US 20200250314A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2020/0250314 A1l

(54)

(71)

(72)

@

(22)

(1)

Applicant: Dell Products L.P., Round Rock, TX
(US)

Inventors: Sumanth Vidyadhara, Bangalore (IN);
Anand Prakash Joshi, Round Rock,
X (US)

Appl. No.: 16/267,277

Vidyadhara et al. 43) Pub. Date: Aug. 6, 2020
SECURELY LOADING UEFI IMAGES AT (52) US.CL
RUNTIME CPC GOGF 21/575 (2013.01); GOG6F 9/4411

(2013.01); GOG6F 16/901 (2019.01); GO6F
21/572 (2013.01)

(57) ABSTRACT

UEFI images can be securely loaded at runtime so that it is
unnecessary to flash the entire platform firmware whenever
a UEFI image is added or updated. The platform firmware
can include an OEM file list that maps file GUIDs to public
keys. When it is desired to add a UEFI image, the OEM can
employ one of the file GUIDs in the OEM file list and a
private key corresponding to the mapped public key to

Filed: Feb. 4, 2019 create the UEFI image. During the PEI phase of the boot
process, a verification module in the platform firmware can
o . . verify any added UEFI image using the OEM file list.
Publication Classification Additionally, to ensure that the added UEFI images will pass
Int. CL the subsequent Secure Boot verification, a sync module can
GO6F 21/57 (2006.01) add custom Secure Boot keys for the added UEFI images to
GO6F 16/901 (2006.01) the Secure Boot databases during the DXE phase of the boot

GO6F 9/4401 (2006.01) process.

400
401
4

Install Platform Firmware On A Computing Device, The Platform Firmware Including A
Secure Boot Database, A Verification Module And A File List That Defines Mappings
Between File Globally Unique Identifiers (GUIDs) And Public Keys, The Mappings Including A

First Mapping Between A First File GUID And A First Public Key

402
4 Y

After The Platform Firmware Has Been Installed On The Computing Device, Create A First
UEFI Image By Assigning The First File GUID To The First UEFI Image And Including A First
Signature Of The First UEFI Image That Is Generated Using A First Private Key That
Corresponds To The First Public Key

403
4 A

Store The First UEFI Image With The First Signature On The Computing Device

404 —
4 A 4

During A Subsequent Boot Process, Identify, By The Verification Module, That The First UEFI
Image Has Been Stored On The Computing Device

405
4 Y

Employ, By The Verification Module, The First Public Key To Verify The First Signature

406
4 \ 4

In Response To The Verification Module Verifying The First Signature, Add The First
Signature To The Secure Boot Database To Thereby Cause The First UEFI Module To Be
Verified During Secure Boot Verification

Aug. 6,2020 Sheet 1 of 8 US 2020/0250314 A1

Patent Application Publication

(uy Jolid)
Vi ‘94

Bz | ainjeubis

ainjeubis

Ay a1and W30

Zh ¥ ebew| 143N

[
NdO

211} 8injeubis
4////,/ Bzl ainjeubis e
TTT 8bew| (43N ~~eg||} anjeudls e
ji== B0} | ainjeubis e
— d gad pszuoyiny
B0} | aineubis]
— sg(q 1009 8.nd98g
17 9bew 143N
GOl alemwuli4 wiope|d
€01 201
abelo)s yseld
001

991n8 (] Bunndwo)

Aug. 6,2020 Sheet 2 of 8 US 2020/0250314 A1

Patent Application Publication

(1Y Jolid)
" pappe gl 9ld
s abew! 143N ;o,\h USYM
\ A
BETT eanjeudis ainjeubis pajepdn) dlland W30

€11 ebew| |43n meN

Bz | ainjeubis

17 ebew| 143N

211} 8injeubis

TTT ebew| 143N

B0} | anjeubis

017 ebew| 143N

€0l
abelio}g

[
NdO

B¢l | ainjeubis
eZ) | ainjeubis
Bl]| ainjeubis
e(} | ainjeubis

aa pazuoyiny

N

$g(100g 81985

BG0| aJemwui{ pajepdn

ot
yse|

00}

991n8 (] Bunndwo)

‘paysey

pue paubis aq Isnw
alemuwily paepdn ayy usy}
pue sgQ 100g 8In99S 8y}
0} pappe 89 1snw ainjeubis
s.abewr 43N mau sy}

Aug. 6,2020 Sheet 3 of 8 US 2020/0250314 A1

Patent Application Publication

¢ Ol
ounjeuns fo3 21and W30
. 10¢
. SINPOJ UOJBIYLIBA L
] 10}
BOTZ 2Imeubig 00¢ Ndd
— 1sITeI4 W3ao
1 8INpOI QUAS
BCTT eimeubls B0z ainjeubis e
Zh1 ebewy 43N Bz} | aInjeudls e
Bl ainjeubls e
BITT ainjeubis BQ} | aIneublg e
TIT efew 143N ga pazuoyiny
sg(Q joog 8ind
2011 a.nmeubis 80100 8inveg
orr abew| (43N GO| sJemuui4 wiopeld
€0 701
abeio)g yse|
007

921na Buindwon

Aug. 6,2020 Sheet 4 of 8 US 2020/0250314 A1

Patent Application Publication

ve "Ol4

ghopaland 861 7-8%V1-020.0504
| Aeyonand 'G/8Y-407¥-906£9836
cheyonand '€OYP-2999-34826196
| koyaliand " GyZy-0860-¥EEO61EY
Aoy dljand aino a4
00¢
}s11 814 W30

US 2020/0250314 A1

Aug. 6,2020 Sheet 5 of 8

ve€ Ol
(LAoynId) BETT aumeubls | |-~
— i T0C
[T 8bew| 143N MmN JanuQ 3XA = edhians SINDOJY UONESULIBA
: ~L__ 1aIND = AIND
B0TC 2.njeubis €0} 8beio}s Ul sjnpow L Aoy and«——|aIND
=TS BINDON SUA 3xa paubis ay}
OFe BNPON 217 $810Js UBU} N30 dYL e 5057
BZ1 1 8injeubis 18 9ll4 W30
ZrT ebewy 143N
BITT eineubis B0} 8ineubls e
— BZ|| ainjeubls e
LTT ebewi 143N el || ameubls e
B01T anjeubis B0}] ainjeubis e
gqa pazuoyiny
07T ebew| |43n
— dino pajosles ay) 0} Buipuodsa.iod $g(Q1009g 81nds8g
omwmww Aoy ayeAld yiim ajnpow X 8y subis
pue g0¢ Ist ol N30 8y3 ui psuysp

Patent Application Publication

sem eyl QIS e subisse ‘s|npow e TOT elemuiiiy

IxQ payepdn 10 mau sejeald W30 dyL wiogely

Aug. 6,2020 Sheet 6 of 8 US 2020/0250314 A1

Patent Application Publication

(LAaynLd) BETT aumeubis

-—

[T ebew| [43n meN

ainjeubis

E0l¢
Olc®

INPO QUAS

¢I7 ebew (43N

ITT ebew| 143N

0
4
ZVT aanjeubis
)
017 anjeubis

2
9

Bl 1] aimeubls
9

e

0F 7 ebew| (43N

€01
abelo)s

g¢ ‘9Ild

1 0Z SINPOW UOHBINLISA
Buipnjout pajndaxs pue

POPEO| 84 [|IM)1 ‘PBYUSA S|
GO asemuwiy wioped 8ouQ

(@)

oyand

10
9|NPOJ\ UONBILISA

‘a.njeubis oy AjLien 0} Aoy

alignd paddew sy} sasn |0z
9|NPOW UOIBILLIBA ‘B|npow

X peunusp! Aue 104 6

sejnpow
X peiepdn 1o psppe

LAeyande——|adIN9

00¢
1817 9114 W30

Aimau Aue Aynuap! 03 00g

m__o__b,zmow%iom m_%oe@
uoneoylaA ‘eseyd |34 bBuung

BZ)| ainjeubls e
Bl] ainjeubls e
B0} | ainjeubls e

aa pszuoyny

Sg(@100g 81N99G

GO | atemuwuy wioyed

uo ainjeubis ayj saylioA
10} NdO ‘eseyd O3S buung @

GO oJemuiiH

wiojjejd

Aug. 6,2020 Sheet 7 of 8 US 2020/0250314 A1

Patent Application Publication

(1Aeynud) BETT ainjeubis

€11 ebew| |43n meN

201 ¢ 8.njeubis

1C 9Inpo duAg

Bz | ainjeubis

Zh ¥ ebew| 143N

Bl ainjeubis

[TT ebew| 143N

B0} | 8.njeubis

017 ebew| 143N

€0l
abelio}g

¢ Ol4

L 0Z npow uonedlLIaA Aq
paljlIaA sem ey} abewl 430 parepdn
10 mau Aue sayiuapl pue papeo) sl
012 8npow ouAs ‘aseyd Jxq buung @

100g 8.n98g BuLNp Papeo| pue PaljLIaA
aq [I1m aBew |43 Y} JeY) INSUS
0] SgQ 100g 81285 8y} 0) A8y 100g

osoowac_cco%o:oomw%mo&o_%oe
ouAs ‘abewl 43N pauusp! yoes 104 6

01¢C 8INPo UAS
012 8inpouw ouAs ,/)
Bgl| ainjeubls e
PR eZl| ainjeubls e
Bl}| ainjeubls e
B0l | ainjeubls e
da pezuoyiny

$g(Q100g 81983

Patent Application Publication Aug. 6,2020 Sheet 8 of 8 US 2020/0250314 A1

400

401 j‘

Install Platform Firmware On A Computing Device, The Platform Firmware Including A
Secure Boot Database, A Verification Module And A File List That Defines Mappings
Between File Globally Unique Identifiers (GUIDs) And Public Keys, The Mappings Including A
First Mapping Between A First File GUID And A First Public Key

402 j‘ l

After The Platform Firmware Has Been Installed On The Computing Device, Create A First
UEFI Image By Assigning The First File GUID To The First UEFI Image And Including A First
Signature Of The First UEFI Image That Is Generated Using A First Private Key That
Corresponds To The First Public Key

403 j‘ l

Store The First UEFI Image With The First Signature On The Computing Device

404 j‘ l

During A Subsequent Boot Process, Identify, By The Verification Module, That The First UEFI
Image Has Been Stored On The Computing Device

405 j‘ l

Employ, By The Verification Module, The First Public Key To Verify The First Signature

406 j‘ l

In Response To The Verification Module Verifying The First Signature, Add The First
Signature To The Secure Boot Database To Thereby Cause The First UEFI Module To Be
Verified During Secure Boot Verification

FIG. 4

US 2020/0250314 Al

SECURELY LOADING UEFI IMAGES AT

RUNTIME
CROSS-REFERENCE TO RELATED
APPLICATIONS
[0001] N/A
BACKGROUND
[0002] The Unified Extensible Firmware Interface (UEFI)

specification defines a boot process that is divided into three
general phases: (1) a security phase (SEC); (2) a pre-EFI
initialization phase (PEI); and (3) a driver execution envi-
ronment phase (DXE). SEC performs minimal processing to
initialize the CPU and prepare the system for PEI including
verifying the platform firmware. PEI then configures the
entire platform and loads the DXE. Finally, DXE loads
drivers, mounts drives and executes the OS bootloader to
eventually transfer control to the OS.

[0003] FIG. 1A provides a generalized overview of the
components that are involved in the UEFI integrity verifi-
cation process when a computing device 100 boots. As
shown, computing device 100 includes a CPU 101, flash
memory 102 which stores platform firmware 105 and stor-
age 103 (e.g., a hard disk or Serial Peripheral Interface (SPI)
flash that includes a UEFI firmware volume) that stores
UEFI images 110-112.

[0004] When computing device 100 is powered on and as
part of SEC, CPU 101 verifies that the platform firmware
105 stored in flash 102 has been digitally signed by the
original equipment manufacturer (OEM) (e.g., by verifying
the Authenticated Code Module (ACM), the Bootguard Key
Manifest, the Initial Boot Block (IBB), etc.). As represented
by the arrow in FIG. 1A, this verification employs a hash of
the OEM’s public key that is typically flashed into fuses on
the CPU which ensures that only the OEM can modify the
platform firmware (i.e., because the platform firmware must
be signed using the OEM’s private key, it is not possible for
others to modify or replace the platform firmware).

[0005] Once platform firmware 105 has been verified, and
as part of PEI, platform firmware 105 (e.g., a PEI driver)
initiates “Secure Boot” to ensure that only trusted UEFI
images, such as DXE modules and the OS bootloader, are
loaded. With Secure Boot, platform firmware 105 verifies
that each UEFI image 110-112 has been properly signed. As
represented by the arrows in FIG. 1A, this verification is
performed using Secure Boot keys stored in Secure Boot
databases that form part of platform firmware 105. The
OEM is responsible for creating and storing the Secure Boot
keys. A detailed explanation of the verification of UEFI
images can be found in section 31.5 of the UEFI Specifi-
cation, Version 2.7 Errata A.

[0006] Each Secure Boot database is in the form of an
EFI_SIGNATURE_LIST structure which includes a number
of EF1_SIGNATURE_DATA structures. Each EFI_SIGNA-
TURE_DATA structure defines a signature and a GUID
representing the owner of the signature (e.g., the provider of
the UEFI image). These Secure Boot databases include an
authorized database and a forbidden database. Prior to
loading a UEFI image, platform firmware 105 will first
compare the UEFI image’s signature to the signatures in the
authorized and forbidden databases. If the UEFI image’s
signature is included in the authorized database and not
included in the forbidden database, the platform firmware

Aug. 6, 2020

will load the UEFI image. For example, as shown in FIG.
1A, the authorized database includes signatures 110a, 111a
and 1124 among possibly many others. Therefore, any UEFI
image that has a valid signature matching any of these
signatures in the authorized database will be allowed to load.
[0007] Accordingly, if the OEM desires to add a DXE
module (e.g., a UEFI wireless driver), it is necessary to
update platform firmware 105 by including the DXE mod-
ule’s signature in the authorized database. In other words, a
Secure Boot key corresponding to the added DXE module
must be added to the Secure Boot databases. Since this
modification to the Secure Boot databases is a modification
to platform firmware 105, it will be necessary to sign the
modified platform firmware using the OEM’s private key
and then write the modified and signed platform firmware to
flash 102. This requirement to flash the entire platform
firmware whenever a Secure Boot key is added to the Secure
Boot databases is cumbersome. However, if the platform
firmware is not updated to include the Secure Boot key
corresponding to an added DXE module, the DXE module
will fail the PEI verification process and will not be loaded
(i.e., the authorized database will not include the signature
of the added DXE module).

[0008] FIG. 1B illustrates this requirement to flash the
entire platform firmware 105 whenever a Secure Boot key is
added to the Secure Boot databases. As shown, a new UEFI
image 113 has been added to storage 103. UEFI image 113
would need to be signed using the provider’s private key and
then the appropriate Secure Boot key including signature
113a would need to be added to the Secure Boot databases
that form part of platform firmware 105 on flash 102. The
same would be true if any existing UEFI image is updated.
[0009] The Secure Boot key for the new UEFI image 113
cannot simply be added to the existing platform firmware
105 because the addition would cause the existing signature
to no longer be valid. Therefore, in addition to adding the
Secure Boot key to the Secure Boot databases, the OEM will
need to sign the updated platform firmware 105a and then
write the updated platform firmware 1054 to flash 102. This
will ensure that CPU 101 will verify the updated platform
firmware 105a using the OEM public key.

BRIEF SUMMARY

[0010] The present invention extends to methods, systems,
and computer program products for securely loading UEFI
images at runtime so that it is unnecessary to flash the entire
platform firmware whenever a UEFI image is added or
updated. The platform firmware can include an OEM file list
that maps file GUIDs to public keys. When it is desired to
add a new or updated UEFI image, the OEM can employ one
of the file GUIDs in the OEM file list and a private key
corresponding to the mapped public key to create the UEFI
image and add it to the computing device. During the PEI
phase of the boot process, a verification module in the
platform firmware can verify any added UEFI image using
the OEM file list. To ensure that the added UEFI images will
pass the subsequent Secure Boot verification, a sync module
can add custom Secure Boot keys for the added UEFI
images to the Secure Boot databases during the DXE phase
of the boot process.

[0011] In one embodiment, the present invention is imple-
mented as a method for securely loading UEFI images at
runtime. Initially, platform firmware is installed on a com-
puting device. The platform firmware includes a Secure

US 2020/0250314 Al

Boot database, a verification module and a file list that
defines mappings between file GUIDs and public keys.
These mappings include a first mapping between a first file
GUID and a first public key. After the platform firmware has
been installed on the computing device, a first UEFI image
is created by assigning the first file GUID to the first UEFI
image and including a first signature of the first UEFI image
that is generated using a first private key that corresponds to
the first public key. The first UEFI image with the first
signature is then stored on the computing device. During a
subsequent boot process, the verification module identifies
that the first UEFI image has been stored on the computing
device and employs the first public key to verify the first
signature. In response to the verification module verifying
the first signature, the first signature is added to the Secure
Boot database to thereby cause the first UEFI module to be
verified during Secure Boot verification.

[0012] In another embodiment, the present invention is
implemented as a method for securely loading UEFI images
at runtime. During a boot process, a verification module that
is part of platform firmware on a computing device accesses
a file list that is also part of the platform firmware. The file
list defines mappings between file GUIDs and public keys.
The verification module also accesses one or more firmware
volumes stored on the computing device to determine
whether any UEFI images in the one or more firmware
volumes have a file GUID matching a file GUID defined in
the file list. Upon determining that a first UEFI image stored
in one of the one or more firmware volumes has a first file
GUID that is defined in the file list, the verification module
employs a first public key to which the first file GUID is
mapped to verify a first signature that is stored with the first
UEFI image. In response to the verification module verify-
ing the first signature, a DXE module adds the first signature
to a Secure Boot database that is part of the platform
firmware.

[0013] In another embodiment, the present invention is
implemented as computing device that includes: a CPU that
stores an OEM public key; flash memory on which platform
firmware is stored, the platform firmware being signed with
an OEM private key corresponding to the OEM public key,
the platform firmware including Secure Boot databases, a
verification module and a file list that defines mappings
between file GUIDs and public keys; and storage on which
one or more firmware volumes are stored, the one or more
firmware volumes including a first set of UEFI images each
of which has a signature that is stored in the Secure Boot
databases of the signed platform firmware and a second set
of UEFI images each of which has a signature that is not
stored in the Secure Boot databases of the signed platform
firmware. The verification module is configured to verify the
UEFI images in the second set by determining, for each
UEFI image in the second set, whether the UEFI image has
a file GUID that is defined in the file list and if so whether
the UEFI image was signed using a private key that corre-
sponds to the public key to which the file GUID is mapped.

[0014] This summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter.

Aug. 6, 2020

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Understanding that these drawings depict only
typical embodiments of the invention and are not therefore
to be considered limiting of its scope, the invention will be
described and explained with additional specificity and
detail through the use of the accompanying drawings in
which:

[0016] FIG. 1A provides an overview of the UEFI integ-
rity verification process that is performed when a computing
device boots;

[0017] FIG. 1B illustrates why it is necessary to reflash the
entire platform firmware when a UEFI image is added or
updated on a computing device;

[0018] FIG. 2 illustrates components that can be employed
to enable a UEFI image to be added or updated without
requiring the entire platform firmware to be reflashed;
[0019] FIG. 2A illustrates an example of an OEM file list
that can be included as part of the platform firmware to
enable the techniques of the present invention to be imple-
mented;

[0020] FIGS. 3A-3C illustrate the process by which the
present invention enables a UEFI image to be added and
verified at runtime without requiring the entire platform
firmware to be reflashed; and

[0021] FIG. 4 provides a flowchart of an example method
for securely loading UEFI images at runtime.

DETAILED DESCRIPTION

[0022] In this specification and the claims, the term plat-
form firmware should be construed as the firmware on a
computing device that includes the UEFI Secure Boot
databases. The term UEFI image should be construed in
accordance with its definition in the UEFTI specification and
therefore includes UEFI applications, UEFI OS loaders and
UEFI drivers. The term DXE module should be construed as
atype of UEFI image that is executed during the DXE phase.
[0023] In accordance with embodiments of the present
invention, a DXE module (or another type of UEFI module)
can be added or updated on a computing device without
requiring the platform firmware to be reflashed while also
ensuring that the DXE module will be successfully verified
as part of the Secure Boot process. FIG. 2 illustrates com-
ponents that can be employed to accomplish this.

[0024] Similar to what is shown in FIG. 1A, when the
present invention is implemented, computing device 100
will include CPU 101 that stores the OEM’s public key, flash
102 that stores platform firmware 105 and storage 103 that
includes a number of UEFI images. Storage 103 can repre-
sent any storage medium on which a UEFI firmware volume
is stored including a reserved partition of a hard disk or SPI
flash. As described in the background, platform firmware
includes the Secure Boot databases and is signed using the
OEM’s private key.

[0025] In contrast to what is shown in FIG. 1A, in FIG. 2,
platform firmware 105 also includes an OEM file list 200
and verification module 201. Storage 103 also includes a
sync module 210 which is a type of UEFI image. OEM file
list 200 and verification module 201 can be part of the
original platform firmware that the OEM installs on com-
puting device 100. As shown, the authorized database in
platform firmware 105 can include the signature 210a of
sync module 210 so that sync module 210 will be verified in
a typical manner during Secure Boot. Accordingly, FIG. 2

US 2020/0250314 Al

can represent the state of computing device 100 before any
DXE module is added or updated using the techniques of the
present invention.

[0026] FIG. 2A illustrates a simplified example of the
contents of OEM file list 200 that the OEM can include in
the original platform firmware. As shown, OEM file list 200
includes mappings of file GUIDs to public keys. As is
known, each UEFI image has a GUID. When the OEM
creates OEM file list 200, the file GUIDs included in OEM
file list 200 do not yet define any particular UEFI image. As
will be described in detail below, the OEM defines these file
GUIDs so that they can subsequently be used for a new or
updated DXE module that is added to computing device 100
after platform firmware 105 has been installed. The public
key to which each file GUID is mapped corresponds to a
private key that the OEM (or other provider of the DXE
module) can use to sign the DXE module.

[0027] Because OEM file list 200 is included in platform
firmware 105, OEM file list 200 will be verified as part of
Boot Guard verification as described in the background. In
other words, the signature on platform firmware 105 encom-
passes OEM file list 200. Therefore, as long as CPU 101
verifies the platform firmware 105°s signature using the
OEM’s public key, it will be known that the contents of
platform firmware 105, including the Secure Boot databases,
OEM file list 200 and verification module 201, have not
been altered.

[0028] FIGS. 3A-3C illustrate how OEM file list 200,
verification module 201 and sync module 210 are employed
to ensure that a newly added DXE module is verified during
the Secure Boot verification process without adding the
DXE module’s signature to the Secure Boot databases in
platform firmware 105. In other words, these figures repre-
sent how the present invention enables new or updated DXE
modules to be added to computing device 100 without
reflashing platform firmware 105.

[0029] In FIG. 3A, and to simplify the illustration, OEM
file list 200 is shown as including a single file GUID
(GUID1) to public key (PubKeyl) mapping. However, in
typical implementations, OEM file list 200 would include
many such mappings so that many DXE modules could be
added to computing device 100 without reflashing platform
firmware 105.

[0030] Because the OEM created OEM file list 200, it will
be aware of the file GUID to public key mappings that are
defined therein. Accordingly, as represented by step 1la,
when the OEM desires to create and add UEFI image 113 to
computing device 100, it can assign it one of the file GUIDs
that are included in OEM file list 200 and sign it using the
private key corresponding to the public key to which the
selected file GUID is mapped. Therefore, in this example,
the OEM has assigned UEFI image 113 the file GUID of
GUID1 and signed it using PrivKey1. Then, as represented
in step 15, the OEM can store UEFI image 113 in storage
103.

[0031] Prior to continuing with the description of the
present invention, it is noted that, using prior art techniques,
UEFI image 113 would not pass Secure Boot verification
and would therefore not be loaded because signature 113«
does not appear in the authorized database. As described in
the background, using prior art techniques, the OEM would
have to update the platform firmware so that signature 113a
is included in the authorized database and then reflash the

Aug. 6, 2020

platform firmware. The present invention eliminates this
requirement while still enabling UEFI image 113 to be
verified during Secure Boot.

[0032] Turning to FIG. 3B, after UEFI image 113 has been
added to computing device 100 and during a subsequent
boot, CPU 101 will employ the OEM’s public key to verify
the signature on platform firmware 105 as is represented in
step 2a. This verification of platform firmware 105 is carried
out in the manner described in the background. However, of
importance to the present invention, this verification encom-
passes verifying that the contents of OEM file list 200 have
not been altered. In step 2b, once CPU 101 has verified
platform firmware 105, it will load and execute the platform
firmware.

[0033] As represented in step 2¢, during the PEI phase,
verification module 201 will be executed. Verification mod-
ule 201 can be configured to employ OEM file list 200 to
identify any new or updated DXE modules that may have
been added to storage 103. For example, verification module
201 can read the file GUIDs defined in OEM file list 200 and
search each firmware volume on storage 103 to determine if
any UEFI images having any of these file GUIDs exist. In
this example, verification module 201 will determine that
UEFI image 113 has a file GUID of GUID and is therefore
a UEFI image that has been added.

[0034] Next, in step 24, verification module 201 can verify
any UEFI image that has a file GUID matching any file
GUID contained in OEM file list 200. To perform this
verification, verification module 201 can employ the public
key to which the file GUID is mapped in OEM file list 200
to verify the signature on the UEFI image. For example,
because UEFI image has a file GUID of GUIDI1, verification
module 201 can employ PubKeyl1 to verify signature 113a.
In this way, it can be ensured that only the OEM that has
knowledge of the file GUID to public key mappings and that
has the private key can add a UEFI module that will be
successfully verified by verification module 201.

[0035] At this point, although verification module 201 will
have verified that any added UEFI image was added by the
OEM (or other entity having knowledge of the OEM file list
200 and the private key), the added UEFI image will still fail
Secure Boot verification because its signature does not exist
in the Secure Boot databases. FIG. 3C illustrates how sync
module 210 is employed to address this.

[0036] Sync module 210 can be in the form of a DXE
module that is configured to be loaded during the DXE phase
prior to the loading of any UEFI images that were added in
accordance with the techniques of the present invention. For
example, sync module 210 can be configured to be loaded by
the DXE dispatcher prior to UEFI image 113 or any other
added DXE module.

[0037] As represented in step 3a in FIG. 3C, during the
DXE phase, sync module 210 can identity any UEFI image
that was verified by verification module 201. For example,
verification module 201 can be configured to record (e.g., in
a UEFI variable) the file GUID of any UEFI module that it
verified in step 2d so that sync module 210 can subsequently
identify these file GUIDs. In step 354, for each identified
UEFI image, sync module 210 can add the UEFI image’s
signature to the authorized Secure Boot database. For
example, in FIG. 3C, sync module 210 is shown as adding
signature 113a to the authorized database. Sync module 210
can add signatures to the authorized database in accordance
with the techniques described in section 31.5.3 of the UEFI

US 2020/0250314 Al

Specification, Version 2.7 Errata A (e.g., by employing the
GetVariable() and SetVariable() functions).

[0038] Because sync module 210 updates the authorized
Secure Boot database to include the signature of any added
and verified UEFI image (or more specifically, to include a
Secure Boot key corresponding to the added and verified
UEFI image), the UEFI image will be verified as part of the
Secure Boot process. In particular, and as described in the
background, prior to the UEFI image being loaded, the
Secure Boot databases will be searched to determine
whether the UEFI image’s signature is included in the
authorized database and not included in the forbidden data-
base. Because sync module 210 will have added the signa-
ture prior to the UEFI image being loaded, the Secure Boot
verification will succeed thereby enabling the UEFI image to
be loaded.

[0039] To summarize, the OEM can include an OEM file
list in the platform firmware. This OEM file list can define
mappings between file GUIDs and public keys that the OEM
can subsequently use to create a UEF] image. Because the
OEM file list is included in the platform firmware, it will be
verified as part of the Boot Guard verification process
thereby ensuring that the OEM file list cannot be tampered
with. As part of the PEI phase, a verification module that
forms part of the platform firmware can identify and verify
any added UEFI image using the corresponding public key
defined in the OEM file list. A sync module that is loaded
during the DXE phase can then update the Secure Boot
databases to include an appropriate Secure Boot key for any
added UEFI image so that the added UEFI image will be
verified during the Secure Boot process. This process can be
performed during each boot to ensure that any added UEFI
modules will be identified and verified. As a result of this
process, the platform firmware does not need to be updated
when a UEFI image is added to the computing device.
[0040] FIG. 4 provides a flowchart of an example method
400 for securely loading UEFI images at runtime. Method
400 can be implemented on computing device 100.

[0041] Method 400 includes an act 401 of installing plat-
form firmware on a computing device, the platform firm-
ware including a Secure Boot database, a verification mod-
ule and a file list that defines mappings between file GUIDs
and public keys, the mappings including a first mapping
between a first file GUID and a first public key. For example,
platform firmware 105 that includes Secure Boot databases,
OEM file list 200 and verification module 201 can be stored
in flash 102 of computing device 100.

[0042] Method 400 includes an act 402 of, after the
platform firmware has been installed on the computing
device, creating a first UEF] image by assigning the first file
GUID to the first UEFI image and including a first signature
of the first UEFI image that is generated using a first private
key that corresponds to the first public key. For example,
UEFI image 113 can be created, assigned GUID1 and signed
using PrivKeyl.

[0043] Method 400 includes an act 403 of storing the first
UEFI image with the first signature on the computing
device. For example, UEFI image 113 can be stored in
storage 103.

[0044] Method 400 includes an act 404 of, during a
subsequent boot process, identifying, by the verification
module, that the first UEFI image has been stored on the
computing device. For example, during the PEI phase of the

Aug. 6, 2020

boot process, verification module 201 can employ OEM file
list 200 to determine that UEFI image 113 has been added
to computing device 100.

[0045] Method 400 includes an act 405 of employing, by
the verification module, the first public key to verify the first
signature. For example, because UEFI image 113 has a file
GUID of GUIDI1, verification module 201 can employ the
mapped public key, PubKeyl1, to verity signature 113a.
[0046] Method 400 includes an act 406 of, in response to
the verification module verifying the first signature, adding
the first signature to the Secure Boot database to thereby
cause the first UEFI module to be verified during Secure
Boot verification. For example, during the DXE phase of the
boot process, sync module 210 can add signature 113« to the
Secure Boot authorized database (e.g., in the form of a
custom Secure Boot key) so that UEFI image 113 will be
verified during the Secure Boot process.

[0047] Embodiments of the present invention may com-
prise or utilize special purpose or general-purpose comput-
ers including computer hardware, such as, for example, one
or more processors and system memory. Embodiments
within the scope of the present invention also include
physical and other computer-readable media for carrying or
storing computer-executable instructions and/or data struc-
tures. Such computer-readable media can be any available
media that can be accessed by a general purpose or special
purpose computer system.

[0048] Computer-readable media is categorized into two
disjoint categories: computer storage media and transmis-
sion media. Computer storage media (devices) include
RAM, ROM, EEPROM, CD-ROM, solid state drives
(“SSDs”) (e.g., based on RAM), Flash memory, phase-
change memory (“PCM”), other types of memory, other
optical disk storage, magnetic disk storage or other magnetic
storage devices, or any other similarly storage medium
which can be used to store desired program code means in
the form of computer-executable instructions or data struc-
tures and which can be accessed by a general purpose or
special purpose computer. Transmission media include sig-
nals and carrier waves.

[0049] Computer-executable instructions comprise, for
example, instructions and data which, when executed by a
processor, cause a general purpose computer, special pur-
pose computer, or special purpose processing device to
perform a certain function or group of functions. The
computer executable instructions may be, for example,
binaries, intermediate format instructions such as assembly
language or P-Code, or even source code.

[0050] Those skilled in the art will appreciate that the
invention may be practiced in network computing environ-
ments with many types of computer system configurations,
including, personal computers, desktop computers, laptop
computers, message processors, hand-held devices, multi-
processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main-
frame computers, mobile telephones, PDAs, tablets, pagers,
routers, switches, and the like.

[0051] The invention may also be practiced in distributed
system environments where local and remote computer
systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks.
In a distributed system environment, program modules may
be located in both local and remote memory storage devices.

US 2020/0250314 Al

An example of a distributed system environment is a cloud
of networked servers or server resources. Accordingly, the
present invention can be hosted in a cloud environment.
[0052] The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be con-
sidered in all respects only as illustrative and not restrictive.
The scope of the invention is, therefore, indicated by the
appended claims rather than by the foregoing description.

What is claimed:

1. A method for securely loading Unified Extensible
Firmware Interface (UEFI) images at runtime, the method
comprising:

installing platform firmware on a computing device, the

platform firmware including a Secure Boot database, a
verification module and a file list that defines mappings
between file globally unique identifiers (GUIDs) and
public keys, the mappings including a first mapping
between a first file GUID and a first public key;

after the platform firmware has been installed on the

computing device, creating a first UEFI image by
assigning the first file GUID to the first UEFI image and
including a first signature of the first UEFI image that
is generated using a first private key that corresponds to
the first public key;

storing the first UEFI image with the first signature on the

computing device;

during a subsequent boot process, identifying, by the

verification module, that the first UEFI image has been
stored on the computing device;

employing, by the verification module, the first public key

to verify the first signature; and

in response to the verification module verifying the first

signature, adding the first signature to the Secure Boot
database to thereby cause the first UEFI module to be
verified during Secure Boot verification.

2. The method of claim 1, wherein the first UEFI image
is a first driver execution environment (DXE) module.

3. The method of claim 2, wherein the first signature is
added to the Secure Boot database by a second DXE module
that is configured to be executed prior to the first DXE
module.

4. The method of claim 1, wherein storing the first UEFI
image with the first signature on the computing device
comprises storing the first UEFI image in a firmware volume
on a reserved partition of a hard disk or in Serial Peripheral
Interface (SPI) flash.

5. The method of claim 1, wherein identifying, by the
verification module, that the first UEFI image has been
stored on the computing device comprises accessing the file
list to determine that the first file GUID is defined in the file
list and determining that the first UEFI image has been
assigned the first file GUID.

6. The method of claim 1, wherein employing, by the
verification module, the first public key to verify the first
signature includes determining, based on the first mapping,
that the first public key should be used to verify the first
signature.

7. The method of claim 1, wherein the first UEFI image
is a DXE driver.

8. The method of claim 1, wherein the mappings include
a second mapping between a second file GUID and a second
public key, the method further comprising:

Aug. 6, 2020

creating a second UEFI image by assigning the second file
GUID to the second UEFI image and including a
second signature of the second UEFI image that is
generated using a second private key that corresponds
to the second public key;

storing the second UEFI image with the second signature

on the computing device;
during a subsequent boot process, identifying, by the
verification module, that the first and second UEFI
images have been stored on the computing device;

employing, by the verification module, the first public key
to verity the first signature and the second public key to
verify the second signature; and
in response to the verification module verifying the first
and second signatures, adding the first and second
signatures to the Secure Boot database to thereby cause
the first and second UEFI modules to be verified during
Secure Boot verification.
9. The method of claim 1, wherein the verification module
employs the first public key to verify the first signature
during a pre-EFI initialization (PEI) phase of the boot
process and a DXE module that executes during a DXE
phase of the boot process adds the first signature to the
Secure Boot database.
10. A method for securely loading Unified Extensible
Firmware Interface (UEFI) images at runtime, the method
comprising:
during a boot process, accessing, by a verification module
that is part of platform firmware on a computing device,
a file list that is also part of the platform firmware, the
file list defining mappings between file globally unique
identifiers (GUIDs) and public keys;
accessing, by the verification module, one or more firm-
ware volumes stored on the computing device to deter-
mine whether any UEFI images in the one or more
firmware volumes have a file GUID matching a file
GUID defined in the file list;

upon determining that a first UEFI image stored in one of
the one or more firmware volumes has a first file GUID
that is defined in the file list, employing, by the veri-
fication module, a first public key to which the first file
GUID is mapped to verify a first signature that is stored
with the first UEFI image; and

in response to the verification module verifying the first

signature, adding, by a driver execution environment
(DXE) module, the first signature to a Secure Boot
database that is part of the platform firmware.

11. The method of claim 10, wherein the verification
module executes during a pre-EFI initialization (PEI) phase
of the boot process and the DXE module executes during a
DXE phase of the boot process.

12. The method of claim 10, wherein the one or more
firmware volumes are stored in Serial Peripheral Interface
(SPI) flash.

13. The method of claim 10, wherein adding the first
signature to the Secure Boot database comprises adding a
custom Secure Boot key to the Secure Boot database, the
custom Secure Boot key corresponding to the first signature.

14. The method of claim 10, wherein the platform firm-
ware that includes the file list is signed using an original
equipment manufacturer (OEM) private key and verified
using a corresponding public key stored in a central pro-
cessing unit of the computing device.

US 2020/0250314 Al

15. The method of claim 10, further comprising:

upon determining that a second UEFI image stored in one
of the one or more firmware volumes has a second file
GUID that is defined in the file list, employing, by the
verification module, a second public key to which the
second file GUID is mapped to verity a second signa-
ture that is stored with the second UEFI image; and

in response to the verification module verifying the sec-
ond signature, adding, by the DXE module, the second
signature to the Secure Boot database.

16. The method of claim 10, wherein the first UEFI image

is a DXE driver.

17. A computing device comprising:

a central processing unit (CPU) that stores an original
equipment manufacturer (OEM) public key;

flash memory on which platform firmware is stored, the
platform firmware being signed with an OEM private
key corresponding to the OEM public key, the platform
firmware including Secure Boot databases, a verifica-
tion module and a file list that defines mappings
between file globally unique identifiers (GUIDs) and
public keys; and

storage on which one or more firmware volumes are
stored, the one or more firmware volumes including a
first set of UEFI images each of which has a signature
that is stored in the Secure Boot databases of the signed

Aug. 6, 2020

platform firmware and a second set of UEFI images
each of which has a signature that is not stored in the
Secure Boot databases of the signed platform firmware;

wherein the verification module is configured to verify the
UEFI images in the second set by determining, for each
UEFI image in the second set, whether the UEFI image
has a file GUID that is defined in the file list and if so
whether the UEFI image was signed using a private key
that corresponds to the public key to which the file
GUID is mapped.

18. The computing device of claim 17, wherein the first
set of UEFI images includes a sync module in the form of
a DXE module that is configured to add, to the Secure Boot
databases, a signature of each UEFI image in the second set
that was verified by the verification module.

19. The computing device of claim 18, wherein the
verification module verifies the UEFI images in the second
set during a pre-EFI initialization (PEI) phase of a boot
process and the sync module adds the signature of each
UEFI image in the second set that was verified by the
verification module during a DXE phase of the boot process.

20. The computing device of claim 17, wherein the
storage comprises one or both of a reserved partition of a
hard disk or Serial Peripheral Interface (SPI) flash.

#* #* #* #* #*

