatus includes a display config-
ured to display the video data.

[0289] Example 15: The apparatus of any one of Examples
10 to 14, wherein the apparatus includes a camera config-
ured to capture one or more pictures.

[0290] Example 16: A computer readable medium having
stored thereon instructions that when executed by a proces-
sor perform the methods of any of Examples 1 to 9.
[0291] Example 17: A method of processing video data,
the method comprising: obtaining a current block of the
video data; determining at least one of a width and a height
of the current block is greater than a size threshold; and
partitioning the current block into subpartitions, wherein the
current block is partitioned until widths and heights of the
subpartitions do not exceed the size threshold.

[0292] Example 18: The method of Example 17, wherein
partitioning the current block includes reducing at least one
of the width and the height that exceeds the size threshold.
[0293] Example 19: The method of any one of Examples
17 to 18, wherein partitioning the current block into sub-
partitions includes using a transform tree syntax structure
when a sub-partition split type is horizontal or vertical.
[0294] Example 20: The method of any one of Examples
17 to 18, further comprising modifying a value of a subpar-
tition number variable when at least one of the width and
height of the coded block is greater than the size threshold,
the subpartition number variable specifying a number of
subpartitions a block is divided into, wherein the modified
value causes at least one of the width and height of the
subpartitions to not exceed the size threshold.

[0295] Example 21: The method of any one of Examples
17 to 18, wherein a value of a subpartitions mode flag
associated with the current block constrains a subpartition
not to exceed the size threshold for at least one of width and
height, the subpartitions mode flag specifying whether the
current block is partitioned into a number of block subpar-
titions.

[0296] Example 22: The method of Example 21, wherein
the number of block subpartitions is specified by a subpar-
tition number variable.

[0297] Example 23: An apparatus comprising a memory
configured to store video data and a processor configured to
process the video data according to any of Examples 17-22.
[0298] Example 24: The apparatus of Example 23,
wherein the apparatus includes a decoder.

[0299] Example 25: The apparatus of Example 23,
wherein the apparatus includes an encoder.

[0300] Example 26: The apparatus of any one of Examples
23 to 25, wherein the apparatus is a mobile device.

US 2020/0252608 Al

[0301] Example 27: The apparatus of any one of Examples
23 to 26, wherein the apparatus includes a display config-
ured to display the video data.

[0302] Example 28: The apparatus of any one of Examples
23 to 27, wherein the apparatus includes a camera config-
ured to capture one or more pictures.

[0303] Example 29: A computer readable medium having
stored thereon instructions that when executed by a proces-
sor perform the methods of any of Examples 17-22.

[0304] Example 30: A method of processing video data,
the method comprising: obtaining a current block of the
video data; and coding the current block based on a con-
straint, the constraint specifying that the current block does
not cross a Virtual Pipeline Data Units (VPDU) boundary.

[0305] Example 31: The apparatus of Example 30,
wherein the constraint specifies that, when at least one of a
width and a height of the current block is greater than a
maximum width or height of a VPDU, a value of a subpar-
titions mode flag associated with the current block shall be
equal to a particular value, the particular value specifying
the current block is not partitioned into block subpartitions.

[0306] Example 32: An apparatus comprising a memory
configured to store video data and a processor configured to
process the video data according to any of Examples 30-31.

[0307] Example 33: The apparatus of Example 32,
wherein the apparatus includes a decoder.

[0308] Example 34: The apparatus of Example 32,
wherein the apparatus includes an encoder.

[0309] Example 35: The apparatus of any one of Examples
32 to 34, wherein the apparatus is a mobile device.

[0310] Example 36: The apparatus of any one of Examples
32 to 35, wherein the apparatus includes a display config-
ured to display the video data.

[0311] Example 37: The apparatus of any one of Examples
32 to 36, wherein the apparatus includes a camera config-
ured to capture one or more pictures.

[0312] Example 38: A computer readable medium having
stored thereon instructions that when executed by a proces-
sor perform the methods of any of Examples 30-31.

[0313] Clause 1: An apparatus for encoding video data, the
apparatus comprising: a memory; and a processor imple-
mented in circuitry and configured to: obtain a current block
of a picture of video data; determine whether at least one of
a width of the current block of the picture is greater than a
width size threshold and a height of the current block is
greater than a height size threshold, the width size threshold
corresponding to a width of a data unit and the height size
threshold corresponding to a height of the data unit; deter-
mine whether an intra-subpartitions mode flag is to be
signaled for the current block based on whether at least one
of the width of the current block is greater than the width
size threshold and the height of the current block is greater
than the height size threshold, wherein a value of the
intra-subpartitions mode flag indicates whether the current
block is partitioned into rectangular transform block sub-
partitions; and generate, based on determining whether the
intra-subpartitions mode flag is to be signaled for the current
block, an encoded video bitstream including at least the
current block.

[0314] Clause 2: The apparatus according to Clause 1,
wherein the width size threshold is equal to the height size
threshold.

Aug. 6, 2020

[0315] Clause 3: The apparatus according to any of
Clauses 1-2, wherein the width size threshold is different
than the height size threshold.

[0316] Clause 4: The apparatus according to any of
Clauses 1-3, wherein a value of the intra-subpartitions mode
flag being equal to a first value specifies that the current
block is partitioned into rectangular transform block sub-
partitions, and the value of the intra-subpartitions mode flag
being equal to a second value specifies that the current block
is not partitioned into rectangular transform block subpar-
titions.

[0317] Clause 5: The apparatus according to any of
Clauses 1-4, wherein the processor is further configured to:
determine the width of the current block is greater than the
width size threshold or the height of the current block is
greater than the height size threshold; and based on the
determination that the width of the current block is greater
than the width size threshold or the height of the current
block is greater than the height size threshold, determine the
value of the intra-subpartitions mode flag for the current
block to be equal to the second value.

[0318] Clause 6: The apparatus according to any of
Clauses 1-5, wherein the processor is further configured to:
determine the width of the current block is less than or equal
to the width size threshold and the height of the current
block is less than or equal to the height size threshold; and
based on the determination that the width of the current
block is less than or equal to the width size threshold and the
height of the current block is less than or equal to the height
size threshold, determine to signal the intra-subpartitions
mode flag for the current block (e.g., as the first value or the
second value).

[0319] Clause 7: The apparatus according to any of
Clauses 1-6, wherein the processor is further configured to:
determine the width of the current block is less than or equal
to a size threshold and the height of the current block is less
than or equal to the size threshold, the size threshold
corresponding to a maximum transform block size; and
based on the determination that the width of the current
block is less than or equal to the size threshold and the height
of'the current block is less than or equal to the size threshold,
determine to signal the intra-subpartitions mode flag for the
current block (e.g., as the first value or the second value).

[0320] Clause 8: The apparatus according to any of
Clauses 1-7, wherein the processor is further configured to:
determine the width of the current block is less than or equal
to a size threshold or the height of the current block is less
than or equal to the size threshold, the size threshold
corresponding to a maximum transform block size; and
based on the determination that the width of the current
block is less than or equal to the size threshold or the height
of'the current block is less than or equal to the size threshold,
determine that the value of the intra-subpartitions mode flag
for the current block is the second value.

[0321] Clause 9: The apparatus according to any of
Clauses 1-8, wherein the processor is further configured to:
determine the intra-subpartitions mode flag is to be signaled
for the current block; and based on the determination that the
intra-subpartitions mode flag is to be signaled for the current
block, include the intra-subpartitions mode flag for the
current block in the encoded video bitstream.

[0322] Clause 10: The apparatus according to any of
Clauses 1-9, wherein the processor is further configured to:
determine that at least one of a width and a height of the

US 2020/0252608 Al

current block is greater than a size threshold corresponding
to a maximum transform block size; and based on the
determination that the width or the height of the current
block is greater than the size threshold corresponding to the
maximum transform block size, determine a value for an
intra-subpartitions split flag for the current block, the intra-
subpartitions split flag specifying whether a type of split for
partitioning the current block is horizontal or vertical.
[0323] Clause 11: The apparatus according to any of
Clauses 1-10, wherein the processor is further configured to:
determine the width of the current block is greater than the
size threshold; and based on the determination that the width
of the current block is greater than the size threshold,
determine a first split value for the intra-subpartitions split
flag, the first split value corresponding to a vertical split
type.

[0324] Clause 12: The apparatus according to any of
Clauses 1-11, wherein the processor is further configured to:
determine the height of the current block is greater than the
size threshold; and based on the determination that the
height of the current block is greater than the size threshold,
determine a second split value for the intra-subpartitions
split flag, the second split value corresponding to a horizon-
tal split type.

[0325] Clause 13: The apparatus according to any of
Clauses 1-12, wherein the processor is further configured to:
divide the current block vertically or horizontally into sub-
partitions based on the value of the intra-subpartitions split
flag for the current block.

[0326] Clause 14: The apparatus according to any of
Clauses 1-13, wherein the current block is an intra-predicted
block.

[0327] Clause 15: The apparatus according to any of
Clauses 1-14, wherein the data unit is a Virtual Pipeline Data
Unit (VPDU).

[0328] Clause 16: The apparatus according to any of
Clauses 1-15, wherein the data unit is a transform block.
[0329] Clause 17: The apparatus according to any of
Clauses 1-16, wherein the width size threshold and the
height size threshold are equal to a maximum transform
block size.

[0330] Clause 18: A method of decoding video data, the
method comprising: obtaining an encoded video bitstream
including video data; determining that an intra-subpartitions
split flag is not present in the encoded video bitstream for a
current block of video data, the intra-subpartitions split flag
specifying whether a type of split for an intra-subpartitions
mode used for the current block is horizontal or vertical;
determining that at least one of a width and a height of the
current block is greater than a size threshold corresponding
to a maximum transform block size; and determining a value
for the intra-subpartitions split flag for the current block
based on whether the width or the height of the current block
is greater than the size threshold.

[0331] Clause 19: The method according to Clause 18,
further comprising: determining an intra-subpartitions mode
flag is enabled for the current block; and determining that the
intra-subpartitions split flag is not present in the encoded
video bitstream based on the determination that the intra-
subpartitions mode flag is enabled for the current block,
wherein the current block is partitioned into rectangular
transform block subpartitions using the intra-subpartitions
mode based on the intra-subpartitions mode flag being
enabled for the current block.

Aug. 6, 2020

[0332] Clause 20: The method according to any of Clauses
18-19, further comprising: determining the width of the
current block is greater than the size threshold; and based on
the determination that the width of the current block is
greater than the size threshold, determining a first split value
for the intra-subpartitions split flag, the first split value
corresponding to a vertical split type.

[0333] Clause 21: The method according to any of Clauses
18-20, further comprising: splitting the current block into
two or more sub-blocks using the vertical split type, wherein
respective widths of each of the two or more sub-blocks are
smaller than the width of the current block based on the
vertical split type.

[0334] Clause 22: The method according to any of Clauses
18-21, further comprising: determining the height of the
current block is greater than the size threshold; and based on
the determination that the height of the current block is
greater than the size threshold, determining a second split
value for the intra-subpartitions split flag, the second split
value corresponding to a horizontal split type.

[0335] Clause 23: The method according to any of Clauses
18-22, further comprising: splitting the current block into
two or more sub-blocks using the horizontal split type,
wherein respective heights of each of the two or more
sub-blocks are smaller than the height of the current block
based on the horizontal split type.

[0336] Clause 24: The method according to any of Clauses
18-23, further comprising: determining that an intra-subpar-
titions mode flag for enabling the intra-subpartitions mode
for a second block of the video data is not present in the
encoded video bitstream; and determining a mode value of
the intra-subpartitions mode flag for the second block based
on the intra-subpartitions mode flag not being present in the
encoded video bitstream for the second block.

[0337] Clause 25: The method according to any of Clauses
18-24, wherein the intra-subpartitions mode flag not being
present in the encoded video bitstream for the second block
is indicative of at least one of a width of the second block
being greater than a width size threshold or a height of the
second block being greater than a height size threshold, the
width size threshold corresponding to a width of a data unit
and the height size threshold corresponding to a height of the
data unit.

[0338] Clause 26: The method according to any of Clauses
18-25, wherein the width size threshold is equal to the height
size threshold.

[0339] Clause 27: The method according to any of Clauses
18-26, wherein the width size threshold is not equal to the
height size threshold.

[0340] Clause 28: The method according to any of Clauses
18-27, wherein the data unit is a Virtual Pipeline Data Unit
(VPDU).

[0341] Clause 29: The method according to any of Clauses
18-28, wherein the data unit is a transform block.

[0342] Clause 30: The method according to any of Clauses
18-29, wherein the width size threshold and the height size
threshold are equal to a maximum transform block size.
[0343] Clause 31: The method according to any of Clauses
18-30, wherein the current block is an intra-predicted block.
[0344] Clause 32: The method according to any of Clauses
18-31, further comprising: performing block-based parti-
tioning of a block of video data to generate one or more
coding blocks including the current block; determining the
intra-subpartitions mode is enabled for the current block;

US 2020/0252608 Al

and based on determining the intra-subpartitions mode is
enabled for the current block, partitioning the current block
into two or more sub-blocks using the intra-subpartitions
mode.

[0345] Clause 33: The method according to any of Clauses
18-32, further comprising: reconstructing the two or more
sub-blocks by applying respective two or more residual
values to the two or more sub-blocks.

[0346] Clause 34: An apparatus for decoding video data,
the apparatus comprising: a memory; and a processor imple-
mented in circuitry and configured to: obtain an encoded
video bitstream including video data; determine that an
intra-subpartitions split flag is not present in the encoded
video bitstream for a current block of video data, the
intra-subpartitions split flag specifying whether a type of
split for an intra-subpartitions mode used for the current
block is horizontal or vertical; determine that at least one of
a width and a height of the current block is greater than a size
threshold corresponding to a maximum transform block
size; and determine a value for the intra-subpartitions split
flag for the current block based on whether the width or the
height of the current block is greater than the size threshold.
[0347] Clause 35: The apparatus according to Clause 34,
wherein the processor is further configured to: determine an
intra-subpartitions mode flag is enabled for the current
block; and determine that the intra-subpartitions split flag is
not present in the encoded video bitstream based on the
determination that the intra-subpartitions mode flag is
enabled for the current block, wherein the current block is
partitioned into rectangular transform block subpartitions
using the intra-subpartitions mode based on the intra-sub-
partitions mode flag being enabled for the current block.
[0348] Clause 36: The apparatus according to any of
Clauses 34-35, wherein the processor is further configured
to: determine the width of the current block is greater than
the size threshold; and based on the determination that the
width of the current block is greater than the size threshold,
determine a first split value for the intra-subpartitions split
flag, the first split value corresponding to a vertical split
type.

[0349] Clause 37: The apparatus according to any of
Clauses 34-36, wherein the processor is further configured
to: split the current block into two or more sub-blocks using
the vertical split type, wherein respective widths of each of
the two or more sub-blocks are smaller than the width of the
current block based on the vertical split type.

[0350] Clause 38: The apparatus according to any of
Clauses 34-37, wherein the processor is further configured
to: determine the height of the current block is greater than
the size threshold; and based on the determination that the
height of the current block is greater than the size threshold,
determine a second split value for the intra-subpartitions
split flag, the second split value corresponding to a horizon-
tal split type.

[0351] Clause 39: The apparatus according to any of
Clauses 34-38, wherein the processor is further configured
to: split the current block into two or more sub-blocks using
the horizontal split type, wherein respective heights of each
of the two or more sub-blocks are smaller than the height of
the current block based on the horizontal split type.

[0352] Clause 40: The apparatus according to any of
Clauses 34-39, wherein the processor is further configured
to: determine that an intra-subpartitions mode flag for
enabling the intra-subpartitions mode for a second block of

Aug. 6, 2020

the video data is not present in the encoded video bitstream;
and determine a mode value of the intra-subpartitions mode
flag for the second block based on the intra-subpartitions
mode flag not being present in the encoded video bitstream
for the second block.

[0353] Clause 41: The apparatus according to any of
Clauses 34-40, wherein the intra-subpartitions mode flag not
being present in the encoded video bitstream for the second
block is indicative of at least one of a width of the second
block being greater than a width size threshold or a height
of the second block being greater than a height size thresh-
old, the width size threshold corresponding to a width of a
Virtual Pipeline Data Unit (VPDU) and the height size
threshold corresponding to a height of the VPDU.

[0354] Clause 42: The apparatus according to any of
Clauses 34-41, wherein the width size threshold is equal to
the height size threshold.

[0355] Clause 43: The apparatus according to any of
Clauses 34-42, wherein the width size threshold is not equal
to the height size threshold.

[0356] Clause 44: The apparatus according to any of
Clauses 34-43, wherein the data unit is a Virtual Pipeline
Data Unit (VPDU).

[0357] Clause 45: The apparatus according to any of
Clauses 34-44, wherein the data unit is a transform block.
[0358] Clause 46: The apparatus according to any of
Clauses 34-45, wherein the width size threshold and the
height size threshold are equal to a maximum transform
block size.

[0359] Clause 47: The apparatus according to any of
Clauses 34-43, wherein the current block is an intra-pre-
dicted block.

[0360] Clause 48: The apparatus according to any of
Clauses 34-44, wherein the processor is further configured
to: perform block-based partitioning of a block of video data
to generate one or more coding blocks including the current
block; determine the intra-subpartitions mode is enabled for
the current block; and based on determining the intra-
subpartitions mode is enabled for the current block, partition
the current block into two or more sub-blocks using the
intra-subpartitions mode.

[0361] Clause 49: The apparatus according to any of
Clauses 34-48, wherein the processor is further configured
to: reconstruct the two or more sub-blocks by applying
respective two or more residual values to the two or more
sub-blocks.

[0362] Clause 50: The apparatus according to any of
Clauses 34-49, wherein the apparatus comprises a mobile
device with a camera for capturing one or more pictures.
[0363] Clause 51: The apparatus according to any of
Clauses 34-50, further comprising a display for displaying
one or more pictures.

[0364] Clause 52: A non-transitory computer-readable
medium having stored therecon instructions that, when
executed by one or more processors, cause the one or more
processors to: obtain an encoded video bitstream including
video data; determine that an intra-subpartitions split flag is
not present in the encoded video bitstream for a current
block of video data, the intra-subpartitions split flag speci-
fying whether a type of split for an intra-subpartitions mode
used for the current block is horizontal or vertical; determine
that at least one of a width and a height of the current block
is greater than a size threshold corresponding to a maximum
transform block size; and determine a value for the intra-

US 2020/0252608 Al

subpartitions split flag for the current block based on
whether the width or the height of the current block is
greater than the size threshold.

[0365] Clause 53: The non-transitory computer-readable
medium according to Clause 52, wherein the instructions
further cause the processor to: determine an intra-subparti-
tions mode flag is enabled for the current block; and deter-
mine that the intra-subpartitions split flag is not present in
the encoded video bitstream based on the determination that
the intra-subpartitions mode flag is enabled for the current
block, wherein the current block is partitioned into rectan-
gular transform block subpartitions using the intra-subpar-
titions mode based on the intra-subpartitions mode flag
being enabled for the current block.

[0366] Clause 54: The non-transitory computer-readable
medium according to any of Clauses 52-53, wherein the
instructions further cause the processor to: determine the
width of the current block is greater than the size threshold;
and based on the determination that the width of the current
block is greater than the size threshold, determine a first split
value for the intra-subpartitions split flag, the first split value
corresponding to a vertical split type.

[0367] Clause 55: The non-transitory computer-readable
medium according to any of Clauses 52-54, wherein the
instructions further cause the processor to: split the current
block into two or more sub-blocks using the vertical split
type, wherein respective widths of each of the two or more
sub-blocks are smaller than the width of the current block
based on the vertical split type.

[0368] Clause 56: The non-transitory computer-readable
medium according to any of Clauses 52-55, wherein the
instructions further cause the processor to: determine the
height of the current block is greater than the size threshold;
and based on the determination that the height of the current
block is greater than the size threshold, determine a second
split value for the intra-subpartitions split flag, the second
split value corresponding to a horizontal split type.

[0369] Clause 57: The non-transitory computer-readable
medium according to any of Clauses 52-56, wherein the
instructions further cause the processor to: split the current
block into two or more sub-blocks using the horizontal split
type, wherein respective heights of each of the two or more
sub-blocks are smaller than the height of the current block
based on the horizontal split type.

[0370] Clause 58: The non-transitory computer-readable
medium according to any of Clauses 52-57, wherein the
instructions further cause the processor to: determine that an
intra-subpartitions mode flag for enabling the intra-subpar-
titions mode for a second block of the video data is not
present in the encoded video bitstream; and determine a
mode value of the intra-subpartitions mode flag for the
second block based on the intra-subpartitions mode flag not
being present in the encoded video bitstream for the second
block.

[0371] Clause 59: The non-transitory computer-readable
medium according to any of Clauses 52-58, wherein the
intra-subpartitions mode flag not being present in the
encoded video bitstream for the second block is indicative of
at least one of a width of the second block being greater than
a width size threshold or a height of the second block being
greater than a height size threshold, the width size threshold
corresponding to a width of a Virtual Pipeline Data Unit
(VPDU) and the height size threshold corresponding to a
height of the VPDU.

Aug. 6, 2020

[0372] Clause 60: The non-transitory computer-readable
medium according to any of Clauses 52-59, wherein the
width size threshold is equal to the height size threshold.
[0373] Clause 61: The non-transitory computer-readable
medium according to any of Clauses 52-60, wherein the
width size threshold is not equal to the height size threshold.
[0374] Clause 62: The non-transitory computer-readable
medium according to any of Clauses 52-61, wherein the data
unit is a Virtual Pipeline Data Unit (VPDU).

[0375] Clause 64: The non-transitory computer-readable
medium according to any of Clauses 52-62, wherein the data
unit is a transform block.

[0376] Clause 65: The non-transitory computer-readable
medium according to any of Clauses 52-63, wherein the
width size threshold and the height size threshold are equal
to a maximum transform block size.

[0377] Clause 66: The non-transitory computer-readable
medium according to any of Clauses 52-64, wherein the
current block is an intra-predicted block.

[0378] Clause 67: The non-transitory computer-readable
medium according to any of Clauses 52-65, wherein the
instructions further cause the processor to: perform block-
based partitioning of a block of video data to generate one
or more coding blocks including the current block; deter-
mine the intra-subpartitions mode is enabled for the current
block; and based on determining the intra-subpartitions
mode is enabled for the current block, partition the current
block into two or more sub-blocks using the intra-subparti-
tions mode.

[0379] Clause 68: The non-transitory computer-readable
medium according to any of Clauses 52-66, wherein the
instructions further cause the processor to: reconstruct the
two or more sub-blocks by applying respective two or more
residual values to the two or more sub-blocks.

[0380] Clause 69: An apparatus for decoding video data,
the apparatus comprising: means for obtaining an encoded
video bitstream including video data; means for determining
that an intra-subpartitions split flag is not present in the
encoded video bitstream for a current block of video data,
the intra-subpartitions split flag specifying whether a type of
split for an intra-subpartitions mode used for the current
block is horizontal or vertical; means for determining that at
least one of a width and a height of the current block is
greater than a size threshold corresponding to a maximum
transform block size; and means for determining a value for
the intra-subpartitions split flag for the current block based
on whether the width or the height of the current block is
greater than the size threshold.

[0381] Clause 70: The apparatus according to Clause 69,
further comprising: means for determining an intra-subpar-
titions mode flag is enabled for the current block; and means
for determining that the intra-subpartitions split flag is not
present in the encoded video bitstream based on the deter-
mination that the intra-subpartitions mode flag is enabled for
the current block, wherein the current block is partitioned
into rectangular transform block subpartitions using the
intra-subpartitions mode based on the intra-subpartitions
mode flag being enabled for the current block.

[0382] Clause 71: The apparatus according to any of
Clauses 69-70, further comprising: means for determining
the width of the current block is greater than the size
threshold; and based on the determination that the width of
the current block is greater than the size threshold, means for

US 2020/0252608 Al

determining a first split value for the intra-subpartitions split
flag, the first split value corresponding to a vertical split
type.

[0383] Clause 72: The apparatus according to any of
Clauses 69-71, further comprising: means for splitting the
current block into two or more sub-blocks using the vertical
split type, wherein respective widths of each of the two or
more sub-blocks are smaller than the width of the current
block based on the vertical split type.

[0384] Clause 73: The apparatus according to any of
Clauses 69-72, further comprising: means for determining
the height of the current block is greater than the size
threshold; and based on the determination that the height of
the current block is greater than the size threshold, means for
determining a second split value for the intra-subpartitions
split flag, the second split value corresponding to a horizon-
tal split type.

[0385] Clause 74: The apparatus according to any of
Clauses 69-73, further comprising: means for splitting the
current block into two or more sub-blocks using the hori-
zontal split type, wherein respective heights of each of the
two or more sub-blocks are smaller than the height of the
current block based on the horizontal split type.

[0386] Clause 75: The apparatus according to any of
Clauses 69-74, further comprising: means for determining
that an intra-subpartitions mode flag for enabling the intra-
subpartitions mode for a second block of the video data is
not present in the encoded video bitstream; and means for
determining a mode value of the intra-subpartitions mode
flag for the second block based on the intra-subpartitions
mode flag not being present in the encoded video bitstream
for the second block.

[0387] Clause 76: The apparatus according to any of
Clauses 69-75, wherein the intra-subpartitions mode flag not
being present in the encoded video bitstream for the second
block is indicative of at least one of a width of the second
block being greater than a width size threshold or a height
of the second block being greater than a height size thresh-
old, the width size threshold corresponding to a width of a
Virtual Pipeline Data Unit (VPDU) and the height size
threshold corresponding to a height of the VPDU.

[0388] Clause 77: The apparatus according to any of
Clauses 69-76, wherein the width size threshold is equal to
the height size threshold.

[0389] Clause 78: The apparatus according to any of
Clauses 69-77, wherein the width size threshold is not equal
to the height size threshold.

[0390] Clause 79: The apparatus according to any of
Clauses 69-78, wherein the data unit is a Virtual Pipeline
Data Unit (VPDU).

[0391] Clause 80: The apparatus according to any of
Clauses 69-79, wherein the data unit is a transform block.
[0392] Clause 81: The apparatus according to any of
Clauses 69-80, wherein the width size threshold and the
height size threshold are equal to a maximum transform
block size.

[0393] Clause 82: The apparatus according to any of
Clauses 69-81, wherein the current block is an intra-pre-
dicted block.

[0394] Clause 83: The apparatus according to any of
Clauses 69-82, further comprising: means for performing
block-based partitioning of a block of video data to generate
one or more coding blocks including the current block;
means for determining the intra-subpartitions mode is

Aug. 6, 2020

enabled for the current block; and based on determining the
intra-subpartitions mode is enabled for the current block,
means for partitioning the current block into two or more
sub-blocks using the intra-subpartitions mode.

[0395] Clause 84: The apparatus according to any of
Clauses 69-83, further comprising: means for reconstructing
the two or more sub-blocks by applying respective two or
more residual values to the two or more sub-blocks.

What is claimed is:

1. An apparatus for encoding video data, the apparatus
comprising:

a memory; and

a processor implemented in circuitry and configured to:

obtain a current block of a picture of video data;

determine whether at least one of a width of the current
block of the picture is greater than a width size
threshold and a height of the current block is greater
than a height size threshold, the width size threshold
corresponding to a width of a data unit and the height
size threshold corresponding to a height of the data
unit;

determine whether an intra-subpartitions mode flag is
to be signaled for the current block based on whether
at least one of the width of the current block is
greater than the width size threshold and the height
of the current block is greater than the height size
threshold, wherein a value of the intra-subpartitions
mode flag indicates whether the current block is
partitioned into rectangular transform block subpar-
titions; and

generate, based on determining whether the intra-sub-
partitions mode flag is to be signaled for the current
block, an encoded video bitstream including at least
the current block.

2. The apparatus of claim 1, wherein the width size
threshold is equal to the height size threshold.

3. The apparatus of claim 1, wherein the width size
threshold is different than the height size threshold.

4. The apparatus of claim 1, wherein a value of the
intra-subpartitions mode flag being equal to a first value
specifies that the current block is partitioned into rectangular
transform block subpartitions, and the value of the intra-
subpartitions mode flag being equal to a second value
specifies that the current block is not partitioned into rect-
angular transform block subpartitions.

5. The apparatus of claim 4, wherein the processor is
further configured to:

determine the width of the current block is greater than the

width size threshold or the height of the current block
is greater than the height size threshold; and

based on the determination that the width of the current

block is greater than the width size threshold or the
height of the current block is greater than the height
size threshold, determine the value of the intra-subpar-
titions mode flag for the current block to be equal to the
second value.

6. The apparatus of claim 4, wherein the processor is
further configured to:

determine the width of the current block is less than or

equal to the width size threshold and the height of the
current block is less than or equal to the height size
threshold; and

based on the determination that the width of the current

block is less than or equal to the width size threshold

US 2020/0252608 Al

and the height of the current block is less than or equal
to the height size threshold, determine to signal the
intra-subpartitions mode flag for the current block.
7. The apparatus of claim 4, wherein the processor is
further configured to:
determine the width of the current block is less than or
equal to a size threshold and the height of the current
block is less than or equal to the size threshold, the size
threshold corresponding to a maximum transform
block size; and
based on the determination that the width of the current
block is less than or equal to the size threshold and the
height of the current block is less than or equal to the
size threshold, determine to signal the intra-subparti-
tions mode flag for the current block.
8. The apparatus of claim 4, wherein the processor is
further configured to:
determine the width of the current block is less than or
equal to a size threshold or the height of the current
block is less than or equal to the size threshold, the size
threshold corresponding to a maximum transform
block size; and
based on the determination that the width of the current
block is less than or equal to the size threshold or the
height of the current block is less than or equal to the
size threshold, determine that the value of the intra-
subpartitions mode flag for the current block is the
second value.
9. The apparatus of claim 4, wherein the processor is
further configured to:
determine the intra-subpartitions mode flag is to be sig-
naled for the current block; and
based on the determination that the intra-subpartitions
mode flag is to be signaled for the current block,
include the intra-subpartitions mode flag for the current
block in the encoded video bitstream.
10. The apparatus of claim 1, wherein the processor is
further configured to:
determine that at least one of a width and a height of the
current block is greater than a size threshold corre-
sponding to a maximum transform block size; and
based on the determination that the width or the height of
the current block is greater than the size threshold
corresponding to the maximum transform block size,
determine a value for an intra-subpartitions split flag
for the current block, the intra-subpartitions split flag
specifying whether a type of split for partitioning the
current block is horizontal or vertical.
11. The apparatus of claim 10, wherein the processor is
further configured to:
determine the width of the current block is greater than the
size threshold; and
based on the determination that the width of the current
block is greater than the size threshold, determine a first
split value for the intra-subpartitions split flag, the first
split value corresponding to a vertical split type.
12. The apparatus of claim 10, wherein the processor is
further configured to:
determine the height of the current block is greater than
the size threshold; and
based on the determination that the height of the current
block is greater than the size threshold, determine a

Aug. 6, 2020

second split value for the intra-subpartitions split flag,
the second split value corresponding to a horizontal
split type.

13. The apparatus of claim 10, wherein the processor is
further configured to:

divide the current block vertically or horizontally into

sub-partitions based on the value of the intra-subparti-
tions split flag for the current block.

14. The apparatus of claim 1, wherein the current block is
an intra-predicted block.

15. The apparatus of claim 1, wherein the data unit is a
Virtual Pipeline Data Unit (VPDU).

16. The apparatus of claim 1, wherein the data unit is a
transform block.

17. The apparatus of claim 16, wherein the width size
threshold and the height size threshold are equal to a
maximum transform block size.

18. A method of decoding video data, the method com-
prising:

obtaining an encoded video bitstream including video

data;
determining that an intra-subpartitions split flag is not
present in the encoded video bitstream for a current
block of video data, the intra-subpartitions split flag
specifying whether a type of split for an intra-subpar-
titions mode used for the current block is horizontal or
vertical;
determining that at least one of a width and a height of the
current block is greater than a size threshold corre-
sponding to a maximum transform block size; and

determining a value for the intra-subpartitions split flag
for the current block based on whether the width or the
height of the current block is greater than the size
threshold.

19. The method of claim 18, further comprising:

determining an intra-subpartitions mode flag is enabled

for the current block; and

determining that the intra-subpartitions split flag is not

present in the encoded video bitstream based on the
determination that the intra-subpartitions mode flag is
enabled for the current block, wherein the current block
is partitioned into rectangular transform block subpar-
titions using the intra-subpartitions mode based on the
intra-subpartitions mode flag being enabled for the
current block.

20. The method of claim 18, further comprising:

determining the width of the current block is greater than

the size threshold; and

based on the determination that the width of the current

block is greater than the size threshold, determining a
first split value for the intra-subpartitions split flag, the
first split value corresponding to a vertical split type.

21. The method of claim 20, further comprising:

splitting the current block into two or more sub-blocks

using the vertical split type, wherein respective widths
of each of the two or more sub-blocks are smaller than
the width of the current block based on the vertical split
type.

22. The method of claim 18, further comprising:

determining the height of the current block is greater than

the size threshold; and

based on the determination that the height of the current

block is greater than the size threshold, determining a

US 2020/0252608 Al

second split value for the intra-subpartitions split flag,
the second split value corresponding to a horizontal
split type.

23. The method of claim 22, further comprising:

splitting the current block into two or more sub-blocks

using the horizontal split type, wherein respective
heights of each of the two or more sub-blocks are
smaller than the height of the current block based on the
horizontal split type.

24. The method of claim 18, further comprising:

determining that an intra-subpartitions mode flag for

enabling the intra-subpartitions mode for a second
block of the video data is not present in the encoded
video bitstream; and

determining a mode value of the intra-subpartitions mode

flag for the second block based on the intra-subparti-
tions mode flag not being present in the encoded video
bitstream for the second block.

25. The method of claim 24, wherein the intra-subparti-
tions mode flag not being present in the encoded video
bitstream for the second block is indicative of at least one of
a width of the second block being greater than a width size
threshold or a height of the second block being greater than
a height size threshold, the width size threshold correspond-
ing to a width of a data unit and the height size threshold
corresponding to a height of the data unit.

26. The method of claim 25, wherein the width size
threshold is equal to the height size threshold.

27. The method of claim 25, wherein the width size
threshold is not equal to the height size threshold.

28. The method of claim 25, wherein the data unit is a
Virtual Pipeline Data Unit (VPDU).

29. The method of claim 25, wherein the data unit is a
transform block.

30. The method of claim 29, wherein the width size
threshold and the height size threshold are equal to a
maximum transform block size.

31. The method of claim 18, wherein the current block is
an intra-predicted block.

32. The method of claim 18, further comprising:

performing block-based partitioning of a block of video

data to generate one or more coding blocks including
the current block;

determining the intra-subpartitions mode is enabled for

the current block; and

based on determining the intra-subpartitions mode is

enabled for the current block, partitioning the current
block into two or more sub-blocks using the intra-
subpartitions mode.

33. The method of claim 32, further comprising:

reconstructing the two or more sub-blocks by applying

respective two or more residual values to the two or
more sub-blocks.

34. An apparatus for decoding video data, the apparatus
comprising:

a memory; and

a processor implemented in circuitry and configured to:

obtain an encoded video bitstream including video
data;

determine that an intra-subpartitions split flag is not
present in the encoded video bitstream for a current
block of video data, the intra-subpartitions split flag

Aug. 6, 2020

specifying whether a type of split for an intra-
subpartitions mode used for the current block is
horizontal or vertical,
determine that at least one of a width and a height of the
current block is greater than a size threshold corre-
sponding to a maximum transform block size; and
determine a value for the intra-subpartitions split flag
for the current block based on whether the width or
the height of the current block is greater than the size
threshold.
35. The apparatus of claim 34, wherein the processor is
further configured to:
determine an intra-subpartitions mode flag is enabled for
the current block; and
determine that the intra-subpartitions split flag is not
present in the encoded video bitstream based on the
determination that the intra-subpartitions mode flag is
enabled for the current block, wherein the current block
is partitioned into rectangular transform block subpar-
titions using the intra-subpartitions mode based on the
intra-subpartitions mode flag being enabled for the
current block.
36. The apparatus of claim 34, wherein the processor is
further configured to:
determine the width of the current block is greater than the
size threshold; and
based on the determination that the width of the current
block is greater than the size threshold, determine a first
split value for the intra-subpartitions split flag, the first
split value corresponding to a vertical split type.
37. The apparatus of claim 36, wherein the processor is
further configured to:
split the current block into two or more sub-blocks using
the vertical split type, wherein respective widths of
each of the two or more sub-blocks are smaller than the
width of the current block based on the vertical split
type.
38. The apparatus of claim 34, wherein the processor is
further configured to:
determine the height of the current block is greater than
the size threshold; and
based on the determination that the height of the current
block is greater than the size threshold, determine a
second split value for the intra-subpartitions split flag,
the second split value corresponding to a horizontal
split type.
39. The apparatus of claim 38, wherein the processor is
further configured to:
split the current block into two or more sub-blocks using
the horizontal split type, wherein respective heights of
each of the two or more sub-blocks are smaller than the
height of the current block based on the horizontal split
type.
40. The apparatus of claim 34, wherein the processor is
further configured to:
determine that an intra-subpartitions mode flag for
enabling the intra-subpartitions mode for a second
block of the video data is not present in the encoded
video bitstream; and
determine a mode value of the intra-subpartitions mode
flag for the second block based on the intra-subparti-
tions mode flag not being present in the encoded video
bitstream for the second block.

US 2020/0252608 Al

41. The apparatus of claim 40, wherein the intra-subpar-
titions mode flag not being present in the encoded video
bitstream for the second block is indicative of at least one of
a width of the second block being greater than a width size
threshold or a height of the second block being greater than
a height size threshold, the width size threshold correspond-
ing to a width of a data unit and the height size threshold
corresponding to a height of the data unit.

42. The apparatus of claim 41, wherein the width size
threshold is equal to the height size threshold.

43. The apparatus of claim 41, wherein the width size
threshold is not equal to the height size threshold.

44. The apparatus of claim 41, wherein the data unit is a
Virtual Pipeline Data Unit (VPDU).

45. The apparatus of claim 41, wherein the data unit is a
transform block.

46. The apparatus of claim 45, wherein the width size
threshold and the height size threshold are equal to a
maximum transform block size.

47. The apparatus of claim 34, wherein the current block
is an intra-predicted block.

48. The apparatus of claim 34, wherein the processor is
further configured to:

perform block-based partitioning of a block of video data

to generate one or more coding blocks including the
current block;

determine the intra-subpartitions mode is enabled for the

current block; and

based on determining the intra-subpartitions mode is

enabled for the current block, partition the current
block into two or more sub-blocks using the intra-
subpartitions mode.

49. The apparatus of claim 48, wherein the processor is
further configured to:

reconstruct the two or more sub-blocks by applying

respective two or more residual values to the two or
more sub-blocks.

50. The apparatus of claim 34, wherein the apparatus
comprises a mobile device with a camera for capturing one
or more pictures.

51. The apparatus of claim 34, further comprising a
display for displaying one or more pictures.

52. A non-transitory computer-readable medium having
stored thereon instructions that, when executed by one or
more processors, cause the one or more processors to:

obtain an encoded video bitstream including video data;

determine that an intra-subpartitions split flag is not
present in the encoded video bitstream for a current
block of video data, the intra-subpartitions split flag
specifying whether a type of split for an intra-subpar-
titions mode used for the current block is horizontal or
vertical;
determine that at least one of a width and a height of the
current block is greater than a size threshold corre-
sponding to a maximum transform block size; and

determine a value for the intra-subpartitions split flag for
the current block based on whether the width or the
height of the current block is greater than the size
threshold.

53. The non-transitory computer-readable medium of
claim 52, wherein the instructions further cause the proces-
sor to:

determine an intra-subpartitions mode flag is enabled for

the current block; and

Aug. 6, 2020

determine that the intra-subpartitions split flag is not
present in the encoded video bitstream based on the
determination that the intra-subpartitions mode flag is
enabled for the current block, wherein the current block
is partitioned into rectangular transform block subpar-
titions using the intra-subpartitions mode based on the
intra-subpartitions mode flag being enabled for the
current block.

54. The non-transitory computer-readable medium of
claim 52, wherein the instructions further cause the proces-
sor to:

determine the width of the current block is greater than the

size threshold; and
based on the determination that the width of the current
block is greater than the size threshold, determine a first
split value for the intra-subpartitions split flag, the first
split value corresponding to a vertical split type; and

split the current block into two or more sub-blocks using
the vertical split type, wherein respective widths of
each of the two or more sub-blocks are smaller than the
width of the current block based on the vertical split
type.

55. The non-transitory computer-readable medium of
claim 52, wherein the instructions further cause the proces-
sor to:

determine the height of the current block is greater than

the size threshold; and

based on the determination that the height of the current

block is greater than the size threshold, determine a
second split value for the intra-subpartitions split flag,
the second split value corresponding to a horizontal
split type; and

split the current block into two or more sub-blocks using

the horizontal split type, wherein respective heights of
each of the two or more sub-blocks are smaller than the
height of the current block based on the horizontal split
type.

56. The non-transitory computer-readable medium of
claim 52, wherein the instructions further cause the proces-
sor to:

determine that an intra-subpartitions mode flag for

enabling the intra-subpartitions mode for a second
block of the video data is not present in the encoded
video bitstream; and

determine a mode value of the intra-subpartitions mode

flag for the second block based on the intra-subparti-
tions mode flag not being present in the encoded video
bitstream for the second block.

57. The non-transitory computer-readable medium of
claim 56, wherein the intra-subpartitions mode flag not
being present in the encoded video bitstream for the second
block is indicative of at least one of a width of the second
block being greater than a width size threshold or a height
of the second block being greater than a height size thresh-
old, the width size threshold corresponding to a width of a
data unit and the height size threshold corresponding to a
height of the data unit.

58. The non-transitory computer-readable medium of
claim 57, wherein the width size threshold is equal to the
height size threshold.

59. The non-transitory computer-readable medium of

claim 57, wherein the width size threshold is not equal to the
height size threshold.

US 2020/0252608 Al

60. The non-transitory computer-readable medium of
claim 57, wherein the data unit is a Virtual Pipeline Data
Unit (VPDU).

61. The non-transitory computer-readable medium of
claim 57, wherein the data unit is a transform block.

62. The non-transitory computer-readable medium of
claim 57, wherein the width size threshold and the height
size threshold are equal to a maximum transform block size.

63. The non-transitory computer-readable medium of
claim 52, wherein the current block is an intra-predicted
block.

64. An apparatus for decoding video data, the apparatus
comprising:

means for obtaining an encoded video bitstream including

video data;

means for determining that an intra-subpartitions split flag

is not present in the encoded video bitstream for a
current block of video data, the intra-subpartitions split
flag specifying whether a type of split for an intra-
subpartitions mode used for the current block is hori-
zontal or vertical;

means for determining that at least one of a width and a

height of the current block is greater than a size
threshold corresponding to a maximum transform
block size; and

means for determining a value for the intra-subpartitions

split flag for the current block based on whether the
width or the height of the current block is greater than
the size threshold.

Aug. 6, 2020

65. The apparatus of claim 64, further comprising:

means for determining that an intra-subpartitions mode
flag for enabling the intra-subpartitions mode for a
second block of the video data is not present in the
encoded video bitstream; and

means for determining a mode value of the intra-subpar-
titions mode flag for the second block based on the
intra-subpartitions mode flag not being present in the
encoded video bitstream for the second block.

66. The apparatus of claim 65, wherein the intra-subpar-
titions mode flag not being present in the encoded video
bitstream for the second block is indicative of at least one of
a width of the second block being greater than a width size
threshold or a height of the second block being greater than
a height size threshold, the width size threshold correspond-
ing to a width of a data unit and the height size threshold
corresponding to a height of the data unit.

67. The apparatus of claim 66, wherein the data unit is a
Virtual Pipeline Data Unit (VPDU).

68. The apparatus of claim 66, wherein the data unit is a
transform block.

69. The apparatus of claim 68, wherein the width size
threshold and the height size threshold are equal to a
maximum transform block size.

#* #* #* #* #*

