US 20200250003A1

a2y Patent Application Publication o) Pub. No.: US 2020/0250003 A1

a9y United States

Yang et al.

43) Pub. Date: Aug. 6, 2020

(54) VISUAL FOG

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)
(72) Inventors: Shao-Wen Yang, San Jose, CA (US);
Yen-Kuang Chen, Palo Alto, CA (US);
Ragaad Mohammed Irsehid
Altarawneh, Hillsboro, OR (US); Juan
Pablo Munoz Chiabrando, San Jose,
CA (US); Siew Wen Chin, Penang
(MY); Kushal Datta, Hillsboro, OR
(US); Subramanya R. Dulloor, Santa
Clara, CA (US); Julio C. Zamora
Esquivel, Zapopan (MX); Omar Ulises
Florez Choque, Sunnyvale, CA (US);
Vishakha Gupta, Seattle, WA (US);
Scott D. Hahn, Portland, OR (US);
Rameshkumar Illikkal, Folsom, CA
(US); Nilesh Kumar Jain, Portland,
OR (US); Siti Khairuni Amalina
Kamarol, Penang (MY); Anil S.
Keshavamurthy, Portland, OR (US);
Heng Kar Lau, Pulau Pinang (MY);
Jonathan A. Lefman, Newton, MA
(US); Yiting Liao, Sunnyvale, CA
(US); Michael G. Millsap, Gilbert, AZ
(US); Ibrahima J. Ndiour, Portland,
OR (US); Luis Carlos Maria Remis,
Hillsboro, OR (US); Addicam V.
Sanjay, Gilbert, AZ (US); Usman
Sarwar, Penang (MY); Eve M.
Schooler, Portola Valley, CA (US); Ned
M. Smith, Beaverton, OR (US);
Vallabhajosyula S. Somayazulu,
Portland, OR (US); Christina R.
Strong, Hillsboro, OR (US); Omesh
Tickoo, Portland, OR (US); Srenivas
Varadarajan, Bangalore (IN); Jesus A.
Cruz Vargas, Jalisco (MX); Hassnaa
Moustafa, Portland, OR (US); Arun
Raghunath, Portland, OR (US);
Katalin Klara Bartfai-Walcott, EL
Dorado Hills, CA (US); Maruti Gupta

VISUAL SENSORS
120

LOCAL AREA !

Hyde, Portland, OR (US); Deepak S.
Vembar, Portland, OR (US); Jessica
McCarthy, Dublin (IE)

Intel Corporation, Santa Clara, CA
us)

16/652,038
Jun. 29, 2018
PCT/US2018/040390

(73) Assignee:

@n
22)
(86)

Appl. No.:
PCT Filed:
PCT No.:

§ 371 (c)(),
(2) Date: Mar. 28, 2020

Related U.S. Application Data

Provisional application No. 62/691,464, filed on Jun.
28, 2018, provisional application No. 62/611,536,
filed on Dec. 28, 2017.

Publication Classification

(60)

Int. Cl1.
GO6F 9/50
GO6K 9/00
GO6N 3/04
GO6N 3/063
U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)
GOGF 9/5044 (2013.01); GOGK 9/00228
(2013.01); GO6K 9/00335 (2013.01); GO6F
2209/503 (2013.01); GO6N 3/04 (2013.01);
GOG6N 3/063 (2013.01); GOGF 9/5072
(2013.01) CPC ... GO6F 2209/503 (2013.01);
GOG6N 3/04 (2013.01); GO6N 3/063 (2013.01);
GOGF 9/5072 (2013.01)

(57) ABSTRACT

In one embodiment, an apparatus comprises a processor to:
identify a workload comprising a plurality of tasks; generate
a workload graph based on the workload, wherein the
workload graph comprises information associated with the
plurality of tasks; identify a device connectivity graph,
wherein the device connectivity graph comprises device
connectivity information associated with a plurality of pro-
cessing devices; identify a privacy policy associated with the
workload; identify privacy level information associated with
the plurality of processing devices; identify a privacy con-
straint based on the privacy policy and the privacy level
(Continued)

NETWORK
1508

WIDE AREA NETWORK
o

!
H
3

CLOUD RESOURCES 130

US 2020/0250003 A1
Page 2

information; and determine a workload schedule, wherein
the workload schedule comprises a mapping of the workload
onto the plurality of processing devices, and wherein the
workload schedule is determined based on the privacy
constraint, the workload graph, and the device connectivity
graph. The apparatus further comprises a communication
interface to send the workload schedule to the plurality of
processing devices.

Patent Application Publication Aug. 6,2020 Sheet 1 of 95 US 2020/0250003 A1

5100
\
}
i
}
}
!
j
=" Bt N !
”,:::::% g
e | |
VISUAL SENSORS ! i
120 ; :
; C LOCAL AREANETWORK |
i 1504 ‘ :
e)

WIDE AREANETWORK
150b

.
.
1

CLOUD RESOURCES 130

Patent Application Publication Aug. 6,2020 Sheet 2 of 95 US 2020/0250003 A1

Aug. 6,2020 Sheet 3 of 95 US 2020/0250003 A1

Patent Application Publication

\ - AN
Rt Rt N e
9z¢ \ \s\.\ V4 _ﬂ/ //hl ./
‘228 4 A .
EH / - A \\NNm w/\\ \ f/ /..w !
/ Uy .4 AVMILYD ¢
20e =~ ,/ 8ze 1&; o & N Wpoe
¢0¢ s
Nmm 530 S\ ez
228 \ ”\ LR oy |
YA \ 7028 \&\J 7~ A] anon
200~ N LR %“
\ LSO \ \\ww\ N NNMN.“ ANELYS .
N\ A v.
, ¢ @omi\\a

Patent Application Publication Aug. 6,2020 Sheet 4 of 95 US 2020/0250003 A1

420
Ay
Me 0T 424
,,,,,,,,,,,,,,,,,,,, i = 406
OT AL
422 N/ | '” =, |
\#\ - A 28 : SOT EOT :
404 < | GATEWAY | 410 43 4877
o/ : Ay N g‘é-\;\ﬂ.»- I
SERVER |* «>] GATEWAY et SERVER(S} 48 % x
vl 42
", ‘L_[..........) ‘L—E
| [U loT o7 |
wg o o N
loT 416 406

426

Patent Application Publication Aug. 6,2020 Sheet 5 of 95 US 2020/0250003 A1

550
loT Processing Device
-~ 564
[32 556 569 MESH DEVICES /
' -
PROCESSOR WS | FOG
570 o » TRANSCEIVER -
INSTRUCTIONS
566
o580 WIRELESS p
g ~554 | [*™ NETWORK |-
! a TRANSCEIVER
5 MEMORY b el
§ 3 : 568 — 500
| || INSTRUCTIONS || ! NETWORK
| | 1 INTERFACE [*7 572
| 58 510 | | SENSORS
! STORAGE a EXTERNAL
| 582 e INTERFACE > ACTUATORS
! i 576
| | |_INSTRUCTIONS || ! - -
s | fe— BATTERY
| S
586 v /578 580
INPUT DEVICE et BATTERY
«—»| MONITOR/ [«-}—- POWERBLOCK
584~ CHARGER
OUTPUT DEVICE le—
A4

Patent Application Publication

\ 4

RETIREMENT LOGIC 620

BACK-END LOGIC618

Aug. 6,2020 Sheet 6 of 95 US 2020/0250003 Al
r | CODE 604 | MEMORY

|

i K

!

|

|

| ¥

|

!

!

| FRONT-ENDLOGIC 606

!

!

I

!

| A 4

| [EXECUTION| [EXECUTION EXECUTION
|| UNIT UNIT UNIT
| | 6164 6168 616N
| EXECUTIONLOGIC 614

!

|

!

!

v

PROCESSOR CORE 600

Aug. 6,2020 Sheet 7 of 95 US 2020/0250003 A1

Patent Application Publication

viva
8c.L 0gs
aNv 3009 | s3omaa | 3snow
JOVHOLS V1V Lol WNOD 222 JQHYOATN
h 0zL Jw h w
vZl Ll 8Ls
o olany $30IA3A O 390G $Nd
ors I ——
06, — d-d 064 13SdIHD Aed Y %mwmoom%o_
Ty e
¥/ 261
—
Qm] &..m &..nm &s& mu & o m.]
8l s =7
NI NI
el 5l
AHOWaN AHOWIW
HOSSINOUOD
HOSSID0NUd MOSSIO0Ud

004

qces
NOI mm. WOO Zoﬁ,qu ZD WINOD

_!.n!i..s.u nli!!li _i!§|!.m iiiiiiiiiiiiiiiiiiii p/
P NN
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; dnods

28 STANYIM NOISIA

w,

m 759 s3asvy

< / SIOTIAIA
m ////,%m@ mo.a/// ////%zom\a ;mﬂ_/ // Y m_ XQY 7 W WHLINOS Y
>

p

58
78 A0IAHAS LINIFW3DVYNY N TENYIA NOISIA

AHOLISOd3d
INLINTEd AY3N0

>QEO&
ADVARYd

DOONINNNeecerefeeress NN #5525

= ¢l8

w H3IUSWOD AYIND FOIAMES IN3 Em@<z<§ NOILLYO!TddY NOISIA

=W

g N\ HE o) /// ////////// /////// SHOLYHIO
2 078 1dv AYIND {98 E< mo_i;.M{z{ NOISIA

m %/ NN / // / NN N N N NN NN N // (SHASN-ONT
2

(=9

008

US 2020/0250003 A1

P [3iNny)

016\
SOILATYNY
ANITHHO

906
NOILYOZHOOY e

ONIYELTH -
ONISSIOOdIHd »

SOLLATYNY VOO 1.

NOILY.LIdH3LINI
(NY NOLLVLNISHYd |

41
JOVHOLS
viva

mmmw,{mﬁuhmm L

Aug. 6,2020 Sheet 9 of 95

(3niLNny)

806
SOILATYNY
ANIINL

(3WiLNNY)

006

Patent Application Publication

[

US 2020/0250003 A1

¢ ™
o oor
| FON0LS |
_\‘e&sl.ll..si.?.ll
t)
W ™ e
(=) t_:...!us«:i..i
L -
=] \\
<
o
E PI0] (NOLLOAL30 30w 1|z
2 « T I 1
@ < SNOILYN3dO [¢ | T o oo ¢ || viva WNSIA
- 907 | vivaviaw NSI
& . ; - e 4 r
0.0 Illl! !\\\\
= s -
2
=
£ 7007
3 NETENRIEINT
2 P TIdINOD
£
=
S
.m 3007
> S3IRAND X
= OOH Qv
5 0001
&
="

=
i W
S NOILYO!IddY
<
m o]0 200 Boc D¢ DO OOC OO 0N OO JGO K 0O DOC DOC BO(DI OO OGC IO KOG 1O 300 3 DOU BOC GOK OO GOl OO JOG KO G JOU MG BOC BOC GO GOI OG KOOI UG SO0 100 G BOD BOC DOU DOC GO(OGN OO GG JOG 300 JUC DOU BOC GOC G0N OGK 60N 0K 10O JC BoO DG DOC DOC OO OO(0O MG WO 100 JC DGO DOC SO GOU OGK IOG(OG KO 10D 30O 300 20 BOC
S 011 SN
o o] oot 10 100 0 100 300 30k 30 soc oo e oo ok 108 10 K00 300 02 BOC SO¢ U OO O KOl 0 KD e o 0 DX B DOk OO B 00 o 00 en TR o0 0 100 200 1 doe boc B DO G N 60 103 00 0 BSC %0C BAE B O O O 103
w ... e

m&.q {KM E{O i , oo lij
o NE[OREL A wnaaros
< P GALNEIYLSI
= SNISS30004 354 NOILNO3X3 4AN s
2 - < 4
g Q3LNFILSI 3LNEIN.SIA ANIONI MOHVLYG,. y
70} b

0T
=] \ w
3 S N T JWILNNY CILNBINLSIO
(g\] , . \ z 'y /
< e idv z%ﬁm " - HdYt9 MO HYLYQ NOISIA—— m—
= “
< TIOYNY N NYAALS WIIN0D L | NOILINDODZY F0VH «
E INOLLOZL30 NOLLOW «
= 7 T ——
S | vivavidi 5300 W NOISTA
M wT sSWRIS | e
£ IOVHOLS &)
= \. J _/1d¥ SOILATYNY SAILVaV 1030 / OVTT ¥ETINOD
g F e BN n “
> NOILNOXE 4AN WOX SLINSIY W <
B 0

S e b011 aroLL b0
g 2011
£ oon

US 2020/0250003 A1

Aug. 6,2020 Sheet 12 of 95

Patent Application Publication

ISvavivd

QdZINILHO INIOdX Q€ -
ASYEYLYU HAVYHO -
dSvavLyd d3.LN91y1sia -
grer 35vavivd

£

X

Lz U
3 ®
¥ QYO DINOM 6021 | MOTHVLYG
e N——
f &
(ms)

FONIANIAIANI WHOALY 1d ALITIEYAIONILN -

| MQWM% m, B (MH) 3ONZANASIANI

WYOALY 1d DILVLS -

¥3SN 3SN-40-39V3 - 57T
AR EONERE T
, XIITEVSOdWO0 r |
& &
m g
AN WYH90¥d
ALLYNY103Q ALY I
\\/r\V Y \/\y Y
5021 €021
y0Z) 2021
¥3SN-ON3 L143dX3 NOISIA-
NOSHIdAY T ¥3LNAINOO

US 2020/0250003 A1

Aug. 6,2020 Sheet 13 of 95

Patent Application Publication

1474
INFANCHIANT
JNILNNY

911
SHIAYES

ONIMIHO™d -
ONDINIMHS/NOISNYdXd 904 -
YINFHOS VIVAYLIN -

STEINUIM NOISIA A1dVAY 1d-N-ON1d -
FWILNNY 378VLH0d TWILNAY LHOIIMLIHDIT -
ONINYYITIAISSTHAINOD NOISSTHAINCD -

29,7
a9z SYHIWVO
AYMALYD
TN BLLZ) ~
| vivavia|, | VLvavian
| AN (ONV YLVQ
s\s f”,, . L ‘\\\. - }l/\..\s

A
VLVAVIIW
ATA NV VLvd

T Lt A r
ALIIEYIIVAY
€1zl m EDSIQL ﬁimo%o@mm

&

o,

HAINAIHOS TVANI WIHON] F
LINZIOHAE -
HI3NAIHOS FAILIVOUd -
HANAFHOS FALLOVEY -

H3TNAIHOS X
ALVHITOLAONILYT -
HITNAIHOS Y NILAO -

XVLNAS A0 WASIA -

90¢1

WALSA z_mm>> NV

US 2020/0250003 A1

Aug. 6,2020 Sheet 14 of 95

Patent Application Publication

A
SOILATYNY

3NITHH0
ERTINN)

ﬁ

FIET
FOVNOLS

SOLLATYNY
ANIINTG /

|

g0tey
ERI~
NOLLYHNDIINOD
INFdid
ONISSIO0™d

|

_ANOILINSOOZY 103780
[NOILINDOOZY 350d
[NOILINDOOZY 30V

N, N N, N

»/wcmw Advddil
ATNAO N TINYIA NOISIA

YOA

%
W

mmwam\woo ‘,_; m‘ ¢t
< M,b.m:o WNSIA |

MOHVLYT

00¢!l

L HAYEO MOTEVLYT NOISIA

&
\\ JJ

SUOISUB]X®
h ¥AURdo WM @1 wm Adusdo u

8Lyl
NOLLY WHOANI ONIMNAIHOS
Ol10348-2dyMTuYH Z000NT S3NTO N NOISIA)

US 2020/0250003 A1

& \.
[
- s 3THT
- J Hdv¥O
3 MOTHVLYQ NOISIA 3LYHIND
7
N
S \\\ // FIFT
& YILNNOD || NOILO3iTa s Sinn K Hlvd
o [0ArE0 TOv L | SNOILY¥3dO NOISIA 3LYHANID
z Re
7 00FT
NOILDZLFA | e 1IN0
10dS1OH L
Sy I ELT A e T —
NOLLINGOO3M | __[NolLo3i3al, ZaAn
0 30v LIAD @,

(sjdoadunos)sse00id (UpZ - mou)awiyswess (E4aN
((Juonoeispiodsioylsie (mou)s wiyswesis [C4AN

({11098,)uore w™aoe))1iee (Moujo wiysweshs thian

42
SNOLLONMA NOISIA GaNIH3a-H3sN

300034 | 34d

/ wadLs _[Noioaizal, NoioaiEal,
\ a3ois /4 1oareo NOLLOI

/// _._ 5T \\
HdVHO SNOLLYHIHO NOISIA

Patent Application Publication

US 2020/0250003 A1

o] =

Aug. 6,2020 Sheet 16 of 95

P —_—
wmnnénmmu
p.

HIANIS
ONINAZHOS

A

Patent Application Publication

AN

AHOLISOdY
1718¥dVO NOISIA

4B poc OOt OOI 0O 00I KD 10D 00

Patent Application Publication Aug. 6,2020 Sheet 17 of 95 US 2020/0250003 A1

1600

COLLECT AVAILABLE VISION CAPABILITY IMPLEMENTATIONS
1602

v

COLLECT RESOURCE TELEMETRY OF FOG DEVICES
1604

" NEW VISION
< WORKLOAD RECEIVED? >

NO

V%

RE-SCHEDULE PENDING WORKLOADS
1608

SCHEDULE ™
UPDATED?

PUSH SCHEDULE TO FOG DEVICES
1612

\

RECEIVE VISION CAPABILITY REQUESTS FROM FOG DEVICES
1614

v

IDENTIFY APPROPRIATE VISION CAPABILITY IMPLEMENTATION
FOR EACH FOG DEVICE
1616

3
DISTRIBUTE VISION CAPABILITY IMPLEMENTATIONS
TO FOG DEVICES
1618

US 2020/0250003 A1

Aug. 6,2020 Sheet 18 of 95

Patent Application Publication

A

(30T
| vivav.En

\ LndLno

Ll S

471’
NOILND3XE

4AN h
dELngiLsid

|

|

L0241 VIVAVLIN +

_ WY3LS GRELTH

735
HdVH9 MOTHVYLYQ
NOISIA

v0Ll

—

GOLL
WYIHLS
3831001

d4LndrdLsid

ONISSHO0Hd-Fd

A

£0L1
WYIHLS

d30a003d

€4AN
TTIT
HITNdWOD AN
4AN
b4AN
\\\
601,
01T
SSIHONI A,Eiﬂmﬁii.
MY
001}

Patent Application Publication

1800

‘_.._.\

Aug. 6,2020 Sheet 19 of 95 US 2020/0250003 A1
T s T T :
| CLIENT API i
! 1801 ;
! ;
REQUEST
SERVER
1802
J-\
| ,
METADATA VISUAL
DATABASE COMPUTE
1804 LIBRARY (VCL)
1806
FN F-N
$ A\ 4
ANALYSIS
FRIENDLY MEDIA E;égm'\’jé%?
FORMAT(S) 1808
1807
‘ T
\4
DATA STORAGE

1810

US 2020/0250003 A1

Aug. 6,2020 Sheet 20 of 95

Patent Application Publication

8061
Y1vd TYNSIA
LANVYAZ1EY ¥HO4
SN0 IAIEO3Y

J

.

9067
35N FNLN4 HOA
VLVOVLIN 34018

J

F061
VIVAVLIN
LOVHLIXd 0L
ONISSAO0Hd NOISIA

\. J

2061
YLVQ WNSIA
ONIINOONI
40 WV3HLS

v/.),

0061

US 2020/0250003 A1

Aug. 6,2020 Sheet 21 of 95

Patent Application Publication

jo1esq

0102~ 8007~ 9002~
4 ™ 4 ™\ ' ™~
<d|gnop> :zbuo
<8|gnops> 11 Buo < lieyo> adAg <8 UWNBIEP> 90
<8jgnop> :Ze <A9H> 110]|0) <}ui> :8by
<3|qnop> 111e7 w -SUWEN w -SWEN
131 nmgmz
ns Uo1es07 19800 U0s.Jed
w : v . : J/ . : 4
<]BOl> :ZA <jeol> ‘ZA
<IEol> (LA <IEO> [LA
<ieo}> ZX <lgOj> 1ZX
I\ <Jeoj> 1| X <lgolf> (11X
SUIRIUCY SulRIUCY
4 N 4 N 4 N\
~BudiBdl :adAy <@ Uil> :uoieing <dWneeps 8leq
<3 WNeEps> 3eQg <3 WieEps> BleQ <lUl> 8218
 19ZIS <}ul> :8ZIS > <lUi> plawesd
w OUWEN w SOWEN | Jopasoduio) w 9 WEN
obew 03PIA oweld
. J . S \ /
$007~ 2002~ £002-

000¢

US 2020/0250003 A1

Aug. 6,2020 Sheet 22 of 95

Patent Application Publication

2901¢

4801¢

e901¢

[

000751/ :60Q)
80(] 991Jy S WEN

uosiad |

/61111 :800)
30(] UYor :swen

uosiod |

y261/S 1Y :800)
80(] suep B WeN

uosiad

suje cmw

\.

Bdl ziemer o wen ™

GGz 9218
PLOLY PleQ

ojoyd)

1Ypaledo

-

\.

BdlLemen :aweN |/

gz o718
LS LY o1eq

ojoyd
J

f

By0LC

P

/0000 :uoe[ndod)
lleMeH ‘ojeis
pugs| :adA]

INe | o wep

Uuoi}eso
_uohesot

/

ALY

~—

001¢

US 2020/0250003 A1

2020 Sheet 23 of 95

9

Aug. 6

Patent Application Publication

90¢¢

SISYE ITIL-H3d NO ...

AJONIW OL FL1IM
NV SSHddINOD

y0ce
SAUL OLINIIOVINL LIS
ONY
3215 UL WINILLO INTINME L3

FAlra4
JOVIAL IAIZOZ

00c¢

US 2020/0250003 A1

Aug. 6,2020 Sheet 24 of 95

Patent Application Publication

2300

over 100 Images)

Time for Operation {Average

Analytic image format

%

1200

1000

SPUOSASI||I | Ul BLWI]

Write

US 2020/0250003 A1

Aug. 6,2020 Sheet 25 of 95

Patent Application Publication

yove
Yivad
NOISS3Hd WOD viLdvd

90%¢

NOISIOHA ATV i

80vZ |
NOISIOFQ 3LYT] |

COMPRESSED
DOMAIN DATA

, /

\\
950v2 e

YLV NOISSTAdNOD \\
o~ TYNOLLIGQY
00¥¢ 20¥2

y0ye
vivda
NOISSdd WOD TviLyvd

80¥¢

NOISIOZA ATV €

COMPRESSED
DOMAIN DATA

00ve

™
<
=<
(AN

US 2020/0250003 A1

Aug. 6,2020 Sheet 26 of 95

Patent Application Publication

voye
viv(Q
NOISS3ddINOD YiLddvd

9072
9Lve NOISIOAQ ATHV3 ¢——r]
NOISIO3Q _
TYNK 80ve

NOISIOAQ ALY T et

COMPRESSED
DOMAIN DATA

A

-

4

NOISSTH4INCD3a
) 2092
e~ 0L¥2
LYz YLYa NOISSTHdNOD
YLYa TYASIA WNOILIQQY
CERRE NPT
0042

Patent Application Publication

Aug. 6,2020 Sheet 27 of 95

-
+

M

Ak

US 2020/0250003 A1

2500

{...J

Patent Application Publication Aug. 6,2020 Sheet 28 of 95 US 2020/0250003 A1

2500

A

R IRS]
[XRKRRKAS

r g

3

AL

Patent Application Publication

Aug. 6,2020 Sheet 29 of 95

US 2020/0250003 A1

2600
7 Filter
concatenation
1x1 conv 3x3 conv . 3X3;pax
pOO“ng
Previous
iayer
2700
N ‘
Filter
concatenation
“anll :‘:E::"
pooling
1x1 conv ; ? ?
Previous

layer

US 2020/0250003 A1

Aug. 6,2020 Sheet 30 of 95

////

Patent Application Publication

/// |21\
N

E

1oAe
5N0IABLd

A

| _m@wmhmwwzg N
uuﬁu Juiod-N ﬁﬁu
N

v

ﬁ:oa -N

mwcomzox
SOOUNNNNN

a1lla3ng /

[{4:14
Buljood
XeW £X¢

A018¢
AUOD GXG

q018¢
AUOD XE

edl8¢
AUOD LX}

N

qoe8e

UOIBUSIBIUCS

1B}

0082

US 2020/0250003 A1

Aug. 6,2020 Sheet 31 of 95

Patent Application Publication

BOE6C

mm_c._mﬁg

1ahe|
SNOoIABIY

B0C6C

: N;_

Xew |x|

\

q0€6¢

/ R

UOI]BUSIEOUOD
BEHIS

jutod-N // Buljood T
// mmu_tm\/ / o oxe ALOD | X} AUOD |X), /
+ — B0T6C
< < AUOD X}
” =TV // 40cee 50762 POTEZ
/ jutod-N M Bugjood AU GXG AUOD £XE
N

006¢

Patent Application Publication Aug. 6,2020 Sheet 32 of 95 US 2020/0250003 A1

\

V3]
o
L
53
® -
: =z 3
=
o
e
=
-
[]

h'd
BUTTERFLY LAYERS
3002

3000

US 2020/0250003 A1

Aug. 6,2020 Sheet 33 of 95

Patent Application Publication

q001¢

.,
w2l

qgcie

EQC w\m/\®.mw .

EQ0LE

US 2020/0250003 A1

Aug. 6,2020 Sheet 34 of 95

Patent Application Publication

s 3220

Transform domain data (KxKx16)
K= N/4

OTANANEARAY

N
— E o
D o =
P v BN
- o 9 ﬂ
< S o
A=y e Pt
© 5
-
P
<
=
S
QL
T3 o
A& @ oy
e =™
R
.u L 1
2
o ARRh
- oo B rnfis o od
.
[o——
e e R AN
® N
&

CNN 3200

e

UOIBUBIBILOY

9]

SUOIINJOALOD)

Buyood

su

01JNJOALUOD
Wyl

TRANSFORM DOMAIN

<L <
Tn1_
<C N
fanapl

US 2020/0250003 A1

Aug. 6,2020 Sheet 35 of 95

00v¢€

Patent Application Publication

0%%E §€
SOILATYNY |e
03aIA
075¢ o
¢ ¥30003a e Y3A0ONT <
205¢ O3AIA y0Se O3AIA 205¢€
(N 3Z1$) vLva (N>>3218) (N 3Z18) vLva
NIYIWOQ Taxid v.1vad NIYINOd NIVINOQ TaX1d
I Q3SSTUANOD
0EGe)
O3QIN AYd
006¢
O
e |2 X S S S ||e=
S ® = Ww = w*
= & 3
Av=N

NND

(NXN) aBewn induj

US 2020/0250003 A1

Aug. 6,2020 Sheet 36 of 95

Patent Application Publication

0¢9¢
SOILATYNY O3dIA

INOILdWNSNOO INIHOVIA

TYNOILLO
! 025% m
< m 300030 m
f m OAqIA :
909¢
(3Z1S 31gVIYVA)
YLVa NIYINOQ
Q33SIHLNOD TyILMvd

079¢
HIAOONT 4
f O3qIA ¢09¢
(N 3218) vLva
$09¢ NIVIWNOQ T3Xid
(N>>37218)
vLYa NIYNOQ
Q3SSIHdINOD »()
009¢

Patent Application Publication Aug. 6,2020 Sheet 37 of 95 US 2020/0250003 A1

MACHINE CONSUMPTION/
» IMAGE CLASSIFICATION
3720

DATA (SIZE <N)
3704

3 T
\ ”¢
3 PR

L

COMPRESSED DOMAIN

QUANTIZATICN

DCT

VIDEO ENCODER 371

B

3702

PIXEL DOMAIN
DATA (SIZE N)

Patent Application Publication Aug. 6,2020 Sheet 38 of 95 US 2020/0250003 A1

3800

\\,\

Precision
1.00
0.900 f/
{0.800 *’/

0.700 —~
0.600 /[

0.500 /
0.400 [

0.300
0.200

0.000 10.00k

Patent Application Publication

Aug. 6,2020

OBTAIN NEW PHOTO
3902

.

COLLECT CONTEXT INFORMATION
OF NEW PHOTO
3904

“MATCHING MASTER
__ PHOTOIDENTIFIED?

ENCODE NEW PHOTO WITH
MASTER PHOTO
3908

&

Sheet 39 of 95 US 2020/0250003 A1

3900

ENCODE NEW PHOTO BY ITSELF
3910

i

DESIGNATE NEW PHOTO AS A
MASTER PHOTO

3912

US 2020/0250003 A1

Aug. 6,2020 Sheet 40 of 95

Patent Application Publication

ﬁ

dVIN LV3H

NOILYHANTD || ONITIHONd
37d03d D

0E0F ano10

v

ﬁ

zo__,«\o_n:._.zma_
SOIHdYHUDOW3d

zom._.oml_.ma
NOSH3d

0¢0% D04

000%

SHOSNAS
MIIN-dOL

0loY
530140 3904

Patent Application Publication Aug. 6,2020 Sheet 41 of 95 US 2020/0250003 A1

TOP VIEW SENSORS
4015

US 2020/0250003 A1

Aug. 6,2020 Sheet 42 of 95

Patent Application Publication

M

SOIHdYHO0WEd |

THAONW

SOIHdVHO0 W4T

J3NIveL

yov-

\
8207~ £e07~ 20% - 570¥
o e N LA N kit — .
NOILYOIAIINIQ ¢| NOILYOHISSYTD || N e NOLLOZLEA || e
SOIHAVHO0IEA | SOIHAYHO0 NAG NOSH3d | vy sosnas |

1

“\‘ ASYavLvd

4

)

ONINIVHL NOILOYHLY3
MIHISSYTO STUNLYIH
SOIHAYH90 Wad SOIHAYN90 WA
z0v- 7208

020y
904

NOSHd
MIIA dOL

1z0v-

US 2020/0250003 A1

Aug. 6,2020 Sheet 43 of 95

Patent Application Publication

A P W TF | FOF || TOF
3SVENLYA Q| MIHOLYIN NENR T ¥OL03L3a | [H0SSI00NdINd

)

004y

US 2020/0250003 A1

YH3INY0

q0cey
AYMALYD

Aug. 6,2020 Sheet 44 of 95

AYMALYD

002y

Patent Application Publication

US 2020/0250003 A1

Aug. 6,2020 Sheet 45 of 95

Patent Application Publication

Yd3AYO

e s e
HAANIS [HIHOLYIN [u3MOVYL [¥0103133 ?mow.wwwﬁu%
aaaaaaaaaaaaaaaa EEEQEE L3
%
YIANTS [HIHOLYIN 1 W3MOVHL [0103130 ?mom,www%&
;;;;;;;;;;;;;;; HIAIFOY * 4
&
RENE HIHOLYIN 1] ¥IDIOVHL [$ ¥0L103130 ?%m%ﬂom&
ssssssssssssssss ¥aNEoRY %
&

EYdINYO

CYH3 YO

P VHINVO

&

00¢y

US 2020/0250003 A1

Aug. 6,2020 Sheet 46 of 95

Patent Application Publication

YA,
_ NIYHOMO018
ALILNIQ ALILN3Q
NOIHIAOS4T3S 40 /7 - NOIMIA0SHTES
dIHSHIANMO . —
AdId3n (6) A
ALILN3Q!
NOIMIAOS-4 T3S
YaLsioay (1)

MHOMLIN 904
301A34 (¥) I01A30 (2)

G0L¥Y

g Ne— B) "

ALLLNAQI

NORIANOS-H4T3S 40

dIHSHINMO
AdPH3A (8)

HHOMULIN OO0

E0LPY

"

0079

= .

m 374

S

m b

S A__, KXGB0,=,J8UMOPaIY, PRIY 31 AdN

& L£01 LY=.1P, 901 1Y adN

= « ESIA

. =,8WeUP[IY2, SOOIADPS WY 3 YIHD ,

s =(28)% By ~Aiien

3 B

= t H

2 o MeN oL | beobv P Pd LS I3 | 175, 4601 1y, = pinneoisen)]

S 0LV PPY- £OLLY, = <134 601 29, By ubig=7

S AP, $UIBYOYO01E AT IHLTY .
5 330i9 v

mo Joud e ur) us| WXoy A L3

W£01 LY, AjisA~

m $$399NG < | JH>

A

Le012v, S22 Byd, 18] ueyoodigy 31 vadn: .80t 2v.) P ey ubis=1 S

:xxmmunn
801A13g

XGZ00, |
821A8(]

WDV LY,

Wc_m%xoomm 801A8Q

MaN

[BIUSPSL)

00Sv

Patent Application Publication

US 2020/0250003 A1

w0 (18175 ~Apon =i >
3 =(65)%2Eyd " Aen

2 m Leob v, L 2P, g8)< 13>

M %9018) RS IWA-A

<& Joud euius) AP GUBUIIOIE AT | o

S ,£011Y, AjioA W28 W€D} LY, =, pInnasiAsp,)
«

< 3,801 4v.)P Py ubig=z8

A4

LS, L6012V, =.pinnaaiaap,]”
<1301 L) By uBig =) g
) WXop 33134

WXGZ00
801Aa(]

WXOP/ IAT Y13

MNOF AN
80IA8(]

£V LY,

g

MEN

RUMO

009¥

Patent Application Publication

US 2020/0250003 A1

B

XXGBY,=,/BUMOSSIJE, PRI mEmmm

81 AY.=4P, 901V 3LYAdN

e}

201}, =, 8 WBUD|IUD,
$90IAAPS WY 31 YIHD

A

.0} LY ID, 901/ 3Lyadn |+ E8mARUMOPRIS, PRI 3LV

A

:mu_ _<\:“
S UWEUD|IY3, S83IASPS WY 31 V3D

jsump Aqg mwzm
ur Apesiie 1,us! £ 1 2y, s

XGC00,=,BUMOASD, WXOP 31VTdN

Aug. 6,2020 Sheet 49 of 95

<
)

L.£D 1 £¥,=,pINNa0iAsp, J< [34>

ETETTE

-.XX@@{:
901AIeg

.nxxmmoz
901AJ8S

.-X@NOD:
801A8(]

WED LV,
9218 (]
$$990Y

[e1uspsi) BUMO MaN

004¥

Patent Application Publication

US 2020/0250003 A1

Aug. 6,2020 Sheet 50 of 95

Patent Application Publication

(013 “YOIAYHIE
0zt e ALTHYS ALIOIINAHLNY)
., \ ONILLIA
¥ WHLINOSTY (2)

NIVHOM301d
NOEHEAOS-47HS 47
SNILLIA Qv A.Wv e N s e ; IAIG “

WHLINODTY 318193y (1)

B
WHLRIODTY 3SN0L3FOV (§) N\ RIOMIIN 904

WHLINOD TV 40 ALITIEYTIVAY AJILON (€)

d
MHOMIIN ©04

20187
aoL8y

008y

6 ¢

(ZNId = INId) Alisp

4

(dde-121d)oanoox3 = ZNId LNId S8 S1jnsal 1z} 6, ON3S

(1617 Aiap
(dde-1714

L SUBIp 17 01 1d ssindwog,

US 2020/0250003 A1
3

2 12316778, 18 1< 13>
=) # (11 [H]
2 < YEIT: (dde-|Zid)emnoexd = |Nid
\n it i ¢ -
E e [P, LU0 BrolY (18)%Hoid o
= 1301 3
~ uopoesuene [fde-1zid Subip 12 0y td senduwion, 17316, 2 d, 1.l 1>
S 01,1736, Ppy - [*
S pouBisse L7816, ,PIBIY, ¢ UIBYOY20IG IATNY LTY
e fpesife 1,usi < <
m JbT316, AjlIBA ~ asn 10} viqe|lere st, 7316, ANON |asn 10} 8|qejieAe sI, 17316, AJILON
42316, 10}
Bumen Ajddy ~

B,
w

$$800NS <[IH>

[dde-} 214 *,subtp 1Z 01 1d seindwog, 12316, L2 ®yd, 18] ueyNadig 31vadn: (12316, 22 By ubig=)s

[ZNopoN | LN 9pON L2316
UIRYONOOIG Sunndwoy | Bunndwon 801y Wolj q|
. | pRINgsia) peIngquisiyg wyiLoBly men
ﬁ\\i/
006¥

Patent Application Publication

Patent Application Publication Aug. 6,2020 Sheet 52 of 95 US 2020/0250003 A1

5000

TRADITIONAL IMAGE FORMAT

I,
— BN
ENCODE .| COMPRESS
5004 5006 \

[RAW PIXEL

COMPRESS /

DATA Sgdﬂ%E
5002 E—
5008
N e
—

ANALYTIC IMAGE FORMAT

Patent Application Publication Aug. 6,2020 Sheet 53 of 95 US 2020/0250003 A1

5100

e
Visual Compute Library

Analytic Format JPEG
PNG

Transformations

A 4

Y 4

OpenCV

TileDB .
Transformations

- -

5102 5104

Patent Application Publication Aug. 6,2020 Sheet 54 of 95 US 2020/0250003 A1

<O
=
N
(X9
< L
f—
[en] fan]
N <
< e
] o0
s o~
o4 <O R
[an) <€
o 4]
- 2 2 2 =
o o
N o o o
L] -
o = <C
D Pt =
E \ O “_ $ R
O ™~ © N
od @ - % <o
= =T o
= E
= (O
~-= O [+ e s
o = o <
- - < m
o = o
< <
=L fan]
<o bl o < bl o
o NN
< <o
< <
S N
< <o
< <t
<o fan
S o o
N
W g <

Patent Application Publication Aug. 6,2020 Sheet 55 of 95 US 2020/0250003 A1

5300

=

OBTAIN SENSOR DATA FROM TOP-VIEW SENSING DEVICE
5302

¥

PERFORM PRE-PROCESSING ON SENSOR DATA
5304

v

GENERATE VISUAL REPRESENTATION BASED ON SENSOR
DATA
5306

" PERSON DETECTED ~~_
<IN VISUAL REPRESENTATION? >

NO

IDENTIFY FEATURES ASSOCIATED WITH THE PERSON
5310

v

IDENTIFY DEMOGRAPHIC INFORMATION BASED ON THE
IDENTIFIED FEATURES
9314

¥

Patent Application Publication Aug. 6,2020 Sheet 56 of 95 US 2020/0250003 A1

5400

-

IDENTIFY NEW WORKLOAD
5402

¢

GENERATE WORKLOAD GRAPH
5404

¥

GENERATE DEVICE CONNECTIVITY GRAPH
5406

v

IDENTIFY PRIVACY POLICIES ASSOCIATES WITH
WORKLOAD TASKS
9408

v

IDENTIFY PRIVACY LEVELS ASSOCIATED WITH DEVICE
CONNECTIVITY
9410

v

IDENTIFY PRIVACY CONSTRAINT FOR WORKLOAD
SCHEDULING
9412

¥

DETERMINE WORKLOAD SCHEDULE BASED ON
PRIVACY CONSTRAINT

5414

— | |

; G5 'Ol
S

[T 9]

S

>

=

m ONILNdINOD 3903

ONILNGNOD 3903

~N

™\-q026s
ONILNdWOD 904 -

2 &

90785 016G

o165+ \%Q
\ ONILNdNOD 904

Aug. 6,2020 Sheet 57 of 95

@ ™\-B0ZSS

A

MHOMLAN O04 TVNSIA

®_005S

Patent Application Publication

Y

— n

: 9¢ "Old

m <YLva>

g <ALINaP SOILATVNY

S .

g Int@al <NOLVOOT> | % NOILO3T109

S > < <JNIL> VIVa 30IA3A [™-8095

» <INIAT>

) ANG AGHY3IN (2)

» NIvva | N9196

v 785 30130 AGHY3N

[

: e

FIFR o e
»l © o H © NOI mU

2 i o 1% NHONI(g) [-9098

= “ANIL _I_H_I_M_L 1

S \zoﬁooyﬁw\m b10

3 A9 AYT w7

o

=1

-

| <AdILNAQP SOILATYNY
O @ O <NOLLYOOT> ¢ 8 NOLLOTTION N_y0q5
301104 C<JAIL> V1vd w201 (2)
| o <INIAT

®_0095

=

(=]

= NI VLvYd v201

£ 2785 \ S3A
=1

=W

g

= (IAAHRQYVYENYT

g ©0z/£0/8L0Z "9 3) [« szw____\%z\q_i S3IA

m JNVYN LNJAIONI 2095 ON
3 9785 / /

: 198 0199

=

=W

Patent Application Publication Aug. 6,2020 Sheet 59 of 95 US 2020/0250003 A1

FIG. 57

5700\

—
A]
z 8S 'Ol
[l
@ ¥ I12IH3A € T19IH3A Z 19IH3A L T19IH3A ano1n
S T¥0017 1Y QALYHINID
S INIONT SOILATYNY INIONT SOILATYNY INIONT SOILATYNY ANIONT SOILATYNY SI ¥399IYLNOILDTLIA
o
S ano19 1vo01 ano10 W01 ano1d Vo0 ano1o 1vo01 ATYIWONY NV -} d3LS
2 2085~
m nsy
(=]
‘ y INIONT SOILATYNY
m £140d3Y AR OER mﬁﬂmﬁ ano1 YO0
3 ATYINONY $ANO10 I10IHIA OL ATVNONY
= > Y1va AN3S S1YITV ITOHIA |«
P 1MOdTY IWNAIAIGNI -2 d3LS T31TVHvd L LHOd3Y
m ATYINONY v ATVIWONY
o
< 4 Yy 9086 y Y ONISSID0Nd HIHLMNS
mb v aNO10 € anom Z2anoto L anoT1o m%%%% %mmﬁwmm
A A .vomm.\

, SILNGIMLLY HOMVIS SY (VL1130 INIL
WLTHOINLL Y BONIIACD) INJAIONI-[SOd + JAIL INIQIONFIHd +
0L ONIANOJSIIHOD YLV HLIM [INIONT SOILATYNY aN010 | IN3IAT 40 INIL VINY m@.<mu>oov ATYINONY
SANOSTY ANOTY FTIIHIA aNOTO FUNLONYLSYHANI NSY o e O A A N G
TYNAINIGNI HOVS -+ 318 1SANOIN AYIAND SANIS aNOTO NSY '€ dILS
01857 8085

®_0085

Patent Application Publication

US 2020/0250003 A1

Aug. 6,2020 Sheet 61 of 95

Patent Application Publication

65 'Old

A43ND FHL SAUVMEOL OSTV MIVE Ald3d SANIS
N3HL ‘NOILYOOT ANV JFWIL JONFH343 40 X v.113d
NI HLIM LNJLNOO ANV JNIL vLT13Q NIHLIM INJLNOD 41 ¢8)
ST10IHIA WOH4 S1INOV LSFHILNI SFAIFOFY ¥ FTOIHIA

0166~ 1 h

AY3N0 FHL SAHYMHOS “
OSTV | ATOIHAA OL MOVE A1d3d SANIS NIHL NOILYOO1
ANV JANIL JONFH343Y 40 X VL1130 NIHLIM LNILNOD dI 281
STTOIHIA WOHL SLINOVA LSFHALNI SFAIFOFY € ATOIHIA

, / 8065

(AONVANNQIY/NOILYOIdNA LNIATH "T'1 AVOTHIAO
NOILYWHOSNI NV LNIATHd

OL WHLIMO9TY SNOISSIddNS ¥ HLIM dNn FNVD 0STV)

AY3AND FHL SAYYMHOL OSTV 'NSY OL MOVE A1d3d SANIS
NIHL “3ZIS FHL 30Nd34 OL NOILONNA

SNOISSTMAINOD FHL NNY ‘NOILYOOT ANV FIL FONTHIATY

JHL 40 X VL7130 HLIM INJLINOD ANV JNIL V1130 NIHLIM

41" INJLNOD L3MOVd LSIHILINI d3d00S SIAIFDIY ¢ FT10IHIA

9065~ 0

(AONYANNQIH/NOILYOI1dNA LNIATHd 'T'1 QYO THIAO
NOILVINHOANI NV LNJAFHd OL WHLIHOO TV NOISSIHddNS
Y HLIM dN JAYO 0STV) AYIND IHL SAYYMHO0L OSTY 'NSYH OL
MOVE A1d3Y SANIS NIHL '3ZIS FHL 30NA3H OL NOILONNA
NOISSFYdNOD FHL NNY ‘NOILYOOT ANV JNIL JONIHISIY FHL
40 X V1130 NIHLIM LNJLINOD ANV JAILL VLT13A NI HLIM
LN3INOD 4l LIMOVd LSFHILNI A3d40IS SIAIFOFY | FT1OIHIA

4 1065

INJLINOQ IHL SSTHJNOO OL
93 NOLLONNA V SANIS ATINOILJO (X V1730 "3INIL VL13d
007434 'INILFTYH) LINOVD LSIHILNI 03J0OS SANIS NSY

\-206S
®_0065

Patent Application Publication Aug. 6,2020 Sheet 62 of 95 US 2020/0250003 A1

6000~

6002

RSU SENDS "SCOPED INTEREST" PACKET (REFTIME,
REFLOC, DELTATIME, DELTA X), OPTIONALLY SENDS
AFUNCTION E.G. TO COMPRESS THE CONTENT

v 6004

VEHICLE 1 RECEIVES INTEREST PACKET WITH SEARCH
BY ATTRIBUTE. ORIGIN OF REQUEST (RSU 1)

6006 6008

INTEREST

PACKET MATCH IN DO NOT REPLY.
PENDING INTEREST DELETE INTEREST
TABLE (PIT) PACKET.
?
6010 6012
CONTENT DO NOT FORWARD.
MATCHES QUERY DELETE INTEREST
? PACKET.
6014

SAVE CONTENT TO QUERY RESPONSE, VEHICLE 1
FORWARDS SEARCH QUERY TO OTHER VEHICLES, PUT
INTEREST PKT IN PIT WAIT FOR TIME T TO GET RESPONSE

TIMER T EXPIRED

| Yes 6018

VEHICLE 1 AGGREGATES RESPONSES RECEIVED WITH
MATCHED CONTENT, OPTIONALLY APPLY FUNCTION
TO CONTENT, SEND RESPONSE BACK TO RSU 1

FIG. 60

Patent Application Publication Aug. 6,2020 Sheet 63 of 95 US 2020/0250003 A1
(START }
\ 4 6102
ACCESS SENSOR DATA OF FIRST DEVICE
\ 4 6104
DETERMINE INCIDENT OCCURRED WITHIN VICINITY OF FIRST DEVICE
Y 6106

IDENTIFY AND PRESERVE DATA ASSOCIATED WITH INCIDENT

A

y

6108

NOTIFY AND REQUEST DATA FROM OTHER DEVICES WITHIN THE VICINITY

CONTINUE

FORWARDING

REQUEST
?

YES

NO
6112

CONSOLIDATE / AGGREGATE / COMPRESS DATA FROM ALL DEVICES

v 6114
RECONSTRUCT INCIDENT BASED ON CONSOLIDATED DATA

4 6116
SEND CONSOLIDATED DATA/ RECONSTRUCTED INCIDENT TO APPROPRIATE ENTITY

END

FIG. 61

US 2020/0250003 A1

Aug. 6,2020 Sheet 64 of 95

Patent Application Publication

suolpuN4
21noy

[euoI1D341q
-INN

¢9 Old

N weaiis iInding maN

T weals inding maN

N WweaJls xaiuod padnoad

T weaJss 1xa1uod padnoud
WwJojsues) 0} uonouny

wioysuesy oy uopouny rdl——

SweaJls pale|ad
-Aj|lenixaiuod o}
udisse pue 404 23yd
01 4931} 03 duI8us |y

-
ELueaJls ndul
AL|
¢ Weals indu|
-——
T weaJls indu|

o awdug
3oy eI %

$)00|g SpON pasgiaruo)

Patent Application Publication Aug. 6,2020 Sheet 65 of 95 US 2020/0250003 A1

C1 C1: LAYER 3 EXTENDED
ROUTER WITH CONVERGED
A A A T NODE FUNCTIONALITY
C1 C2 C3
N N ;
— _

——

C1,C2,C3: LAYER 3 ROUTERS AT
THE EDGE EXTENDED TO HAVE
THE CONVERGED NODE FUNCTIONALITY

D1 D2 D3

D1, D2, D3: DEVICES -E.G. CAMERAS

FIG. 63

US 2020/0250003 A1

Aug. 6,2020 Sheet 66 of 95

Patent Application Publication

90249 30IA30 3I90W

q02+9 301A30 31190W
9zr9 (S)dosSN3s
oTa YYINYO
¥2r9 39VHOLS VLYC
J0V4YALNI
€279 NOILYOINNAWOD
ey AYOWAW
Az ¥0S$3I00Ud

BOZH9 30IA3A 390N

¥9 "Old

— T

e \ JOV4HILNI
(99 S S3OVINI d3SSIAdNOD | €179 NOILYDINNWINOD
7T S T S T T e — |
_ ANIONT ONOISSIHANOD |
5179 39| TVAMY-LNALNOD | ki NN

159 L9 H0OSSIo0Hd

JOVHOLS Vivd
0Ly9 JOIN3A FDOVHOLS FOVINI
«Noowm

US 2020/0250003 A1

Aug. 6,2020 Sheet 67 of 95

Patent Application Publication

0€99

Q3SS3-4dN0D

A%
HOYYE NOILOIAZHd / IONINT4IA

2159

JOVI IAYIS A E—

g9 "Old

1€99
JOLOJANOILOW
(

A

229

2159

0159
~ JOVALIAYIS

—=—0C%9

0259
— JOVIAI H3LSYI

Moomw

Patent Application Publication

Aug. 6,2020 Sheet 68 of 95

US 2020/0250003 A1

6600
\\ 6610
/
4D SMART CAMERA
APPLICATION | _-g616
™| INTERFACE [~ CACHE
WRITE
6615 SCENE REQUESTS
MATCHED PROBABILITIES
SCENE 17c
SCENARIOS l , RT ONTOLOGY,
?EEEEC%ES%%% CACHE WARMER | 6618¢ RULES
< i REPOSITORY
RULES CACHE 6620
A AaR RULES
SEMANTICALLY ENTAILED oYK UPDATES
OBJECTS 66/}78 N
6614~ SEMANTIC CACHE WARMER \Z RN
N P —)
PROCESSOR <'L ONTOLOGY 4---ONTOLO-5\."\':‘-: 0 —
RECOGNITION ¥ 66188— [__CACHE UPDATES e =
HINTS| TAGGED QBJECTS ~ TAG VOCABULARY _{v =
OBJECT | lo] CAGHE WARNER |7 CACHE
. ARMER] WRITE
RECOGNITION = hcian 72
] "Processor | YrToacre\ P \ oy REQUESTS
6613 — 66182 |
RAW iMAGE! \ UPDATES
- RT TRAINING - TAGGED RT—
6611- ‘ iMAGE ™~6612
CAMERA
: O 6630
SCENE

Patent Application Publication Aug. 6,2020 Sheet 69 of 95 US 2020/0250003 A1

ONTOLOGY DATABASE IS LOADED INTOA | _~6702
4D-SMART CAMERA ONTOLOGY CACHE

Y

ALARGE SET OF OBJECTS ARE TRAINED, 6704
RESULTING IN REFERENCE TEMPLATES b~
(RT) FOR TRAINED OBJECTS AND ACTIONS

v

RT TRAINING ENGINE USES EXISTING 6706
GROUND TRUTH TRAINING VALUES FINDAN
APPROXIMATE MATCH TO TEMPLATE VALUE

Y

RT TRAINING ENGINE PERFORMS QUESTION/

ANSWER WITH USER TO REFINE TAG _~6708
SELECTION, USING ONTOLOGY TO NAVIGATE
TO MORE SPECIFIC OBJECT CLASSIFICATION

6700

~

_— MAJOR!TYOFUSER
O —ANSWERS IDENTIFY MORE SPECIFIC ™
~—OBJECT CLASSIFICATION? —

T 6712
_— SUSER >
— ANSWERED CLASSIFICATION %~
~~_ INONTOLOGY CACHE? _——

YES

ADD NEW TAG TO ONTOLOGY 6714

Y

B, . TAG RT WITH USER IDENTIFIED
TAG (OBTAINED FROM ONTOLOGY)

Y

TAG RT WITH GENERIC TAG
) (OBTAINED FROM ONTOLOGY) _~6718
AND MARK FOR SUBSEQUENT QABY
ADDITIONAL USERS (WHEN AVAILABLE)

6716

FIG. 67

Patent Application Publication

4D-SMART CAMERA OBJECT AND
ACTION RECOGNITION PROCESSOR

Aug. 6,2020 Sheet 70 of 95

(ORP) DETECTS OBJECTSAND
ACTIONS USING RT DATABASE / CACHE

%

ORP ASSOCIATES RT TAG WITH

SENSED TEMPLATE AND FORWARDS
TAGGED-TEMPLATE

(TT) TO A SEMANTIC PROCESSOR (5P}

TS ANOTHER OBJECT
~~ORACTIONRECONIZED? ..~

GIVEN MULTIPLE TT INSTANCES, SP
SEARCHES ONTOLOGY DATABASE/
CACHE USING TAG TO IDENTIFY
ACOMMON ONTOLOGY PARENT

6810

\ AT~

> EXPECTED OBJECT ™~

< QRACTION I THE CURRENT >~
. SCENE_~

6812

/

ASSOCIATE THE EXPECTED OBJECT
ORACTION WITHA

CURRENT SCENE AND FORWARD

SCENE IN INFERENCE ENGINE (IE)

;

IE CONSULTS RULE DATABASE / CACHE

OTHER POSSIBLE SCENES

\

6814

6800

e

6826

/

REPORT MATCHED SCENE TO USER

_—ISTHE ™

" CURRENTSCENE _

< SCOREABOVEATHRESHOLD >t

~~_ ACCEPTANCE -~
~~ACCURACY?_~

TO MATCH CURRENT SCENEWITH -

SEND RECOGNITION
HINTS TG ORP AND/CR SP

o~ 6822

N ADDITIONAL ™
EXPECTED OBJECTS OR
ACTIONS FOUND IN

6820

~CURRENT SCENEZ
6818
SWITCH CURRENT
SCENE TO SECOND SCENE

| »*”CURRENTOBJECTS”‘»_
~FIT INTOA SECOND SCENEAND ™ _
~~S SECOND SCENE ABETTER
~~_ FITTHAN FIRST _~
~SCENE?~

US 2020/0250003 A1

US 2020/0250003 A1
o
L

b 2LN0d

&

= Z=I

y— mHZ

- EANOE 23100y £ 31N0Y

7 amain | xnwa L N (OX 29 |tvaamyo)
< |u3EMOSans §<mm.._,m,«./, XN | MOSN3S
N Z3Ln0Y

S . WYIHLS

3 0169
=1)]

=1

-

L 3LN0Y

e

300N
ONILNOYH

0€69

0069

Patent Application Publication

Patent Application Publication

7014~ VALUE

7016~ *
»| CHOOSE x=COUNT(IN) &
ROUTING NODE Rx

7018

IS Rx CLOSER
T0O DESTINATION
5?7

1022~ SENDER CHOOSES DIFFIE-

HELLMAN SECRET INTEGER '
" AND OTHER VALUES GAND P
AND COMPUTESA=G"MOD P

i

Aug. 6,2020 Sheet 72 of 95

CAMERASELECTSANN>M |

US 2020/0250003 A1

(smwrr) 7000

7002 /
YES S FRAME AL
"KEY" FRAME?

O 7004
1S FRAME A '
REDUNDANT FRAME?

o

NO

p>r2(r IS ALLOWABLE
REDUNDANCY:; 1 1S CURRENT
REDUNDANCY)

180 <= (1-1/Rand()) <7

7024
\ SENDER SENDS MESSAGE (M1)
SIGNED BY K1 Xn

IS NEXT NODE
SUBSCRIBER §?

ROUTING NETWORK SELECTS
NEXT ROUTING NODE AT RANDOM
AND DELIVERS M1 TO NEXT NODE

7030

SUBSCRIBER CHOOSES A
VALUE MWHICH IS <N; MIN
OBTAINS A THRESHOLD VALUE
T DESCRIBING ACCEPTABLE RATIO

— FT” 7010
b= 1= (1) (FIMAX
FRAMES)) ™~7012

7032

IS MIN> T? ’

NO

ADD CURRENT ROUTE TOA
— BLACKLIST, INCREMENT
BLACKLIST COUNTER B

SUBSCRIBER VERIFIES M1
AND VIEWS CONTENT

¥ N
- END Y=

70

i

~7038

US 2020/0250003 A1

Aug. 6,2020 Sheet 73 of 95

Patent Application Publication

A

3903
0z12
JONILNIS NI JONILNIS
YIMSNY | NI NOILSIND
(vON)
| oNamsNy
NOILS3ND
O3AIA TYNSIA
SUIMSNY dOL NOILYZILINVS [Saan

/

0014

Patent Application Publication Aug. 6,2020 Sheet 74 of 95 US 2020/0250003 A1

7200

Patent Application Publication Aug. 6,2020 Sheet 75 of 95 US 2020/0250003 A1

73101
ol 73108

7310d
/

L7 O A O O O OO0 O OO I O

7310b
|

IEEREERAREREEERE AR RN

7310¢

7310a

o
\'&.\\\\\\m M

/ | A

7300

Patent Application Publication Aug. 6,2020 Sheet 76 of 95 US 2020/0250003 A1

/* tiles per dimension: an integer value; area: an area object; list of ROIs: a list of ROIs in
the area (objects of type area); list of tiles: a list of the tiles defined */
void recursive division (tiles per dimension, area, list of R0Is, list of tiles) |
/| Define new height/width based on number of tiles per dimension
height = area.height / tiles per dimension;
width = area.width / tiles per dimension;
areas = [|;
/| Calculate new areas within this area
for{i = 0; i< area.height; ++i} {
for(j = 0; 7 < area.width; +4j) {
new area.height = height;
new area.width = width;
new area.x = area.x 1 J * width;
new area.y = area.y + 1 * height;
areas.append(new area);
}
J
/| For each new ares,
for (k = 0; k < areas.length(}; ++k) {
new area = areas[k};
rol list =[]
[/ Find the subset of ROIs that are in the area
for (r=10; r < list of R0Is.length{ }; +tr) {
roi = list of ROIs[z];
rol contained = contained within(rol, new area);
area contained = contained within{new area, roi);
/1 1f the ROT overlaps with or is contained within the current area
if { {roi contained == all & area contained == none)
|| {rol contained == some &6 area contained == some) |
roi list.append(roi);
|
[/ 1f there are ROIs in the area, divide it again
if(!roi list.empty(})
recursive division{tiles per dimension,
new area, rol list, list of tiles);
/] If there are no ROIs in the area, add it to the list of tiles
else
List of tiles.append{new area);

Patent Application Publication Aug. 6,2020 Sheet 77 of 95 US 2020/0250003 A1

enum overlap { all, some, none };
/] %,y are the top left coordinates of the area
struct area {x, y, width, height};

/* regionl and region? are objects of type area */
overlap contained within(reglonl, region?) |
/| Calculate the end x and y of both regions
regionl.end x = reglonl.x + regionl.width;
regionl.end y = reglonl.y + regionl.height;
reglonl.end x = reglon.x + regionl.width;
regionl.end y = reglonl.y + regionZ.height;
/| 1f the starting x and y of regionl are within region?
if ((reglonl.x >= regionl.x && regionl.x < reglonl.end x
&6 (reglonl.y >= reglon2.y && reglonl.y < region2.end y) |
/[1f the end x and y of regionl are within region?,
/| regionl is contained by region2
if (reglonl.end x <= reglonZ.end x & reglonl.end y <= regionZ.end y)
return all;
// Otherwise regionl overlaps region?
else
return some;
/] 1f the starting x and y of regionl are outside region? but the
/] end x and y are within region?, then regionl overlaps region?
else if ((reglonl.x < regionl.x && regionl.end x < reglonl.end x
&6 reglonl.end x > region?.x)
& (reglonl.y < reglonl.y & reglonl.end y < regionZ.end y
&6 reglonl.end y > region.y))
return some;
/| Otherwise regionl does not overlap with region?
else
return none;

Patent Application Publication Aug. 6,2020 Sheet 78 of 95 US 2020/0250003 A1

7600 7600 7600

7602 | pTe02

7600~ =1 ~ 7600

Patent Application Publication Aug. 6,2020 Sheet 79 of 95 US 2020/0250003 A1

AT

Patent Application Publication Aug. 6,2020 Sheet 80 of 95 US 2020/0250003 A1

/* inage: an area object (x, y, width, height) that is the original image dimensions; list of ROIs: a list
of ROIs (an ROI is an area object); tiles: will contain all tiles for the given image */
void region based tiling(image, list of ROIs, tiles) {
start.x = {;
start.y = (;
starting points.append(start);
// Initialize the list of tiles to the known ROIs
tiles = list of R0Is;
// Loop until there are no starting points
while (starting points.size() > 0) |
/] Sort tiles in ascending order along each dimension
sorted x = sort by x(tiles);
sorted y = sort by y(tiles);
/| let's create a new tile, Initialize the start x and y to the current starting point
start = starting points[0];
tile = {start.x, start.y, 0, 0};
/] Deternine the width of the tile by checking to see if there is a tile that obstructs
/] tile construction along the x axis (fix y dimension)
obstructing tile = find obstructing("y", tile, image.width, sorted x);
/] Tf there is already a tile at this x, then we know the width of the tile
if (obstructing tile.x == tile.x)
tile.width = obstructing tile.width;
/[1f no obstructing tiles were found, the image width is the obstructing edge
else if (obstructing tile.x < ()
tile.width = image.width - tile.x;
/[Otherwise, calculate the width based on the obstructing tile and add new start points
else |
tile.width = obstructing tile.x - tile.x;
rew start.x = obstructing tile.x;
rev start.y = tile.y;
starting points.append(new start); |
/] Now determine tile height by checking to see if there is a tile that obstructs
/] tile construction along the v axis (fix x dimension)
obstructing tile = find obstructing("x", tile, image.helght, sorted y);
if {obstructing tile.y == tile.y)
tile.height = obstructing tile.height;
else if (obstructing tile.y < 0)
tile.height = image.height - tile.y;

Patent Application Publication Aug. 6,2020 Sheet 81 of 95 US 2020/0250003 A1

else |
tile.height = obstructing tile.y - tile.y;
new start.x = tile.x;
new start.y = obstructing tile.y;
starting points.append(new start); |
/] Check to see if the tile we just created exactly matches the obstructing tile, If it
/] does, don't add it to the tile list but do add the start points
if (tile == obstructing tile) {
new start.x = tile.x + tile.width;
new start.y = tile.y;
starting points.append(new start);
new start.x = tile.x;
new start.y = tile.y + tile.height;
starting points.append(new start);}
else
tiles.append{tile);
/| remove the current starting point
starting points.remove{start);

struct area (x, y, width, height};

/* Determine whether the region of interest (roi) is obstruct'ng the tile (tile) */
bool is obstructing(tile start, tile end, roi start, roi end) |
Tif (tile start >= rol start it e start <= roi end)
return true;
if (tile start < roi start & tile end > rol start)
return true;
return false;

}

/* find the first ROI that is obstructing the tile, Returns the obstructing ROI, or an empty
ROI 1if none are obstructing,

fixed dim: dimension which has been fixed; function checks for obstructlnq tiles in the
opposite dimension; tile: object of type area, holds start x and y; max end: maximn value
along dimension; roi list: list of tiles sorted in the dimension to check */
area find obstructlng{flxed dim, tile, max end, rol list) {

roi return = {-1, -1, -1, -1};

/] Talk through the list of tiles

FI

Patent Application Publication Aug. 6,2020 Sheet 82 of 95 US 2020/0250003 A1

for (r=10; r <roi list.size(); +r) {
roi = roi list[r];
roi x end = rol.x + roi.width;
roi y end = roi.y + roi.height;
1f (din = "x"} {
/[Before searching in y dimension, make sure the current roi is not
/| obstructed by the current tile (le, the current roi is at a higher y
// than the current tilel
if (!1s obstructing(rol.y, rol y end, tile.y, max end)]
continue;
fixed start = tile.x;
fixed end = tile.x + tile.width;
roi start = roi.x;
rol end = rol x end;
}
else |
/| Before searching in the x dimension, make sure the current roi is
/[not obstructed by the current tile
if (!1s obstructing(rol.x, rol x end, tile.x, max end)]
continue;
fixed start = tile.y;
fixed end = tile.y t tile.height;
rol start = roi.y;
rol end = ol y end;

}
[/ 1f the current roi is obstructing the current tile, return the roi
if (1s obstructing(fixed start, fixed end, rol start, rol end))
return roi;
}
/[If no obstructing rois are found, return the empty roi
return rol return;

Patent Application Publication Aug. 6,2020 Sheet 83 of 95 US 2020/0250003 A1

8002

8000

8000

8000

Patent Application Publication Aug. 6,2020 Sheet 84 of 95 US 2020/0250003 A1

<t
S
=
[ve)
[
<
=
«©
O
o
o
=
o«
o
S
—
<« K4
N
o
-
o0
= .
— i
oo\
< %
b N
[>'e) : ~
N &
By =4
S <«
<
o0

US 2020/0250003 A1

Aug. 6,2020 Sheet 85 of 95

Patent Application Publication

ey ~

T300W ¥AWOLSND J31VHOAINI

~-£728 A

SAILIAILDY
(34NLdVO

S¥3440 Y S¥3440
azggzméoumm/Au SOLLATYNY N ﬂv JSNDILYONANWOD3Y
HLIM TV TIVNS 2@ Lz 228 ppzg L HUMSTIVIE
8128 VAR o 01281
$10N00Yd -
< SNYNLIY ONY S3SYHONNd —g0za—]_ SNML3Y ONVS38WHOUN
onaosaamonor | } a !
< quzmm Y ooze MINLOVREHI0
QALSIA SYY V1¥Q TNSIA WY Yy :
SALINLDY |- - . HOIAYHIE D\mmmmmzmAu WSIA |1 MOINYHIA 14D ONIddOHS .
Q30 1dvd - ONIXIVeL 377 FHOLSNI (3ZIYNQSHAd m \ 10Z8-""1 Q34u34NI INFINO SIN3AZ 3SNON
/ S3A /[ROLSNI » N I / >
918 & ONINNYOSTY Blegy 8028
03103134 . .
Hzﬁmw._oo‘._ HO NOLLYAISION I~y 70 ﬁmw;%\mzm 9028
WASIA INPHd L1004 TWNSIA " NN 311S93M
m S0Z8~&
sal m NOLLY)
INHO " INNODOY INFIND
Ny " P
INFINO K INITND SYH "
JONVYHLNG NF3ML3E] NSFW0LSNG,~” ON “ ON '\ \33W0L8n)
POLS | NI 7170 GIINING & Q13NN
FHO0LS HYLHON m
ONYOIE LiSIA 1428 . | 0gg—"]_3L/583M LSiA
OIS N NTINO

0028

Patent Application Publication Aug. 6,2020 Sheet 86 of 95 US 2020/0250003 A1
83‘(3?\
vll!m m
(=]
Google
i
VISUAL
e FOOT =
PRINT
| e
ONLINE
ACTIVITY

\/

INTEGRATED CUSTOMER MODEL

Patent Application Publication Aug. 6,2020 Sheet 87 of 95 US 2020/0250003 A1

8400

N

CUSTOMER'S ONLINE AND IN-STORE ACTIVITIES

ONLINE Op}|01 O21 103 04|05
IN-STORE o nirsinn
I L
L |
/ ACTIVITIES INDEXED BY TIME ®
INITIALACTIVITY OF CUSTOMER LAST ACTIVITY RECORDED

(CUSTOMER REGISTRATION)

US 2020/0250003 A1

Aug. 6,2020 Sheet 88 of 95

Patent Application Publication

JHOLS-N

3ANING

Ug Ce le Qg
I I I I]
T T T T T T 1
HEBIEE] THOLS NI
ol 20 5@ ANIINO
L ¥3sn

82068 4/,

0048

Patent Application Publication Aug. 6,2020 Sheet 89 of 95 US 2020/0250003 A1

8600

US 2020/0250003 A1

Aug. 6,2020 Sheet 90 of 95

Patent Application Publication

€Li8—"]

W3 LSAS d3ANINNODTY

2118 N
//ﬁ SOILATYNY
J
I7e
9028—"| Q3LVI3Y NOISIA — / SIHOVOUddy | 2018
¥ILNdINOD 1118 TGOW WNOILIOVHL
¥INOLSND GIAOHAII
NOIL03L3d -
sog_ GNVNOLLOWMIINI L Y| L) H3IWOLSNO IHL HLIM
Lonaodd¥amoLsnd || 3woLs N 3008 a3LVID0SsY S p0.8
[_ NIQLD3TIO0 | [ALIAILOY] ALINLLOY INIINO
A NOILYDFHOOY INIINO
INDIOVAL o wva b || /3d0Ls N
80/8~"" NOLLYI0THIANOLSND TWNSIA WOY
MOIAVHIE erA
: = | Q3TN NOILYIWHOANI NeNLIY
ONIMOVYL BN J S0L8 | /3SVHOMN MIWOLSND [™_g0/8
20/8—- NOILYD0T LONAOYd \ o HYLHON-ONY-MORE
0L48) yawo1sno 40
NOILYZIILINI

/

1048

0048

1188

£188
]

US 2020/0250003 A1

0188
™ ASVAVIVA AHOLNIANI

Aug. 6,2020 Sheet 91 of 95

/

(S0d) IWVS 40 INIOd

(ALIALLOY 3INITNO)
ILIS83IM TMOLS

LININOdWNOT ONMOVHL
NV NOILLOZL3d d38n 7
“NOISIA H3LNdAWO3

™~ 7188

INFNNDISSY SLHOIEM- ONINYYIT INIHOVIA 7

~~-G188

3SvVEVLYA S3TH0dd d3sn

™-0188

WHLSAS d3ANINNOITY- ONINYYIT INIHOVIA

STINNVHO ONILIAHVIN

LNIWISILHIAAY
ANIM440

}

LINIWISILEFIAAY

| ANIINO)

VA

YN HYNS

[

yE88

Patent Application Publication

/ [

£ees ze8s

L €88

0088

Patent Application Publication Aug. 6,2020 Sheet 92 of 95 US 2020/0250003 A1
58900
START
8902— CAPTURE VISUAL DATA USING SENSOR(S)
8904— COMPRESS VISUAL DATA
8906l TRANSMIT COMPRESSED DATA TO PROCESSING <
DEVICE(S)
8908— PERFORM PROCESSING USING ASSOCIATED CNN
8910— OBTAIN OUTPUT FROM CNN
8914— OUTPUT RESULT
END

FIG. 89

Patent Application Publication Aug. 6, 2020

Sheet 93 of 95

9000
N

US 2020/0250003 A1

PROVIDE INPUT TO NEXT
LAYER OF CNN

—9014

o00p_| CAPTURE VISUAL REPRESENTATION
USING SENSOR(S)
0004__| OBTAIN VISUAL DATA CORRESPONDING
TO VISUAL REPRESENTATION
PROVIDE VISUAL DATA AS INPUT TO
9006— MULTI-DOMAIN CONVOLUTION NEURAL
NETWORK (CNN)
9008—| PROVIDE INPUT TO FIRST LAYER OF CNN
PROCESS INPUT USING PIXEL-DOMAIN
9010—] AND/OR COMPRESSED-DOMAIN FILTER(S)
OF CURRENT CNN LAYER
SUBSEQUENT)
9012 LAYER OF CNN? -~ &8
NC
o016| CLASSIFY VISUAL DATA BASED ON
OUTPUT OF CNN
END

FIG. 90

Patent Application Publication Aug. 6,2020 Sheet 94 of 95 US 2020/0250003 A1

59100
START
9102—] RECEIVE DEVICE IDENTITY TRANSACTION
FROM DEVICE
9104— COMPUTE HASH OF DEVICE IDENTITY
YES REGISTERED IN NO
BLOCKCHAIN?
RETURN ERROR: ADD DEVICE IDENTITY
9108—{ DEVICE IDENTITY ALREADY TRANSACTION TO —9110
REGISTERED BLOCKCHAIN

END

FIG. 91

Patent Application Publication

Aug. 6,2020 Sheet 95 of 95

US 2020/0250003 A1

59200
START
0207_| RECEIVE ALGORITHM REGISTRATION
TRANSACTION FROM NETWORK
9204— PERFORM VALIDATION TESTS
ALGORITHM
NO VALIDATED? YES
ADD ALGORITHM
9206—| REJECT ALGORITHM REGISTRATION TRANSACTION
TO BLOGKCHAIN

—9210

END

FIG. 92

US 2020/0250003 Al

VISUAL FOG

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This patent application claims the benefit of the
filing date of U.S. Provisional Patent Application Ser. No.
62/611,536, filed on Dec. 28, 2017, and entitled “VISUAL
FOG,” and U.S. Provisional Patent Application Ser. No.
62/691,464, filed on Jun. 28, 2018, and entitled “VISUAL
FOG,” the contents of which are hereby expressly incorpo-
rated by reference.

FIELD OF THE SPECIFICATION

[0002] This disclosure relates in general to the field of
computing systems and networks, and more particularly,
though not exclusively, to visual computing.

BACKGROUND

[0003] Advancements in modern computing have led to an
increased use of visual computing for a variety of main-
stream computing applications. In particular, rapid deploy-
ments of cameras have been leveraged for numerous visual
computing applications that rely on large-scale video ana-
Iytics and visual data processing. Existing approaches to
large-scale visual computing, however, suffer from numer-
ous limitations. For example, existing visual computing
approaches are implemented using rigid designs that utilize
resources inefficiently and provide limited functionality,
privacy, and security. As a result, existing approaches often
suffer from high latency and are inaccurate, unreliable,
inflexible, and incapable of scaling efficiently.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The present disclosure is best understood from the
following detailed description when read with the accom-
panying figures. It is emphasized that, in accordance with
the standard practice in the industry, various features are not
necessarily drawn to scale, and are used for illustration
purposes only. Where a scale is shown, explicitly or implic-
itly, it provides only one illustrative example. In other
embodiments, the dimensions of the various features may be
arbitrarily increased or reduced for clarity of discussion.
[0005] FIG. 1 illustrates an example embodiment of a
visual fog system in accordance with certain embodiments.
[0006] FIGS. 2, 3, 4, and 5 illustrate examples of Internet-
of-Things (IoT) networks and architectures that can be used
in accordance with certain embodiments.

[0007] FIGS. 6 and 7 illustrate example computer archi-
tectures that can be used in accordance with certain embodi-
ments.

[0008] FIG. 8 illustrates an example embodiment of an
architecture for visual fog nodes.

[0009] FIGS. 9, 10, 11, and 12A-B illustrate example
embodiments of a visual fog architecture.

[0010] FIGS. 13 and 14 illustrate example embodiments
associated with a visual question answering (VQA) frame-
work.

[0011] FIGS. 15 and 16 illustrate example embodiments of
device-centric scheduling for visual fog computing.

[0012] FIG. 17 illustrates an example embodiment of a
runtime processing pipeline for a visual fog architecture.
[0013] FIG. 18 illustrates an example embodiment of a
visual data storage architecture.

Aug. 6, 2020

[0014] FIG. 19 illustrates an example of a vision process-
ing pipeline that leverages metadata for searching visual
data.

[0015] FIGS. 20 and 21 illustrate examples of representing
visual metadata using a property graph.

[0016] FIG. 22 illustrates an example embodiment of an
analytic image format designed to aid in visual data pro-
cessing.

[0017] FIG. 23 illustrates a performance graph for various
image formats.

[0018] FIGS. 24A-C illustrate an example embodiment of
a multi-domain cascade convolutional neural network
(CNN).

[0019] FIGS. 25A-B, 26, 27, 28, 29, 30 and 31A-B

illustrate the use of butterfly operations for a multi-domain
convolutional neural network (CNN).

[0020] FIGS. 32 and 33 illustrate an example embodiment
of a three-dimensional (3D) CNN for processing com-
pressed visual data.

[0021] FIG. 34 illustrates an example of a pixel-domain
CNN.
[0022] FIG. 35 illustrates an example of a pixel-domain

visual analytics pipeline.

[0023] FIGS. 36 and 37 illustrate example embodiments
of compressed-domain visual analytics pipelines.

[0024] FIG. 38 illustrates a performance graph showing
the precision of a CNN trained using compressed visual
data.

[0025] FIG. 39 illustrates a flowchart for an example
embodiment of context-aware image compression.

[0026] FIGS. 40A-C illustrate an example embodiment of
a privacy-preserving demographic identification system.
[0027] FIGS. 41, 42, and 43 illustrate an example embodi-
ment of privacy-preserving distributed visual data process-
ing.

[0028] FIGS. 44, 45, and 46 illustrate example embodi-
ments of self-sovereign device identification for distributed
computing networks.

[0029] FIG. 47 illustrates an example of device onboard-
ing/commissioning in a visual fog network without conflict
resolution.

[0030] FIGS. 48 and 49 illustrate example embodiments
of algorithm identification for distributed computing using a
self-sovereign blockchain.

[0031] FIGS. 50, 51, and 52 illustrate example embodi-
ments for processing traditional and analytic image formats.
[0032] FIG. 53 illustrates a flowchart for an example
embodiment of privacy-preserving demographics identifica-
tion.

[0033] FIG. 54 illustrates a flowchart for an example
embodiment of privacy-preserving distributed visual pro-
cessing.

[0034] FIG. 55 illustrates an example use case for an
automotive ubiquitous witness.

[0035] FIG. 56 illustrates an example dataflow for a ubig-
uitous witness.
[0036] FIG. 57 illustrates an example use case for auto-

motive anomaly detection and reconstruction.

[0037] FIG. 58 illustrates an example process flow for
IP-based anomaly detection and reconstruction.

[0038] FIG. 59 illustrates an example process flow for
ICN-based anomaly detection and reconstruction.

US 2020/0250003 Al

[0039] FIG. 60 illustrates an example process flow of an
individual node for ICN-based anomaly detection and recon-
struction.

[0040] FIG. 61 illustrates a flowchart for an example
embodiment of a ubiquitous visual computing witness.
[0041] FIG. 62 illustrates an example embodiment of a
converged node router.

[0042] FIG. 63 illustrates an example network topology
using converged node routers.

[0043] FIG. 64 illustrates an example embodiment of an
image storage system that leverages context-aware image
compression.

[0044] FIG. 65 illustrates an example of inter-frame
encoding for context-aware image compression.

[0045] FIGS. 66, 67, and 68 illustrate examples embodi-
ments for performing automated semantic inference of
visual objects using smart cameras.

[0046] FIGS. 69 and 70 illustrate example embodiments
associated with visual fog stream multiplexing for improved
security.

[0047] FIG. 71 illustrates an example embodiment of a
privacy-preserving VQA dataflow.

[0048] FIGS. 72 and 73 illustrate example sanitization
techniques for a privacy-preserving VQA dataflow.

[0049] FIGS. 74 and 75 illustrate pseudocode for a recur-
sive quadrant division algorithm associated with an analytic
image format.

[0050] FIGS. 76A-E illustrate an example of a recursive
quadrant division algorithm on an image with a single region
of interest.

[0051] FIGS. 77A-F illustrate an example of a recursive
quadrant division algorithm on an image with multiple
regions of interest.

[0052] FIGS. 78A-B and 79A-B illustrate pseudocode for
a region-based tiling algorithm associated with an analytic
image format.

[0053] FIGS. 80A-C illustrate an example of a region-
based tiling algorithm on an image with a single region of
interest.

[0054] FIGS. 81A-C illustrate an example of various tiling
algorithms on an image with multiple overlapping regions of
interest.

[0055] FIG. 82 illustrates an example of an integrated
customer model based on both online and offline customer
activity.

[0056] FIG. 83 illustrates an example of linking the in-
store visual footprint and online activity of a customer.
[0057] FIG. 84 illustrates an example of using online and
in-store customer activities to construct a robust customer
model.

[0058] FIG. 85 illustrates a comparison of the shopping
activities of multiple users.

[0059] FIG. 86 illustrates an example of using head pose
to infer customer data points.

[0060] FIG. 87 illustrates an example dataflow for creating
an improved customer model using both traditional and
visual data.

[0061] FIG. 88 illustrates the architecture of an example
application that leverages integrated online and in-store
customer profiles.

[0062] FIG. 89 illustrates a flowchart for an example
embodiment of a multi-domain cascade CNN.

[0063] FIG. 90 illustrates a flowchart for an example
embodiment of a multi-domain CNN.

Aug. 6, 2020

[0064] FIG. 91 illustrates a flowchart for an example
embodiment of a blockchain for managing self-sovereign
device identities.

[0065] FIG. 92 illustrates a flowchart for an example
embodiment of a blockchain for managing distributed com-
puting algorithms.

EMBODIMENTS OF THE DISCLOSURE

[0066] This patent application claims the benefit of the
filing date of U.S. Provisional Patent Application Ser. No.
62/611,536, filed on Dec. 28, 2017, and entitled “VISUAL
FOG,” and U.S. Provisional Patent Application Ser. No.
62/691,464, filed on Jun. 28, 2018, and entitled “VISUAL
FOG,” the contents of which are hereby expressly incorpo-
rated by reference.

[0067] The following disclosure provides many different
embodiments, or examples, for implementing different fea-
tures of the present disclosure. Specific examples of com-
ponents and arrangements are described below to simplify
the present disclosure. These are, of course, merely
examples and are not intended to be limiting. Further, the
present disclosure may repeat reference numerals and/or
letters in the various examples. This repetition is for the
purpose of simplicity and clarity and does not in itself dictate
a relationship between the various embodiments and/or
configurations discussed. Different embodiments may have
different advantages, and no particular advantage is neces-
sarily required of any embodiment.

[0068] Example embodiments that may be used to imple-
ment the features and functionality of this disclosure will
now be described with more particular reference to the
attached FIGURES.

[0069] Visual Fog Introduction

[0070] FIG. 1 illustrates an example embodiment of a
visual fog system 100 in accordance with certain embodi-
ments. Advancements in modern computing have led to an
increased use of computer vision technologies and large-
scale visual computing for a variety of mainstream comput-
ing applications. In particular, rapid deployments of cameras
and other types of computer vision technologies have been
leveraged for a variety of visual computing applications that
rely on large-scale video analytics and visual data process-
ing. For example, large-scale visual computing can be
leveraged for security and surveillance, transportation (e.g.,
traffic monitoring, navigation, parking, infrastructure plan-
ning, security or amber alerts), retail (e.g., customer analyt-
ics), enterprise applications, and so forth.

[0071] Existing approaches to large-scale visual comput-
ing, however, suffer from numerous limitations. In particu-
lar, existing visual computing approaches are implemented
using rigid designs that utilize resources inefficiently (e.g.,
processing, bandwidth, and storage resources) and provide
limited functionality. For example, using existing
approaches, visual data is typically captured by devices at
the edge of a network and simply funneled to the cloud for
processing and storage, thus relying heavily on the cloud
infrastructure. Due to the large size of visual data, however,
this approach typically consumes significant network band-
width and requires substantial processing and storage
resources in the cloud. As a result, existing approaches often
suffer from high latency and inefficient resource utilization,
and may also be inaccurate, unreliable, inflexible, and inca-
pable of scaling efficiently.

US 2020/0250003 Al

[0072] Accordingly, this disclosure describes various
embodiments of a visual fog computing system 100 for
performing large-scale visual computing in an efficient and
reliable manner. For example, rather than relying exclu-
sively or primarily on cloud resources 130 for visual com-
puting tasks, visual fog system 100 leverages both cloud 130
and edge 110 resources, which may be collectively referred
to as the “fog.” In this manner, visual fog system 100 can
leverage all available “fog” resources to perform visual
computing tasks more efficiently, thus improving resource
utilization, latency, accuracy, precision, and reliability.
Moreover, as described further throughout this disclosure,
visual fog system 100 can be implemented using a flexible
design that supports ad-hoc queries and is highly scalable,
thus rendering it suitable for many visual computing appli-
cations and use cases.

[0073] In the illustrated embodiment of FIG. 1, visual fog
system 100 includes edge resources 110 and a plurality of
associated visual sensors 120, cloud resources 130, and
communication networks 150, which are respectively dis-
cussed further below. Moreover, in various embodiments,
these components of visual fog system 100 may be imple-
mented some or all aspects of the visual computing func-
tionality described throughout this disclosure in connection
with the remaining FIGURES.

[0074] Edge resources 110 may include any equipment,
devices, and/or components deployed or connected near the
“edge” of a communication network. In the illustrated
embodiment, for example, edge resources 110 include end-
user devices 1124, (e.g., desktops, laptops, mobile
devices), Internet-of-Things (IoT) devices 114, and gate-
ways or routers 116, as described further below. Edge
resources 110 may communicate with each other and/or with
other remote networks and resources (e.g., cloud resources
130) through one or more communication networks 150,
such as local area network 150a and/or wide area network
1505. Moreover, in the illustrated embodiment, edge
resources 110 collectively include a plurality of visual
sensors 120 (e.g., cameras) for capturing visual representa-
tions and data associated with their surroundings. In some
embodiments, for example, certain end-user devices 112
and/or IoT devices 114 may include one or more cameras
and/or other types of visual sensors 120. Visual sensors 120
may include any type of visual or optical sensors, such as
cameras, ultraviolet (UV) sensors, laser rangefinders (e.g.,
light detection and ranging (LIDAR)), infrared (IR) sensors,
electro-optical/infrared (EO/IR) sensors, and so forth.
[0075] End-user devices 112 may include any device that
enables or facilitates interaction with a user in visual fog
system 100, including, for example, desktop computers,
laptops, tablets, mobile phones and other mobile devices,
and wearable devices (e.g., smart watches, smart glasses,
headsets), among other examples.

[0076] IoT devices 114 may include any device capable of
communicating and/or participating in an Internet-of-Things
(IoT) system or network. IoT systems may refer to new or
improved ad-hoc systems and networks composed of a
variety of different devices (e.g., IoT devices 114) interop-
erating and synergizing for a particular application or use
case. Such ad-hoc systems are emerging as more and more
products and equipment evolve to become “smart,” meaning
they are controlled or monitored by computer processors and
are capable of communicating with other devices. For
example, an loT device 114 may include a computer pro-

Aug. 6, 2020

cessor and/or communication interface to allow interopera-
tion with other components of visual fog system 100, such
as with cloud resources 130 and/or other edge resources 110.
IoT devices 114 may be “greenfield” devices that are devel-
oped with IoT capabilities from the ground-up, or “brown-
field” devices that are created by integrating loT capabilities
into existing legacy devices that were initially developed
without loT capabilities. For example, in some cases, [oT
devices 114 may be built from sensors and communication
modules integrated in or attached to “things,” such as
equipment, toys, tools, vehicles, living things (e.g., plants,
animals, humans), and so forth. Alternatively, or addition-
ally, certain IoT devices 114 may rely on intermediary
components, such as edge gateways or routers 116, to
communicate with the various components of system 100.

[0077] IoT devices 114 may include various types of
sensors for monitoring, detecting, measuring, and generating
sensor data and signals associated with characteristics of
their environment. In some embodiments, for example,
certain loT devices 114 may include visual sensors 120 (e.g.,
cameras) for capturing visual representations and data asso-
ciated with their surroundings. IoT devices 114 may also
include other types of sensors configured to detect charac-
teristics such as movement, weight, physical contact, tem-
perature, wind, noise, light, position, humidity, radiation,
liquid, specific chemical compounds, battery life, wireless
signals, computer communications, and bandwidth, among
other examples. Sensors can include physical sensors (e.g.,
physical monitoring components) and virtual sensors (e.g.,
software-based monitoring components). loT devices 114
may also include actuators to perform various actions in
their respective environments. For example, an actuator may
be used to selectively activate certain functionality, such as
toggling the power or operation of a security system (e.g.,
alarm, camera, locks) or household appliance (e.g., audio
system, lighting, HVAC appliances, garage doors), among
other examples.

[0078] Indeed, this disclosure contemplates use of a poten-
tially limitless universe of IoT devices 114 and associated
sensors/actuators. IoT devices 114 may include, for
example, any type of equipment and/or devices associated
with any type of system 100 and/or industry, including
transportation (e.g., automobile, airlines), industrial manu-
facturing, energy (e.g., power plants), telecommunications
(e.g., Internet, cellular, and television service providers),
retail, medical (e.g., healthcare, pharmaceutical), and/or
food and beverage, among others. In the transportation
industry, for example, loT devices 114 may include equip-
ment and devices associated with aircrafts, automobiles, or
vessels, such as navigation systems, autonomous flight or
driving systems, traffic monitoring and/or planning systems,
parking systems, and/or any internal mechanical or electrical
components that are monitored by sensors (e.g., engines).
IoT devices 114 may also include equipment, devices,
and/or infrastructure associated with industrial manufactur-
ing and production, shipping (e.g., cargo tracking), commu-
nications networks (e.g., gateways, routers, servers, cellular
towers), server farms, electrical power plants, wind farms,
oil and gas pipelines, water treatment and distribution,
wastewater collection and treatment, and weather monitor-
ing (e.g., temperature, wind, and humidity sensors), among
other examples. IoT devices 114 may also include, for
example, any type of “smart” device or system, such as
smart entertainment systems (e.g., televisions, audio sys-

US 2020/0250003 Al

tems, videogame systems), smart household or office appli-
ances (e.g., heat-ventilation-air-conditioning (HVAC) appli-
ances, refrigerators, washers and dryers, coffee brewers),
power control systems (e.g., automatic electricity, light, and
HVAC controls), security systems (e.g., alarms, locks, cam-
eras, motion detectors, fingerprint scanners, facial recogni-
tion systems), and other home automation systems, among
other examples. loT devices 114 can be statically located,
such as mounted on a building, wall, floor, ground, lamp-
post, sign, water tower, or any other fixed or static structure.
IoT devices 114 can also be mobile, such as devices in
vehicles or aircrafts, drones, packages (e.g., for tracking
cargo), mobile devices, and wearable devices, among other
examples. Moreover, any type of edge resource 110 may
also be considered as an loT device 114, including end-user
devices 112 and edge gateways 116, among other examples.

[0079] Edge gateways and/or routers 116 may be used to
facilitate communication to and from edge resources 110.
For example, gateways 116 may provide communication
capabilities to existing legacy devices that were initially
developed without any such capabilities (e.g., “brownfield”
IoT devices 114). Gateways 116 can also be utilized to
extend the geographical reach of edge resources 110 with
short-range, proprietary, or otherwise limited communica-
tion capabilities, such as loT devices 114 with Bluetooth or
ZigBee communication capabilities. For example, gateways
116 can serve as intermediaries between IoT devices 114 and
remote networks or services, by providing a front-haul to the
IoT devices 114 using their native communication capabili-
ties (e.g., Bluetooth, ZigBee), and providing a back-haul to
other networks 150 and/or cloud resources 130 using
another wired or wireless communication medium (e.g.,
Ethernet, Wi-Fi, cellular). In some embodiments, a gateway
116 may be implemented by a dedicated gateway device, or
by a general-purpose device, such as another loT device 114,
end-user device 112, or other type of edge resource 110. In
some instances, gateways 116 may also implement certain
network management and/or application functionality (e.g.,
visual computing functionality, IoT application and man-
agement functionality), either separately or in conjunction
with other components, such as cloud resources 130 and/or
other edge resources 110.

[0080] Cloud resources 130 may include any resources or
services that are hosted remotely over a network, which may
otherwise be referred to as in the “cloud.” In some embodi-
ments, for example, cloud resources 130 may be remotely
hosted on servers in a datacenter (e.g., application servers,
database servers). Cloud resources 130 may include any
resources, services, and/or functionality that can be utilized
by or for edge resources 110, including but not limited to,
visual computing applications and services, loT application
and management services, data storage, computational ser-
vices (e.g., data analytics, searching, diagnostics and fault
management), security services (e.g., surveillance, alarms,
user authentication), mapping and navigation, geolocation
services, network or infrastructure management, payment
processing, audio and video streaming, messaging, social
networking, news, and weather, among other examples.

[0081] Communication networks 150a,b6 may be used to
facilitate communication between components of system
100. In the illustrated embodiment, for example, edge
resources 110 are connected to local area network (LAN)
1504 in order to facilitate communication with each other
and/or other remote networks or resources, such as wide area

Aug. 6, 2020

network (WAN) 1505 and/or cloud resources 130. In various
embodiments, visual fog system 100 may be implemented
using any number or type of communication network(s) 150,
including local area networks, wide area networks, public
networks, the Internet, cellular networks, Wi-Fi networks,
short-range networks (e.g., Bluetooth or ZigBee), and/or any
other wired or wireless communication networks or medi-
ums.

[0082] In general, edge resources 110 (and in particular
IoT devices 114) may generate an extremely large volume
and variety of data. As one example, edge resources 110 with
visual sensors 120 may generate large volumes of visual
data, such as video and/or images. Edge resources 110
typically offload this data to the cloud 130 for processing
and/or storage. Cloud resources 130, however, may not
necessarily be suited to handle the rapidly growing volume,
variety, and velocity of data generated by loT devices 114
and other edge resources 110. For example, cloud-based
processing may not be ideal in certain circumstances, such
as processing time-sensitive or highly confidential data, or
when faced with network bandwidth constraints, among
other examples. Accordingly, in some embodiments, visual
fog system 100 may leverage “edge” processing to augment
the performance and capabilities of the cloud 130 using edge
resources 110. Edge processing is an approach that involves
processing certain data at the network edge (e.g., using edge
resources 110), near where the data is generated, rather than
simply funneling large volumes of data to the cloud for
processing and storage. Certain data may still be sent to the
cloud, as appropriate, such as for deeper analysis and/or
long-term storage. Edge processing may be used to comple-
ment the shortcomings of cloud-based processing (e.g.,
when cloud-based processing is inefficient, ineffective, and/
or unsecure), and thus improve the handling of the growing
volume, variety, and velocity of data generated by IoT
devices 114 and/or other edge resources 110. For example,
in some cases, processing data near its source (e.g., in the
network edge) rather than in the cloud may improve per-
formance and/or avoid system failures or disasters. Edge
processing may also conserve network bandwidth, which
may be particularly beneficial when facing bandwidth con-
straints and/or limited network connectivity.

[0083] In some cases, the collective use of both edge 110
and cloud 130 resources may be referred to as “fog” com-
puting, as functionality of the “cloud” 130 is effectively
extended by the edge resources 110, thus forming a “fog”
over the network edge. Moreover, in some embodiments,
devices 110 in the “fog” may connect and/or communicate
with each other using an interconnection standard or proto-
col, such as the open interconnect consortium (OIC) stan-
dard specification 1.0, released by the Open Connectivity
Foundation™ (OCF) on Dec. 23, 2015, which enables
devices to discover and connect with each other; Thread, a
networking protocol for Internet-of-Things (IoT) devices
used in “smart” home automation and similar deployments,
developed by an alliance of organizations named the
“Thread Group”; the optimized link state routing (OLSR)
protocol; and/or the better approach to mobile ad-hoc net-
working (B.A.T.M.A.N.), among other examples.

[0084] Moreover, in some embodiments, fog computing
may be leveraged by visual fog system 100 for large-scale
visual computing applications. For example, in some
embodiments, the components of visual fog system 100
(e.g., edge resources 110, cloud resources 130) may be

US 2020/0250003 Al

implemented with some or all aspects of the visual comput-
ing functionality described throughout this disclosure in
connection with the remaining FIGURES.

[0085] Any, all, or some of the computing devices of
system 100 may be adapted to execute any operating system,
including Linux or other UNIX-based operating systems,
Microsoft Windows, Windows Server, MacOS, Apple iOS,
Google Android, or any customized and/or proprietary oper-
ating system, along with virtual machines adapted to virtu-
alize execution of a particular operating system.

[0086] While FIG. 1 is described as containing or being
associated with a plurality of elements, not all elements
illustrated within system 100 of FIG. 1 may be utilized in
each alternative implementation of the present disclosure.
Additionally, one or more of the elements described in
connection with the examples of FIG. 1 may be located
external to system 100, while in other instances, certain
elements may be included within or as a portion of one or
more of the other described elements, as well as other
elements not described in the illustrated implementation.
Further, certain elements illustrated in FIG. 1 may be
combined with other components, as well as used for
alternative or additional purposes in addition to those pur-
poses described herein.

[0087] Additional embodiments associated with the
implementation of a visual fog computing system 100 are
described further in connection with the remaining FIG-
URES. Accordingly, it should be appreciated that visual fog
system 100 of FIG. 1 may be implemented with any aspects
of the embodiments described throughout this disclosure.

[0088] Example Internet-of-Things (IoT) Implementa-
tions
[0089] FIGS. 2-5 illustrate examples of Internet-of-Things

(IoT) networks and devices that can be used in accordance
with embodiments disclosed herein. For example, the opera-
tions and functionality described throughout this disclosure
may be embodied by an IoT device or machine in the
example form of an electronic processing system, within
which a set or sequence of instructions may be executed to
cause the electronic processing system to perform any one of
the methodologies discussed herein, according to an
example embodiment. The machine may be an IoT device or
an [oT gateway, including a machine embodied by aspects of
a personal computer (PC), a tablet PC, a personal digital
assistant (PDA), a mobile telephone or smartphone, or any
machine capable of executing instructions (sequential or
otherwise) that specify actions to be taken by that machine.
Further, while only a single machine may be depicted and
referenced in the example above, such machine shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein. Further, these and like examples to a processor-based
system shall be taken to include any set of one or more
machines that are controlled by or operated by a processor
(e.g., a computer) to individually or jointly execute instruc-
tions to perform any one or more of the methodologies
discussed herein.

[0090] FIG. 2 illustrates an example domain topology for
respective internet-of-things (IoT) networks coupled
through links to respective gateways. The internet of things
(IoT) is a concept in which a large number of computing
devices are interconnected to each other and to the Internet
to provide functionality and data acquisition at very low

Aug. 6, 2020

levels. Thus, as used herein, an IoT device may include a
semiautonomous device performing a function, such as
sensing or control, among others, in communication with
other IoT devices and a wider network, such as the Internet.
[0091] Often, IoT devices are limited in memory, size, or
functionality, allowing larger numbers to be deployed for a
similar cost to smaller numbers of larger devices. However,
an IoT device may be a smart phone, laptop, tablet, or PC,
or other larger device. Further, an IoT device may be a
virtual device, such as an application on a smart phone or
other computing device. IoT devices may include loT gate-
ways, used to couple IoT devices to other IoT devices and
to cloud applications, for data storage, process control, and
the like.

[0092] Networks of IoT devices may include commercial
and home automation devices, such as water distribution
systems, electric power distribution systems, pipeline con-
trol systems, plant control systems, light switches, thermo-
stats, locks, cameras, alarms, motion sensors, and the like.
The IoT devices may be accessible through remote comput-
ers, servers, and other systems, for example, to control
systems or access data.

[0093] The future growth of the Internet and like networks
may involve very large numbers of IoT devices. Accord-
ingly, in the context of the techniques discussed herein, a
number of innovations for such future networking will
address the need for all these layers to grow unhindered, to
discover and make accessible connected resources, and to
support the ability to hide and compartmentalize connected
resources. Any number of network protocols and commu-
nications standards may be used, wherein each protocol and
standard is designed to address specific objectives. Further,
the protocols are part of the fabric supporting human acces-
sible services that operate regardless of location, time or
space. The innovations include service delivery and associ-
ated infrastructure, such as hardware and software; security
enhancements; and the provision of services based on Qual-
ity of Service (QoS) terms specified in service level and
service delivery agreements. As will be understood, the use
of IoT devices and networks, such as those introduced in
FIGS. 2-5, present a number of new challenges in a hetero-
geneous network of connectivity comprising a combination
of wired and wireless technologies.

[0094] FIG. 2 specifically provides a simplified drawing of
a domain topology that may be used for a number of
internet-of-things (IoT) networks comprising IoT devices
204, with the IoT networks 256, 258, 260, 262, coupled
through backbone links 202 to respective gateways 254. For
example, a number of IoT devices 204 may communicate
with a gateway 254, and with each other through the
gateway 254. To simplify the drawing, not every loT device
204, or communications link (e.g., link 216, 222, 228, or
232) is labeled. The backbone links 202 may include any
number of wired or wireless technologies, including optical
networks, and may be part of a local area network (LAN),
a wide area network (WAN), or the Internet. Additionally,
such communication links facilitate optical signal paths
among both IoT devices 204 and gateways 254, including
the use of MUXing/deMUXing components that facilitate
interconnection of the various devices.

[0095] The network topology may include any number of
types of IoT networks, such as a mesh network provided
with the network 256 using Bluetooth low energy (BLE)
links 222. Other types of IoT networks that may be present

US 2020/0250003 Al

include a wireless local area network (WL AN) network 258
used to communicate with IoT devices 204 through IEEE
802.11 (Wi-Fi®) links 228, a cellular network 260 used to
communicate with loT devices 204 through an LTE/LTE-A
(4G) or 5G cellular network, and a low-power wide area
(LPWA) network 262, for example, a LPWA network com-
patible with the LoRaWan specification promulgated by the
LoRa alliance, or a IPv6 over Low Power Wide-Area
Networks (LPWAN) network compatible with a specifica-
tion promulgated by the Internet Engineering Task Force
(IETF). Further, the respective loT networks may commu-
nicate with an outside network provider (e.g., a tier 2 or tier
3 provider) using any number of communications links, such
as an LTE cellular link, an LPWA link, or a link based on the
IEEE 802.15.4 standard, such as Zigbee®. The respective
IoT networks may also operate with use of a variety of
network and internet application protocols such as Con-
strained Application Protocol (CoAP). The respective loT
networks may also be integrated with coordinator devices
that provide a chain of links that forms cluster tree of linked
devices and networks.

[0096] Each of these loT networks may provide opportu-
nities for new technical features, such as those as described
herein. The improved technologies and networks may
enable the exponential growth of devices and networks,
including the use of IoT networks into as fog devices or
systems. As the use of such improved technologies grows,
the IoT networks may be developed for self-management,
functional evolution, and collaboration, without needing
direct human intervention. The improved technologies may
even enable IoT networks to function without centralized
controlled systems. Accordingly, the improved technologies
described herein may be used to automate and enhance
network management and operation functions far beyond
current implementations.

[0097] In an example, communications between IloT
devices 204, such as over the backbone links 202, may be
protected by a decentralized system for authentication,
authorization, and accounting (AAA). In a decentralized
AAA system, distributed payment, credit, audit, authoriza-
tion, and authentication systems may be implemented across
interconnected heterogeneous network infrastructure. This
allows systems and networks to move towards autonomous
operations. In these types of autonomous operations,
machines may even contract for human resources and nego-
tiate partnerships with other machine networks. This may
allow the achievement of mutual objectives and balanced
service delivery against outlined, planned service level
agreements as well as achieve solutions that provide meter-
ing, measurements, traceability and trackability. The cre-
ation of new supply chain structures and methods may
enable a multitude of services to be created, mined for value,
and collapsed without any human involvement.

[0098] Such IoT networks may be further enhanced by the
integration of sensing technologies, such as sound, light,
electronic traffic, facial and pattern recognition, smell, vibra-
tion, into the autonomous organizations among the IoT
devices. The integration of sensory systems may allow
systematic and autonomous communication and coordina-
tion of service delivery against contractual service objec-
tives, orchestration and quality of service (QoS) based
swarming and fusion of resources. Some of the individual
examples of network-based resource processing include the
following.

Aug. 6, 2020

[0099] The mesh network 256, for instance, may be
enhanced by systems that perform inline data-to-information
transforms. For example, self-forming chains of processing
resources comprising a multi-link network may distribute
the transformation of raw data to information in an efficient
manner, and the ability to differentiate between assets and
resources and the associated management of each. Further-
more, the proper components of infrastructure and resource
based trust and service indices may be inserted to improve
the data integrity, quality, assurance and deliver a metric of
data confidence.

[0100] The WLAN network 258, for instance, may use
systems that perform standards conversion to provide multi-
standard connectivity, enabling IoT devices 204 using dif-
ferent protocols to communicate. Further systems may pro-
vide seamless interconnectivity across a multi-standard
infrastructure comprising visible Internet resources and hid-
den Internet resources.

[0101] Communications in the cellular network 260, for
instance, may be enhanced by systems that offload data,
extend communications to more remote devices, or both.
The LPWA network 262 may include systems that perform
non-Internet protocol (IP) to IP interconnections, address-
ing, and routing. Further, each of the IoT devices 204 may
include the appropriate transceiver for wide area communi-
cations with that device. Further, each IoT device 204 may
include other transceivers for communications using addi-
tional protocols and frequencies.

[0102] Finally, clusters of IoT devices may be equipped to
communicate with other IoT devices as well as with a cloud
network. This may allow the IoT devices to form an ad-hoc
network between the devices, allowing them to function as
a single device, which may be termed a fog device. This
configuration is discussed further with respect to FIG. 3
below.

[0103] FIG. 3 illustrates a cloud computing network in
communication with a mesh network of IoT devices (de-
vices 302) operating as a fog device at the edge of the cloud
computing network. The mesh network of loT devices may
be termed a fog 320, operating at the edge of the cloud 300.
To simplify the diagram, not every IoT device 302 is labeled.
[0104] The fog 320 may be considered to be a massively
interconnected network wherein a number of IoT devices
302 are in communications with each other, for example, by
radio links 322. As an example, this interconnected network
may be facilitated using an interconnect specification
released by the Open Connectivity Foundation™ (OCF).
This standard allows devices to discover each other and
establish communications for interconnects. Other intercon-
nection protocols may also be used, including, for example,
the optimized link state routing (OLSR) Protocol, the better
approach to mobile ad-hoc networking (B.A.TM.A.N.)
routing protocol, or the OMA Lightweight M2M (LWM2M)
protocol, among others.

[0105] Three types of IoT devices 302 are shown in this
example, gateways 304, data aggregators 326, and sensors
328, although any combinations of IoT devices 302 and
functionality may be used. The gateways 304 may be edge
devices that provide communications between the cloud 300
and the fog 320, and may also provide the backend process
function for data obtained from sensors 328, such as motion
data, flow data, temperature data, and the like. The data
aggregators 326 may collect data from any number of the
sensors 328, and perform the back-end processing function

US 2020/0250003 Al

for the analysis. The results, raw data, or both may be passed
along to the cloud 300 through the gateways 304. The
sensors 328 may be full IoT devices 302, for example,
capable of both collecting data and processing the data. In
some cases, the sensors 328 may be more limited in func-
tionality, for example, collecting the data and allowing the
data aggregators 326 or gateways 304 to process the data.

[0106] Communications from any IoT device 302 may be
passed along a convenient path (e.g., a most convenient
path) between any of the IoT devices 302 to reach the
gateways 304. In these networks, the number of intercon-
nections provide substantial redundancy, allowing commu-
nications to be maintained, even with the loss of a number
of IoT devices 302. Further, the use of a mesh network may
allow IoT devices 302 that are very low power or located at
a distance from infrastructure to be used, as the range to
connect to another IoT device 302 may be much less than the
range to connect to the gateways 304.

[0107] The fog 320 provided from these IoT devices 302
may be presented to devices in the cloud 300, such as a
server 306, as a single device located at the edge of the cloud
300, e.g., a fog device. In this example, the alerts coming
from the fog device may be sent without being identified as
coming from a specific IoT device 302 within the fog 320.
In this fashion, the fog 320 may be considered a distributed
platform that provides computing and storage resources to
perform processing or data-intensive tasks such as data
analytics, data aggregation, and machine-learning, among
others.

[0108] In some examples, the IoT devices 302 may be
configured using an imperative programming style, e.g.,
with each IoT device 302 having a specific function and
communication partners. However, the IoT devices 302
forming the fog device may be configured in a declarative
programming style, allowing the IoT devices 302 to recon-
figure their operations and communications, such as to
determine needed resources in response to conditions, que-
ries, and device failures. As an example, a query from a user
located at a server 306 about the operations of a subset of
equipment monitored by the IoT devices 302 may result in
the fog 320 device selecting the IoT devices 302, such as
particular sensors 328, needed to answer the query. The data
from these sensors 328 may then be aggregated and ana-
lyzed by any combination of the sensors 328, data aggre-
gators 326, or gateways 304, before being sent on by the fog
320 device to the server 306 to answer the query. In this
example, IoT devices 302 in the fog 320 may select the
sensors 328 used based on the query, such as adding data
from flow sensors or temperature sensors. Further, if some of
the IoT devices 302 are not operational, other IoT devices
302 in the fog 320 device may provide analogous data, if
available.

[0109] FIG. 4 illustrates a drawing of a cloud computing
network, or cloud 400, in communication with a number of
Internet of Things (IoT) devices. The cloud 400 may rep-
resent the Internet, or may be a local area network (LAN),
or a wide area network (WAN), such as a proprietary
network for a company. The IoT devices may include any
number of different types of devices, grouped in various
combinations. For example, a traffic control group 406 may
include IoT devices along streets in a city. These IoT devices
may include stoplights, traffic flow monitors, cameras,
weather sensors, and the like. The traffic control group 406,
or other subgroups, may be in communication with the cloud

Aug. 6, 2020

400 through wired or wireless links 408, such as LPWA
links, optical links, and the like. Further, a wired or wireless
sub-network 412 may allow the IoT devices to communicate
with each other, such as through a local area network, a
wireless local area network, and the like. The IoT devices
may use another device, such as a gateway 510 or 528 to
communicate with remote locations such as the cloud 500;
the IoT devices may also use one or more servers 530 to
facilitate communication with the cloud 500 or with the
gateway 510. For example, the one or more servers 530 may
operate as an intermediate network node to support a local
edge cloud or fog implementation among a local area
network. Further, the gateway 528 that is depicted may
operate in a cloud-to-gateway-to-many edge devices con-
figuration, such as with the various IoT devices 514, 520,
524 being constrained or dynamic to an assignment and use
of resources in the cloud 500.

[0110] Other example groups of IoT devices may include
remote weather stations 414, local information terminals
416, alarm systems 418, automated teller machines 420,
alarm panels 422, or moving vehicles, such as emergency
vehicles 424 or other vehicles 426, among many others.
Each of these IoT devices may be in communication with
other IoT devices, with servers 404, with another IoT fog
device or system (not shown, but depicted in FIG. 3), or a
combination therein. The groups of IoT devices may be
deployed in various residential, commercial, and industrial
settings (including in both private or public environments).
[0111] As can be seen from FIG. 4, a large number of loT
devices may be communicating through the cloud 400. This
may allow different IoT devices to request or provide
information to other devices autonomously. For example, a
group of [oT devices (e.g., the traffic control group 406) may
request a current weather forecast from a group of remote
weather stations 414, which may provide the forecast with-
out human intervention. Further, an emergency vehicle 424
may be alerted by an automated teller machine 420 that a
burglary is in progress. As the emergency vehicle 424
proceeds towards the automated teller machine 420, it may
access the traffic control group 406 to request clearance to
the location, for example, by lights turning red to block cross
traffic at an intersection in sufficient time for the emergency
vehicle 424 to have unimpeded access to the intersection.
[0112] Clusters of IoT devices, such as the remote weather
stations 414 or the traffic control group 406, may be
equipped to communicate with other lIoT devices as well as
with the cloud 400. This may allow the loT devices to form
an ad-hoc network between the devices, allowing them to
function as a single device, which may be termed a fog
device or system (e.g., as described above with reference to
FIG. 3).

[0113] FIG. 5 is a block diagram of an example of com-
ponents that may be present in an loT device 550 for
implementing the techniques described herein. The IoT
device 550 may include any combinations of the compo-
nents shown in the example or referenced in the disclosure
above. The components may be implemented as ICs, por-
tions thereof, discrete electronic devices, or other modules,
logic, hardware, software, firmware, or a combination
thereof adapted in the IoT device 550, or as components
otherwise incorporated within a chassis of a larger system.
Additionally, the block diagram of FIG. 5 is intended to
depict a high-level view of components of the IoT device
550. However, some of the components shown may be

US 2020/0250003 Al

omitted, additional components may be present, and differ-
ent arrangement of the components shown may occur in
other implementations.

[0114] The IoT device 550 may include a processor 552,
which may be a microprocessor, a multi-core processor, a
multithreaded processor, an ultra-low voltage processor, an
embedded processor, or other known processing element.
The processor 552 may be a part of a system on a chip (SoC)
in which the processor 552 and other components are
formed into a single integrated circuit, or a single package,
such as the Edison™ or Galileo™ SoC boards from Intel. As
an example, the processor 552 may include an Intel®
Architecture Core™ based processor, such as a Quark™, an
Atom™, an i3, an i5, an i7, or an MCU-class processor, or
another such processor available from Intel® Corporation,
Santa Clara, Calif. However, any number other processors
may be used, such as available from Advanced Micro
Devices, Inc. (AMD) of Sunnyvale, Calif., a MIPS-based
design from MIPS Technologies, Inc. of Sunnyvale, Calif.,
an ARM-based design licensed from ARM Holdings, [.td. or
customer thereof, or their licensees or adopters. The proces-
sors may include units such as an AS5-A10 processor from
Apple® Inc., a Snapdragon™ processor from Qualcomm®
Technologies, Inc., or an OMAP™ processor from Texas
Instruments, Inc.

[0115] The processor 552 may communicate with a system
memory 554 over an interconnect 556 (e.g., a bus). Any
number of memory devices may be used to provide for a
given amount of system memory. As examples, the memory
may be random access memory (RAM) in accordance with
a Joint Electron Devices Engineering Council (JEDEC)
design such as the DDR or mobile DDR standards (e.g.,
LPDDR, LPDDR2, LPDDR3, or LPDDR4). In various
implementations, the individual memory devices may be of
any number of different package types such as single die
package (SDP), dual die package (DDP) or quad die package
(Q17P). These devices, in some examples, may be directly
soldered onto a motherboard to provide a lower profile
solution, while in other examples the devices are configured
as one or more memory modules that in turn couple to the
motherboard by a given connector. Any number of other
memory implementations may be used, such as other types
of memory modules, e.g., dual inline memory modules
(DIMMs) of different varieties including but not limited to
microDIMMs or MiniDIMMs.

[0116] To provide for persistent storage of information
such as data, applications, operating systems and so forth, a
storage 558 may also couple to the processor 552 via the
interconnect 556. In an example, the storage 558 may be
implemented via a solid state disk drive (SSDD). Other
devices that may be used for the storage 558 include flash
memory cards, such as SD cards, microSD cards, xD picture
cards, and the like, and USB flash drives. In low power
implementations, the storage 558 may be on-die memory or
registers associated with the processor 552. However, in
some examples, the storage 558 may be implemented using
a micro hard disk drive (HDD). Further, any number of new
technologies may be used for the storage 558 in addition to,
or instead of, the technologies described, such resistance
change memories, phase change memories, holographic
memories, or chemical memories, among others.

[0117] The components may communicate over the inter-
connect 556. The interconnect 556 may include any number
of technologies, including industry standard architecture

Aug. 6, 2020

(ISA), extended ISA (EISA), peripheral component inter-
connect (PCI), peripheral component interconnect extended
(PCIx), PCI express (PCle), or any number of other tech-
nologies. The interconnect 556 may be a proprietary bus, for
example, used in a SoC based system. Other bus systems
may be included, such as an 12C interface, an SPI interface,
point to point interfaces, and a power bus, among others.
[0118] The interconnect 556 may couple the processor 552
to a mesh transceiver 562, for communications with other
mesh devices 564. The mesh transceiver 562 may use any
number of frequencies and protocols, such as 2.4 Gigahertz
(GHz) transmissions under the IEEE 802.15.4 standard,
using the Bluetooth® low energy (BLE) standard, as defined
by the Bluetooth® Special Interest Group, or the ZigBee®
standard, among others. Any number of radios, configured
for a particular wireless communication protocol, may be
used for the connections to the mesh devices 564. For
example, a WLAN unit may be used to implement Wi-Fi™
communications in accordance with the Institute of Electri-
cal and Electronics Engineers (IEEE) 802.11 standard. In
addition, wireless wide area communications, e.g., accord-
ing to a cellular or other wireless wide area protocol, may
occur via a WWAN unit.

[0119] The mesh transceiver 562 may communicate using
multiple standards or radios for communications at different
range. For example, the loT device 550 may communicate
with close devices, e.g., within about 10 meters, using a
local transceiver based on BLE, or another low power radio,
to save power. More distant mesh devices 564, e.g., within
about 50 meters, may be reached over ZigBee or other
intermediate power radios. Both communications tech-
niques may take place over a single radio at different power
levels, or may take place over separate transceivers, for
example, a local transceiver using BLE and a separate mesh
transceiver using ZigBee.

[0120] A wireless network transceiver 566 may be
included to communicate with devices or services in the
cloud 500 via local or wide area network protocols. The
wireless network transceiver 566 may be a LPWA trans-
ceiver that follows the IEEE 802.15.4, or IEEE 802.15.4¢
standards, among others. The IoT device 550 may commu-
nicate over a wide area using LoRaWAN™ (Long Range
Wide Area Network) developed by Semtech and the [.oRa
Alliance. The techniques described herein are not limited to
these technologies, but may be used with any number of
other cloud transceivers that implement long range, low
bandwidth communications, such as Sigfox, and other tech-
nologies. Further, other communications techniques, such as
time-slotted channel hopping, described in the IEEE 802.
15.4e specification may be used.

[0121] Any number of other radio communications and
protocols may be used in addition to the systems mentioned
for the mesh transceiver 562 and wireless network trans-
ceiver 566, as described herein. For example, the radio
transceivers 562 and 566 may include an LTE or other
cellular transceiver that uses spread spectrum (SPA/SAS)
communications for implementing high speed communica-
tions. Further, any number of other protocols may be used,
such as Wi-Fi® networks for medium speed communica-
tions and provision of network communications.

[0122] The radio transceivers 562 and 566 may include
radios that are compatible with any number of 3GPP (Third
Generation Partnership Project) specifications, notably Long
Term Evolution (LTE), Long Term Evolution-Advanced

US 2020/0250003 Al

(LTE-A), and Long Term Evolution-Advanced Pro (LTE-A
Pro). It can be noted that radios compatible with any number
of other fixed, mobile, or satellite communication technolo-
gies and standards may be selected. These may include, for
example, any Cellular Wide Area radio communication
technology, which may include e.g. a 5th Generation (5G)
communication systems, a Global System for Mobile Com-
munications (GSM) radio communication technology, a
General Packet Radio Service (GPRS) radio communication
technology, or an Enhanced Data Rates for GSM Evolution
(EDGE) radio communication technology, a UMTS (Uni-
versal Mobile Telecommunications System) communication
technology, In addition to the standards listed above, any
number of satellite uplink technologies may be used for the
wireless network transceiver 566, including, for example,
radios compliant with standards issued by the ITU (Inter-
national Telecommunication Union), or the ETSI (European
Telecommunications Standards Institute), among others.
The examples provided herein are thus understood as being
applicable to various other communication technologies,
both existing and not yet formulated.

[0123] A network interface controller (NIC) 568 may be
included to provide a wired communication to the cloud 500
or to other devices, such as the mesh devices 564. The wired
communication may provide an Ethernet connection, or may
be based on other types of networks, such as Controller Area
Network (CAN), Local Interconnect Network (LIN), Devi-
ceNet, ControlNet, Data Highway+, PROFIBUS, or
PROFINET, among many others. An additional NIC 568
may be included to allow connect to a second network, for
example, a NIC 568 providing communications to the cloud
over Ethernet, and a second NIC 568 providing communi-
cations to other devices over another type of network.
[0124] The interconnect 556 may couple the processor 552
to an external interface 570 that is used to connect external
devices or subsystems. The external devices may include
sensors 572, such as accelerometers, level sensors, flow
sensors, optical light sensors, camera sensors, temperature
sensors, a global positioning system (GPS) sensors, pressure
sensors, barometric pressure sensors, and the like. The
external interface 570 further may be used to connect the [oT
device 550 to actuators 574, such as power switches, valve
actuators, an audible sound generator, a visual warning
device, and the like.

[0125] In some optional examples, various input/output
(I/O) devices may be present within, or connected to, the loT
device 550. For example, a display or other output device
584 may be included to show information, such as sensor
readings or actuator position. An input device 586, such as
a touch screen or keypad may be included to accept input.
An output device 584 may include any number of forms of
audio or visual display, including simple visual outputs such
as binary status indicators (e.g., LEDs) and multi-character
visual outputs, or more complex outputs such as display
screens (e.g., LCD screens), with the output of characters,
graphics, multimedia objects, and the like being generated or
produced from the operation of the IoT device 550.

[0126] A battery 576 may power the IoT device 550,
although in examples in which the IoT device 550 is
mounted in a fixed location, it may have a power supply
coupled to an electrical grid. The battery 576 may be a
lithium ion battery, or a metal-air battery, such as a zinc-air
battery, an aluminum-air battery, a lithium-air battery, and
the like.

Aug. 6, 2020

[0127] A battery monitor/charger 578 may be included in
the IoT device 550 to track the state of charge (SoCh) of the
battery 576. The battery monitor/charger 578 may be used to
monitor other parameters of the battery 576 to provide
failure predictions, such as the state of health (SoH) and the
state of function (SoF) of the battery 576. The battery
monitor/charger 578 may include a battery monitoring inte-
grated circuit, such as an LTC4020 or an LTC2990 from
Linear Technologies, an ADT7488A from ON Semiconduc-
tor of Phoenix Ariz., or an IC from the UCD90xxx family
from Texas Instruments of Dallas, Tex. The battery monitor/
charger 578 may communicate the information on the bat-
tery 576 to the processor 552 over the interconnect 556. The
battery monitor/charger 578 may also include an analog-to-
digital (ADC) convertor that allows the processor 552 to
directly monitor the voltage of the battery 576 or the current
flow from the battery 576. The battery parameters may be
used to determine actions that the IoT device 550 may
perform, such as transmission frequency, mesh network
operation, sensing frequency, and the like.

[0128] A power block 580, or other power supply coupled
to a grid, may be coupled with the battery monitor/charger
578 to charge the battery 576. In some examples, the power
block 580 may be replaced with a wireless power receiver to
obtain the power wirelessly, for example, through a loop
antenna in the IoT device 550. A wireless battery charging
circuit, such as an LTC4020 chip from Linear Technologies
of Milpitas, Calif., among others, may be included in the
battery monitor/charger 578. The specific charging circuits
chosen depend on the size of the battery 576, and thus, the
current required. The charging may be performed using the
Airfuel standard promulgated by the Airfuel Alliance, the Qi
wireless charging standard promulgated by the Wireless
Power Consortium, or the Rezence charging standard, pro-
mulgated by the Alliance for Wireless Power, among others.
[0129] The storage 558 may include instructions 582 in
the form of software, firmware, or hardware commands to
implement the techniques described herein. Although such
instructions 582 are shown as code blocks included in the
memory 554 and the storage 558, it may be understood that
any of the code blocks may be replaced with hardwired
circuits, for example, built into an application specific
integrated circuit (ASIC).

[0130] In an example, the instructions 582 provided via
the memory 554, the storage 558, or the processor 552 may
be embodied as a non-transitory, machine readable medium
560 including code to direct the processor 552 to perform
electronic operations in the IoT device 550. The processor
552 may access the non-transitory, machine readable
medium 560 over the interconnect 556. For instance, the
non-transitory, machine readable medium 560 may include
storage units such as optical disks, flash drives, or any
number of other hardware devices. The non-transitory,
machine readable medium 560 may include instructions to
direct the processor 552 to perform a specific sequence or
flow of actions, for example, as described with respect to the
flowchart(s) and diagram(s) of operations and functionality
described throughout this disclosure.

[0131] Example Computing Architectures

[0132] FIGS. 6 and 7 illustrate example computer proces-
sor architectures that can be used in accordance with
embodiments disclosed herein. For example, in various
embodiments, the computer architectures of FIGS. 6 and 7
may be used to implement the visual fog functionality

US 2020/0250003 Al

described throughout this disclosure. Other embodiments
may use other processor and system designs and configu-
rations known in the art, for example, for laptops, desktops,
handheld PCs, personal digital assistants, engineering work-
stations, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs),
graphics devices, video game devices, set-top boxes, micro
controllers, cell phones, portable media players, hand held
devices, and various other electronic devices, are also suit-
able. In general, a huge variety of systems or electronic
devices capable of incorporating a processor and/or other
execution logic as disclosed herein are generally suitable.
[0133] FIG. 6 illustrates a block diagram for an example
embodiment of a processor 600. Processor 600 is an
example of a type of hardware device that can be used in
connection with the embodiments described throughout this
disclosure. Processor 600 may be any type of processor,
such as a microprocessor, an embedded processor, a digital
signal processor (DSP), a network processor, a multi-core
processor, a single core processor, or other device to execute
code. Although only one processor 600 is illustrated in FIG.
6, a processing element may alternatively include more than
one of processor 600 illustrated in FIG. 6. Processor 600
may be a single-threaded core or, for at least one embodi-
ment, the processor 600 may be multi-threaded in that it may
include more than one hardware thread context (or “logical
processor”) per core.

[0134] FIG. 6 also illustrates a memory 602 coupled to
processor 600 in accordance with an embodiment. Memory
602 may be any of a wide variety of memories (including
various layers of memory hierarchy) as are known or
otherwise available to those of skill in the art. Such memory
elements can include, but are not limited to, random access
memory (RAM), read only memory (ROM), logic blocks of
a field programmable gate array (FPGA), erasable program-
mable read only memory (EPROM), and electrically eras-
able programmable ROM (EEPROM).

[0135] Processor 600 can execute any type of instructions
associated with algorithms, processes, or operations detailed
herein. Generally, processor 600 can transform an element
or an article (e.g., data) from one state or thing to another
state or thing.

[0136] Code 604, which may be one or more instructions
to be executed by processor 600, may be stored in memory
602, or may be stored in software, hardware, firmware, or
any suitable combination thereof, or in any other internal or
external component, device, element, or object where appro-
priate and based on particular needs. In one example,
processor 600 can follow a program sequence of instructions
indicated by code 604. Each instruction enters a front-end
logic 606 and is processed by one or more decoders 608. The
decoder may generate, as its output, a micro operation such
as a fixed width micro operation in a predefined format, or
may generate other instructions, microinstructions, or con-
trol signals that reflect the original code instruction. Front-
end logic 606 may also include register renaming logic and
scheduling logic, which generally allocate resources and
queue the operation corresponding to the instruction for
execution.

[0137] Processor 600 can also include execution logic 614
having a set of execution units 616a, 6165, 6167, ctc. Some
embodiments may include a number of execution units
dedicated to specific functions or sets of functions. Other
embodiments may include only one execution unit or one

Aug. 6, 2020

execution unit that can perform a particular function. Execu-
tion logic 614 performs the operations specified by code
instructions.

[0138] After completion of execution of the operations
specified by the code instructions, back-end logic 618 can
retire the instructions of code 604. In one embodiment,
processor 600 allows out of order execution but requires in
order retirement of instructions. Retirement logic 620 may
take a variety of known forms (e.g., re-order buffers or the
like). In this manner, processor 600 is transformed during
execution of code 604, at least in terms of the output
generated by the decoder, hardware registers and tables
utilized by register renaming logic 610, and any registers
(not shown) modified by execution logic 614.

[0139] Although not shown in FIG. 6, a processing ele-
ment may include other elements on a chip with processor
600. For example, a processing element may include
memory control logic along with processor 600. The pro-
cessing element may include 1/O control logic and/or may
include 1/O control logic integrated with memory control
logic. The processing element may also include one or more
caches. In some embodiments, non-volatile memory (such
as flash memory or fuses) may also be included on the chip
with processor 600.

[0140] FIG. 7 illustrates a block diagram for an example
embodiment of a multiprocessor 700. As shown in FIG. 7,
multiprocessor system 700 is a point-to-point interconnect
system, and includes a first processor 770 and a second
processor 780 coupled via a point-to-point interconnect 750.
In some embodiments, each of processors 770 and 780 may
be some version of processor 600 of FIG. 6.

[0141] Processors 770 and 780 are shown including inte-
grated memory controller (IMC) units 772 and 782, respec-
tively. Processor 770 also includes as part of its bus con-
troller units point-to-point (P-P) interfaces 776 and 778;
similarly, second processor 780 includes P-P interfaces 786
and 788. Processors 770, 780 may exchange information via
a point-to-point (P-P) interface 750 using P-P interface
circuits 778, 788. As shown in FIG. 7, IMCs 772 and 782
couple the processors to respective memories, namely a
memory 732 and a memory 734, which may be portions of
main memory locally attached to the respective processors.
[0142] Processors 770, 780 may each exchange informa-
tion with a chipset 790 via individual P-P interfaces 752, 754
using point to point interface circuits 776, 794, 786, 798.
Chipset 790 may optionally exchange information with the
coprocessor 738 via a high-performance interface 739. In
one embodiment, the coprocessor 738 is a special-purpose
processor, such as, for example, a high-throughput MIC
processor, a network or communication processor, compres-
sion engine, graphics processor, GPGPU, embedded proces-
sor, matrix processor, or the like.

[0143] A shared cache (not shown) may be included in
either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power
mode.

[0144] Chipset 790 may be coupled to a first bus 716 via
an interface 796. In one embodiment, first bus 716 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of this disclosure is not
so limited.

US 2020/0250003 Al

[0145] As shown in FIG. 7, various /O devices 714 may
be coupled to first bus 716, along with a bus bridge 718
which couples first bus 716 to a second bus 720. In one
embodiment, one or more additional processor(s) 715, such
as coprocessors, high-throughput MIC processors, GPG-
PU’s, accelerators (such as, e.g., graphics accelerators or
digital signal processing (DSP) units), matrix processors,
field programmable gate arrays, or any other processor, are
coupled to first bus 716. In one embodiment, second bus 720
may be a low pin count (LPC) bus. Various devices may be
coupled to a second bus 720 including, for example, a
keyboard and/or mouse 722, communication devices 727
and a storage unit 728 such as a disk drive or other mass
storage device which may include instructions/code and data
730, in one embodiment. Further, an audio /O 724 may be
coupled to the second bus 720. Note that other architectures
are possible. For example, instead of the point-to-point
architecture of FIG. 7, a system may implement a multi-drop
bus or other such architecture.

[0146] All or part of any component of FIG. 7 may be
implemented as a separate or stand-alone component or
chip, or may be integrated with other components or chips,
such as a system-on-a-chip (SoC) that integrates various
computer components into a single chip.

[0147] Embodiments of the mechanisms disclosed herein
may be implemented in hardware, software, firmware, or a
combination of such implementation approaches. Certain
embodiments may be implemented as computer programs or
program code executing on programmable systems compris-
ing at least one processor, a storage system (including
volatile and non-volatile memory and/or storage elements),
at least one input device, and at least one output device.
[0148] Program code, such as code 730 illustrated in FIG.
7, may be applied to input instructions to perform the
functions described herein and generate output information.
The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

[0149] The program code may be implemented in a high
level procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

[0150] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0151] Such machine-readable storage media may
include, without limitation, non-transitory, tangible arrange-
ments of articles manufactured or formed by a machine or
device, including storage media such as hard disks, any
other type of disk including floppy disks, optical disks,

Aug. 6, 2020

compact disk read-only memories (CD-ROMs), compact
disk rewritable’s (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories
(ROMs), random access memories (RAMS) such as
dynamic random access memories (DRAMs), static random
access memories (SRAMs), erasable programmable read-
only memories (EPROMs), flash memories, electrically
erasable programmable read-only memories (EEPROMs),
phase change memory (PCM), magnetic or optical cards, or
any other type of media suitable for storing electronic
instructions.

[0152] Accordingly, embodiments of this disclosure also
include non-transitory, tangible machine-readable media
containing instructions or containing design data, such as
Hardware Description Language (HDL), which defines
structures, circuits, apparatuses, processors and/or system
features described herein. Such embodiments may also be
referred to as program products.

[0153] Visual Fog Architecture

[0154] FIG. 8 illustrates an example embodiment of an
architecture 800 for visual fog nodes. In some embodiments,
for example, fog node architecture 800 may be used to
implement the functionality of fog nodes 810 in a visual fog
network or system (e.g., visual fog system 100 of FIG. 1).
A fog node 810, for example, can include any node or
component that ranges from the edge of a network to the
cloud, inclusively.

[0155] In the illustrated embodiment, fog node 810
includes various application programming interfaces (APIs)
that provide fundamental capabilities for fog node 810, such
as auxiliary API 820, primitive vision API 830, and storage
API 840. In some embodiments, for example, these APIs
may be used or implemented by lower-level algorithm
developers.

[0156] Auxiliary API 820 provides various fundamental
functionality for fog node 810, such as security 822a,
communication 82254, compression 822¢ (e.g., codecs), and
so forth.

[0157] Primitive vision API 830 provides fundamental
vision processing capabilities for fog node 810. For
example, primitive vision API 830 provides access to a
plurality of vision kernels 832 that can be used to perform
primitive vision operations (e.g., person or object detection,
facial recognition). Primitive vision API 830 may also
provide access to various machine learning and/or neural
network frameworks (e.g., Caffe, OpenCV, TensorFlow).
[0158] Storage API 840 provides storage capabilities for
fog node 810. In some embodiments, for example, storage
API 840 may include a variety of databases 842 for storing
different types of visual data, such as graph databases,
relational databases, array-based databases (e.g., TileDB),
and so forth. In some embodiments, for example, the par-
ticular database used to store certain visual data may depend
on the type of data, such as raw visual data or pixels,
compressed visual data, visual metadata, and so forth.
[0159] Moreover, fog node 810 further includes a vision
application API 850 that provides higher-level vision func-
tionality, which may be used or implemented by developers
of vision applications. For example, vision application API
850 may include a privacy policy 852 that defines the
requisite privacy treatment for all data and devices associ-
ated with a visual fog network. Vision application API 850
may also include a vision kernel management service 854
that provides access to a variety of primitive vision opera-

US 2020/0250003 Al

tions or vision kernels. In some embodiments, for example,
vision kernel management service 854 may retrieve vision
kernels from a vision kernel repository. For example, if a
particular vision application employs person detection func-
tionality, vision kernel management service 854 may
retrieve the appropriate vision kernel for performing person
detection using the available hardware of the particular fog
node 810.

[0160] Fog node 810 further includes a vision analytics
API 860 and query API 870, which may be used by
end-users or operators to perform visual analytics and visual
queries. For example, vision analytics API 860 may perform
inline (e.g. real-time) and/or offline processing of visual
data, application launching, scheduling, resource monitor-
ing, and so forth. Vision analytics API 860 may also include
a vision application management service 862 that provides
access to a variety of vision applications (e.g., people
searching/tracking, object detection/tracking, and so forth).
In some embodiments, for example, vision application man-
agement service 862 may retrieve vision applications from
a vision application repository. In this manner, if an end-user
wants to perform a people search, vision application man-
agement service 862 may retrieve an appropriate vision
application for people searching. In some embodiments, for
example, a people search vision application may use vision
kernels that perform person detection followed by facial
recognition. The end-user, however, can utilize the people
search vision application without any knowledge of the
underlying vision kernels or vision operations used to imple-
ment the application.

[0161] Moreover, query API 870 provides an interface that
enables end-users to submit visual search requests or que-
ries. In some embodiments, for example, query API 870 may
support flexible visual queries in a variety of syntaxes, such
as natural language, functional syntax (e.g., using logical
operators), relational syntax, and so forth. In some embodi-
ments, query API 870 may further include a query primitive
repository 874 that contains the primitive operations that are
supported for visual queries. Moreover, query API 870 may
include a query compiler 872 for compiling the visual
queries into visual processing datatlows that can be executed
by visual fog nodes.

[0162] FIG. 9-12 illustrate example embodiments of
visual fog architectures.

[0163] For example, FIG. 9 illustrates an example visual
fog architecture 900 that includes cameras 902, sensors 904,
local analytics framework 906, inline analytics framework
908, offline analytics framework 910, storage 912, and
presentation/interpretation framework 914. In the illustrated
embodiment, for example, cameras 902 and/or sensors 904
may generate visual data, such as images and/or video. The
visual data may then be provided to local analytics frame-
work 906, which may be used to perform preliminary
processing and analytics at the network edge (e.g., near the
cameras 902 or sensors 904 that captured the visual data).
The partially processed visual data may then be provided to
inline analytics framework 908 for further processing in
real-time. In various embodiments, for example, inline ana-
Iytics may be performed by and/or distributed across any
combination of fog devices or resources (e.g., mobile
devices, loT devices, gateways, and/or the cloud). The
resulting visual data and/or metadata from inline analytics
framework 908 may then be stored in data storage 912.
Moreover, a visual search query may be subsequently

Aug. 6, 2020

received by presentation/interpretation framework 914 (e.g.,
from an end-user). Accordingly, presentation/interpretation
framework 914 may interact with data storage 912 and/or
inline analytics framework 908 to determine whether a
response to the query can be formulated based on the visual
data and/or metadata that has already been processed or
generated. If further processing needs to be performed to
respond to the query, however, presentation/interpretation
framework 914 may interact with offline analytics frame-
work 910 to perform further offline processing of the visual
data. In various embodiments, for example, offline analytics
may be performed by and/or distributed across any combi-
nation of fog devices or resources (e.g., mobile devices, [oT
devices, gateways, and/or the cloud). Accordingly, based on
the information obtained either from data storage 912, inline
analytics framework 908, and/or offline analytics framework
910, presentation/interpretation framework 914 may then
respond to the visual query.

[0164] FIG. 10 illustrates an example visual processing
pipeline 1000 associated with a visual fog architecture. In
the illustrated example, visual data 1002 may first be cap-
tured by cameras and/or visual sensors, and the visual data
1002 may then be processed to perform certain visual
functions 1004 (e.g., face detection) and/or other analytics,
resulting in a set of visual metadata 1012 that may be stored
in data storage 1010. Moreover, an end-user may subse-
quently submit an ad hoc search query 1006 associated with
the visual data 1002, and a query compiler/interpreter 1008
may then compile the query into a visual processing data-
flow that can be executed (e.g., using available fog nodes or
resources) in order to respond to the query. In some cases,
for example, it may be possible to formulate a query result
1016 based on the processing that has already been com-
pleted. For example, in some cases, the query result 1016
may be formulated by applying appropriate logic operations
1014 on the existing visual metadata 1012 that has already
been generated. In other cases, however, further visual
processing and/or functions 1004 may need to be performed
on the visual data 1002 in order to formulate the query result
1016. In either case, the compiler/interpreter 1008 may
generate a requisite vision processing dataflow for respond-
ing to the query, and the resulting vision processing datatlow
may then be executed in order to formulate the query result
1016.

[0165] FIG. 11 illustrates another example visual fog
architecture 1100. In the illustrated embodiment, visual data
captured by cameras 114056 is provided to a distributed
runtime environment 1120, which performs initial pre-pro-
cessing on the visual data in real-time (e.g., when the visual
data is first captured rather than in response to a query). The
resulting visual data or metadata generated by the distributed
runtime environment 1120 is then stored in data storage
1130.

[0166] Separately, visual search queries containing user-
defined vision functions (UVFs) 1104a-c are received from
end-users 1102 of visual fog 1100. A UVF 1104 received
from an end-user 1102 is first processed by a compiler 1110
in order to generate a vision dataflow graph for executing the
UVF. Accordingly, the vision dataflow graph is then
executed by the distributed runtime environment 1120 in
order to generate a result for the UVF 1104. In some
embodiments, for example, the distributed runtime environ-
ment 1120 may determine the result using existing visual
metadata that has already been generated (e.g., from the

US 2020/0250003 Al

initial or real-time processing of the original visual data),
and/or by performing further analysis on the visual data
(e.g., by executing a particular vision application 1150). The
result obtained from execution of the UVF 1104 may then be
provided back to the requesting end-user 1102.

[0167] Further, in various embodiments, the distributed
runtime environment 1120 may perform the described visual
data processing (e.g., initial pre-processing and/or UVF
processing) by scheduling or distributing vision workloads
across the available fog devices or resources 1140 (e.g.,
cloud servers 1140a, cameras 11405, mobile devices, IoT
devices, gateways, and/or other fog/edge devices).

[0168] FIGS. 12A-B illustrate another example visual fog
architecture 1200. In the illustrated embodiment, visual fog
architecture 1200 includes a network of fog devices 1216,
including cameras or visual sensors 1216a, gateways 12165,
and cloud servers 1216¢. The cameras or visual sensors
12164, for example, are used to capture visual data 1217.
Moreover, a computer vision expert 1202 can develop an
imperative vision program 1203 that leverages the captured
visual data 1217. The vision program 1203, for example,
may be implemented using programming and composability
frameworks 1208 and 1210 to define vision processing
dataflows 1209 and generate vision processing workloads
1211.

[0169] In the illustrated embodiment, for example, the
vision program 1203 leverages a distributed runtime envi-
ronment 1214 to process visual data 1217 captured in visual
fog 1200. The distributed runtime environment 1214, for
example, can perform visual data processing using the
collection of available fog devices 1216 in visual fog 1200.
[0170] Insome embodiments, for example, the distributed
runtime environment 1214 may be used to perform initial
pre-processing on captured visual data 1217 in real-time
(e.g., when the visual data is first captured rather than in
response to a query). The resulting visual data or metadata
1217 generated by the distributed runtime environment 1214
may then be stored in a database or data storage 1218.
[0171] Moreover, a layperson or end-user 1204 may sub-
sequently submit a declarative query 1205 associated with
visual data 1217 captured by visual fog 1200. The declara-
tive query 1205 is processed by a visual question answering
(VQA) system 1206, which uses a compiler or interpreter to
generate a dataflow 1209 for responding to the query. In
some cases, for example, it may be possible to respond to
query 1205 using existing visual metadata 1217 that has
already been generated (e.g., during the initial or real-time
processing of the original visual data 1217 and/or during the
processing associated with prior queries 1205). In other
cases, however, further processing may need to be per-
formed on the visual data 1217 in order to respond to the
query 1205. In either case, an appropriate dataflow 1209 for
responding to the query 1205 may be generated, and the
resulting dataflow 1209 may be further partitioned into one
or more underlying vision processing workloads 1211.
Moreover, based on the resource availability 1215 of fog
devices 1216 in the distributed runtime environment 1214,
a schedule 1213 for distributing the workloads 1211 across
the available fog devices 1216 may be generated. Accord-
ingly, the respective workloads 1211 may then be distributed
across the fog devices 1216 based on the generated schedule
1213, and each fog device 1216 may execute its respective
workload(s) 1211. In this manner, the dataflow 1209 for
responding to the query 1205 is executed by the various fog

Aug. 6, 2020

devices 1216 using a distributed approach. A response to the
query 1205 may then be provided to the end-user 1204, and
the resulting visual metadata 1217 may be stored in database
1218 for responding to subsequent queries.

[0172] Visual Question Answering (VQA)

[0173] FIG. 13-14 illustrate example embodiments asso-
ciated with a visual question answering (VQA) framework.
In some embodiments, for example, a visual fog architecture
may implement a VQA framework to provide a flexible and
efficient interface for end-users to submit ad hoc visual
search queries. In visual processing systems, for example,
the ability to submit a query to search large data sets in an
efficient manner (e.g., millions of images) and identify a
subset of relevant images or related information is impor-
tant. Existing visual processing solutions are implemented
using rigid or inflexible approaches, however, and are unable
to search visual data efficiently. Accordingly, the visual
question answering (VQA) framework of FIGS. 13 and 14
can be used to alleviate the deficiencies of existing solutions.
[0174] In some embodiments, for example, a VQA frame-
work may support flexible or ad hoc visual search queries
using a variety of syntaxes, such as natural language,
functional syntax (e.g., using logical operators), relational
syntax, and so forth. Accordingly, when a visual search
query is received from a user, the query may be compiled
into a visual processing dataflow that can be distributed
across and executed by the various fog nodes in a visual fog
architecture. In this manner, end-users can perform complex
searches on large sets of visual data without any knowledge
of the underlying architecture or processing required to
execute the searches.

[0175] Moreover, in some embodiments, users or devel-
opers may be capable of defining custom vision functions
that can be used in visual search queries, referred to as
user-defined vision functions (UVFs). As an example, a
UVF could be defined for visually equivalency, or perform-
ing “equal” operations on visual data. Many ad hoc visual
queries, for example, require information related to the same
object or person to be identified or grouped together. Iden-
tifying the same object or person across different images or
video streams, however, can be challenging. In some
embodiments, for example, this task may require feature
extraction to be performed across multiple cameras. The
respective features extracted from each camera often differ,
however, and not all cameras have the same field of view,
and thus certain features may be successtully extracted from
some cameras but not others. Accordingly, in some embodi-
ments, a user may implement a UVF to define how visual
equivalency or “equal” operations are to be performed on
visual data. In some embodiments, for example, a UVF for
visual equivalency may define objects as “equal” if their
feature vectors are “close enough” to each other, meaning
the feature vectors must be sufficiently similar but do not
have to be an exact match. Further, if feature vectors from
different cameras are missing certain features, only the
partial features will be compared and the “close enough”
definition will be scaled accordingly.

[0176] FIG. 13 illustrates an example embodiment of a
visual question answering (VQA) pipeline 1300. In the
illustrated example, a visual query 1302 is first received
from an end-user, and a dataflow compiler 1304 is then used
to compile the visual query 1302 into a visual processing
pipeline or dataflow 1308. In some embodiments, for
example, the dataflow compiler 1304 may use a library of

US 2020/0250003 Al

vision kernel modules 1306 (e.g., face recognition, pose
recognition, object recognition, and so forth) to generate the
resulting visual processing dataflow 1308.

[0177] In some cases, for example, the visual processing
datatlow 1308 may leverage existing visual metadata that
has already been generated and stored on data storage 1314.
For example, an inline analytics framework 1310 may be
used to perform initial visual data processing in real-time
(e.g., when visual data is first captured rather than in
response to a query), and an offline analytics framework
1312 may be used to perform further visual data processing
required for responding to search queries. Moreover, both
the inline and offline analytics frameworks 1310, 1312 may
store their resulting visual metadata on data storage 1314 for
use in responding to subsequent visual search queries.
Accordingly, in some cases, the visual processing dataflow
1308 for a particular query 1302 may leverage existing
visual metadata that has already been generated and stored
on data storage 1314. In other cases, however, further
processing may be required to respond to the query 1302,
and thus the visual processing datatlow 1308 may leverage
the offline analytics framework 1312 to perform additional
processing. In either case, the visual processing pipeline or
datatlow 1308 generated by compiler 1304 is executed by
the runtime environment in order to generate a response to
the visual query 1302.

[0178] FIG. 14 illustrates an example embodiment of a
visual question answering (VQA) compiler 1400. In some
embodiments, for example, compiler 1400 may be used to
compile VQA queries and/or user-defined vision functions
(UVFs) 1402 into visual dataflow graphs 1417 that can be
distributed across and executed by the various fog nodes in
a visual fog architecture.

[0179] In the illustrated embodiment, for example, UVFs
1402 are provided to the compiler 1400 via a declarative API
1412. The compiler 1400 may then generate a graph of
high-level vision operations 1415 that are required to
execute the UVFs 1402, which may in turn be used to
generate a vision dataflow graph 1417. In some embodi-
ments, for example, the vision datatlow graph 1417 may be
a directed acyclic graph (DAG) that represents the visual
processing pipeline required to execute the particular UVFs
1402. Moreover, the compiler 1400 may use datatlow de-
duplication to optimize the vision dataflow graph 1417, for
example, by merging redundant portions of the dataflows of
multiple UVFs 1402 to eliminate the redundancies.

[0180] Insome embodiments, for example, compiler 1400
may generate the vision dataflow graph 1417 using infor-
mation from the underlying vision modules 1418 (e.g.,
hardware-specific information required for scheduling
workloads on heterogeneous hardware). The compiler 1400
may also generate a number of database API calls to obtain
visual data and/or metadata required to execute the UVFs
1402. In various embodiments, these database API calls may
either be part of, or separate from, the vision dataflow graph
1417. Moreover, in some embodiments, the compiler 1400
may generate different results depending on the available
visual metadata.

[0181] In this manner, the resulting vision dataflow graph
1417 generated by compiler 1400 can subsequently be
executed by the runtime environment in order to generate
the results for responding to UVFs 1402.

Aug. 6, 2020

[0182] Runtime

[0183] The visual fog paradigm envisions tens of thou-
sands (or more) heterogeneous, camera-enabled edge
devices distributed across the Internet and/or other large-
scale networks, providing live sensing for a myriad of
different visual processing applications, given task parallel-
ism and data parallelism. The scale, computational demands,
and bandwidth needed for visual computing pipelines neces-
sitates intelligent offloading to distributed computing infra-
structure, including the cloud, Internet gateway devices, and
the edge devices themselves.

[0184] Insome embodiments, for example, visual process-
ing may be scheduled or distributed across available fog
devices based on various criteria, including device connec-
tivity, device resource capabilities, device resource avail-
ability, workload type, privacy constraints, and so forth.
Privacy constraints, for example, can be used to inform
which content should be permitted and which should be
filtered. In some cases, filtered content may be represented
as lowered pixel depth, blurry pixels, or missing content
filled in by approximation and inference using neighboring
non-filtered pixels. Further, machine learning can be lever-
aged to optimize scheduling decisions.

[0185] Workload deployment and/or migration can be
implemented using a hot-pluggable runtime environment
with universal plugin APIs. For example, conventional
workload deployment/migration can be expensive, as it may
require sending the runtime environment and toolchains to
the assigned nodes. With hot-pluggable runtimes, however,
workloads are hot-swappable (e.g., stop runtime, replace
plugin, start runtime).

[0186] Moreover, a plugin or vision kernel repository can
be used to facilitate workload deployment. For example, a
cloud-based or distributed repository may be used to manage
a collection of device and implementation abstractions for
each supported vision capability. In this manner, the reposi-
tory can distribute the appropriate plugins or vision kernels
to fog nodes based on their respective workload assign-
ments.

[0187] Incremental processing may be leveraged by a
visual fog runtime to maintain the state of any prior pro-
cessing that has already been performed on visual data,
enabling the results of the prior processing to be leveraged
for subsequent visual processing and queries. For example,
the results of any processing performed on visual data may
be represented as visual metadata, which may be stored for
later use to avoid performing duplicative processing for
subsequent visual queries. In this manner, when a visual
query or UVF is received, the dataflow generated by a
compiler may vary depending on the available metadata that
has already been generated and can be reused.

[0188] Metadata pre-provisioning can be used to reduce
vision query latency by pre-processing visual data to com-
plete common or frequent types of processing in advance. In
some embodiments, for example, a machine learning model
may be used to optimize the types of pre-processing that is
performed. For example, based on patterns of queries of the
same type or that involve similar types of processing,
machine learning may be used to model the relationships of
diverse queries, while also taking other modalities into
account (e.g., weather, traffic). For example, metadata can be
pre-provisioned by pre-scheduling certain types of process-
ing in advance based on the recent history of vision queries
and UVFs. In this manner, patterns of common or similar

US 2020/0250003 Al

vision workloads can trigger pre-processing on newly cap-
tured visual data for those types of workloads to reduce
query latency.

[0189] Similarly, stream prioritization or prefetching can
be used to perform low-latency visual data loading or
fetching based on historical trends and/or workflows. For
example, the vision processing history can be used to
prioritize certain data streams and/or pre-fetch data from
memory for a particular application to improve query
latency. Compared to metadata pre-provisioning, which
involves expedited processing that is performed in advance,
stream prioritization involves obtaining or moving visual
data to a location where it will likely be needed (e.g., from
a camera to certain processing nodes).

[0190] Cached visual analytics can be used to optimize
visual processing using cached workflows, similar to incre-
mental processing. For example, based on cached informa-
tion regarding particular visual streams that have already
been obtained and processed, along with the type of pro-
cessing or workloads performed on those streams, subse-
quent vision processing dataflows may omit certain process-
ing steps that have previously been performed and whose
results have been cached. For example, a visual analytics
application involves a number of primitive vision opera-
tions. The volume of computation can be reduced, however,
by caching visual analytics results and reusing them for
subsequent operations when possible. For example, when
executing a visual analytics application, cached visual meta-
data resulting from prior processing can be searched to avoid
duplicative computation. In some embodiments, for
example, cached visual analytics may be implemented as
follows:

[0191] 1. Each primitive vision operation is tagged or
labeled using a cache tag;

[0192] 2. For each instance or stream of visual data (e.g.,
each stored video), any corresponding visual metadata that
has already been generated is stored in a metadata database
or cache;

[0193] 3. If there is a cache tag hit for a particular
primitive vision operation with respect to a particular
instance or stream of visual data, then the particular primi-
tive vision operation can be omitted and instead the existing
visual metadata can be used; and

[0194] 4. If there is a cache tag miss, however, the
particular primitive vision operation is executed and the
resulting metadata is cached in the metadata database for
subsequent use.

[0195] Tensor factorization can also be used for distrib-
uted neural network inferencing in order to address the
overfitting problem. For example, representative weights of
consecutive neural network layers can utilize tensor factor-
ization to “smooth out” the model.

[0196] FIGS. 15 and 16 illustrate example embodiments
of device-centric scheduling for visual fog computing. In
some embodiments, for example, visual fog scheduling may
depend on (1) device resource capacities, and (2) workload
resource requirements. While the former remains constant
and consistent, the latter can vary depending on a device’s
hardware specifications and software toolchains. For
example, in some embodiments, there may be multiple
implementations of a facial recognition capability that are
respectively optimized for different types of hardware, such
as CPUs, GPUs, FPGAs, ASICs, and so forth. In this
manner, multiple implementations of a single vision capa-

Aug. 6, 2020

bility can be leveraged to create an opportunity for further
optimization in visual fog computing.

[0197] Accordingly, in order to address the heterogeneity
of devices with different types of hardware and/or software,
the illustrated embodiments implement device-centric
scheduling using a vision capabilities repository. In some
embodiments, for example, the vision capabilities repository
may include multiple implementations of a particular vision
capability that are optimized for different hardware and/or
software environments. In this manner, vision workloads
can be scheduled or distributed across fog devices based on
their respective types of resources and capabilities, along
with per-resource telemetry information that identifies
resource availability.

[0198] The basic principle is to abstract capabilities (e.g.,
face detection, gesture recognition) from their underlying
kernels/implementations (e.g., SIFT-based implementations,
deep neural network implementations). This type of abstrac-
tion provides the flexibility to deploy an arbitrary vision
capability on a per-device basis. For example, using
resource-based scheduling, heterogeneous resource types of
different fog devices can be considered as a whole in order
to determine the optimal task-to-device mapping across the
various fog devices, and also identify the corresponding
vision capability implementations that each device should
use for its assigned tasks. Moreover, resource telemetry can
be used to monitor resource availability of fog devices on a
per-resource basis (e.g., CPU, GPU, FPGA, ASIC, and so
forth) to further facilitate intelligent scheduling decisions.
Further, the vision capability repository hosts collections of
implementations of different vision capabilities, and may
also provide a request-response service that allows a device
to request an available implementation of a particular vision
capability.

[0199] In this manner, device-centric scheduling can be
used to improve end-to-end (E2E) performance (e.g.,
latency and bandwidth efficiency) and scalability for visual
fog computing.

[0200] FIG. 15 illustrates an example architecture 1500
for implementing device-centric scheduling in a visual com-
puting system. In the illustrated embodiment, for example,
visual computing architecture 1500 includes users 1502,
scheduling server 1504, vision kernel repository 1506, and
various types of fog devices 1510. A fog device 1510, for
example, can include any device ranging from the edge of a
network to the cloud, inclusively. In the illustrated embodi-
ment, for example, fog devices 1510 include cameras 1510a,
gateways 15104, and cloud servers 1510c.

[0201] In some embodiments, users 1502 may submit
search queries for visual data captured by cameras 1510aq.
Moreover, in order to respond to those queries efficiently,
scheduling server 1504 may schedule or distribute vision
processing workloads across the various fog devices 1510.
In some embodiments, for example, scheduling server 1504
may perform intelligent scheduling decisions based on vari-
ous criteria, such as the types of resources in the fog (e.g.,
the heterogeneous types of resources of the various fog
devices 1510), resource telemetry information (e.g., the
availability of fog resources on a per-resource-type basis),
and the implementations of vision capabilities that are
available in the vision capability repository 1506.

[0202] An example embodiment of the scheduling pro-
cess, for example, is described below in connection with
FIG. 16.

US 2020/0250003 Al

[0203] FIG. 16 illustrates a flowchart 1600 for an example
embodiment of device-centric scheduling in a visual com-
puting system. In some embodiments, for example, flow-
chart 1600 may be implemented using visual computing
architecture 1500 of FIG. 15.

[0204] The flowchart may begin at block 1602 by collect-
ing the available vision capability implementations. In some
embodiments, for example, the scheduling server continu-
ously synchronizes the collection of available implementa-
tions of vision capabilities from the vision capability reposi-
tory.

[0205] The flowchart may then proceed to block 1604 to
collect the resource telemetry of fog devices. In some
embodiments, for example, the scheduling server may col-
lect the resource availability of all fog devices on a per-
resource-type basis. For example, the scheduling server may
collect information regarding the resource availability of
CPUs, GPUs, FPGAs, ASICs, and/or any other resource
type across all fog devices.

[0206] In this manner, based on the available vision capa-
bility implementations collected at block 1602, and the
resource telemetry information collected at block 1604, the
scheduling server can subsequently schedule vision work-
loads based on the optimal task-to-device mapping in the
visual fog paradigm.

[0207] For example, the flowchart may then proceed to
block 1606 to determine whether a new vision workload has
been received from a user. In some embodiments, for
example, a user may submit a new visual query, which may
require a new vision workload to be scheduled or distributed
across the fog devices.

[0208] If it is determined at block 1606 that a new vision
workload has NOT been received, the flowchart may then
proceed back to block 1602 to continue synchronizing the
available vision capability implementations and collecting
resource telemetry information until a new vision workload
is received.

[0209] Ifitis determined at block 1606 that a new vision
workload has been received, the flowchart may then proceed
to block 1608 to re-schedule all pending workloads. In some
embodiments, for example, receiving a new vision workload
for a user may trigger the scheduling server to re-schedule
all pending workloads to ensure the collective workloads are
distributed across the fog devices in the most efficient
manner possible (e.g., based on the optimal task-to-device
mapping).

[0210] In some embodiments, for example, scheduling
may be performed based on various criteria, such as the
types of fog resources that are available, telemetry informa-
tion for those resources, and the vision capability imple-
mentations that are available for those fog resources.
[0211] In some embodiments, for example, a schedule that
adheres to the constraints of multiple resource types can be
determined using integer linear programming (ILP). Integer
linear programming (ILP) is a mathematical optimization or
feasibility technique for solving or optimizing a mathemati-
cal model represented by linear relationships. In particular,
ILP can be used to optimize a linear objective function,
subject to additional linear equality and linear inequality
constraints. As an example, an ILP problem can be
expressed as follows:

minimize: ¢’x (objective term)

subject to: Ax=b (inequality constraint)

Aug. 6, 2020

Cx=d (equality constraint)
and: x€{0,1}% (binary constraint).

[0212] Moreover, this ILP model can be used to determine
an optimal schedule fthat satisfies a specified objective (e.g.,
total network utilization), while also adhering to other
additional constraints (e.g., device resource constraints). In
the above ILP model, for example, x presents the collection
of possible schedules f, K is the length of x, the objective
term presents a scheduling objective to be minimized (e.g.,
total network utilization), and the inequality/equality con-
straints present any additional constraints (e.g., device,
resource, network, mapping, and/or privacy constraints). A
device resource constraint, for example, can be presented as
an inequality constraint of the IL.P model. For example, in
order to take into account constraints of multiple resource
types, they can be expended into multiple inequalities in the
form of Ax b in the ILP model above.

[0213] Accordingly, based on the scheduling decisions,
the scheduling server assigns each fog device zero or more
tasks. In some embodiments, for example, a task may be
specified in a tuple of the form t=(p, r), where p denotes the
vision capability and r denotes resource type (e.g., p=face
detection, r=Movidius processor).

[0214] The flowchart may then proceed to block 1610 to
determine if an updated workload schedule is available. For
example, after a new vision workload is received and the
pending workloads are re-scheduled, the scheduling server
may have an updated or improved workload schedule that
needs to be distributed to the fog devices. In some embodi-
ments, however, the scheduling server may only update the
workload schedule if the newly generated schedule is better
or more efficient than the current workload schedule.

[0215] Ifit is determined at block 1610 that the workload
schedule has NOT been updated, the flowchart may then
proceed back to block 1602 to continue synchronizing the
available vision capability implementations and collecting
resource telemetry until the current workload schedule is
eventually updated.

[0216] However, if it is determined at block 1610 that an
updated workload schedule is available, the flowchart may
then proceed to block 1612 to push the updated schedule to
all fog devices.

[0217] The flowchart may then proceed to block 1614 to
receive requests from fog devices for vision capability
implementations. For example, each fog device may query
the vision capability repository to request implementations
of vision capabilities for the tasks assigned to the particular
fog device. In some embodiments, for example, the request
from a particular fog device may identify each of its
assigned tasks t.

[0218] The flowchart may then proceed to block 1616 to
identify the appropriate vision capability implementations
for each fog device. In some embodiments, for example, the
vision capability repository may be a dictionary of key-value
pairs in the form of (task t, implementation i), where an
implementation i can be distributed in various forms (e.g., a
dynamic linking library in C/C++). Accordingly, based on
the task(s) t specified in the request from a particular fog
device, the vision capability repository identifies the corre-
sponding implementation(s) i for that fog device. In some
embodiments, for example, the vision capability repository

US 2020/0250003 Al

identifies the optimal implementation of each vision capa-
bility requested by a fog device based on the available
resources of that fog device.

[0219] The flowchart may then proceed to block 1618 to
distribute the identified vision capability implementations to
each fog device. In this manner, each fog device can then
perform its assigned tasks using the appropriate vision
capability implementations.

[0220] At this point, the flowchart may be complete. In
some embodiments, however, the flowchart may restart
and/or certain blocks may be repeated. For example, in some
embodiments, the flowchart may restart at block 1602 to
continue scheduling vision workloads.

[0221] FIG. 17 illustrates an example embodiment of a
runtime processing pipeline 1700 for a visual fog architec-
ture. In the illustrated embodiment, for example, a raw
stream of visual data 1701 (e.g., video or images) captured
by cameras or visual sensors in a visual fog architecture is
provided as input to a stream ingress framework 1702. The
stream ingress framework 1702 decodes the raw stream of
visual data 1701, and a decoded stream 1703 is then pro-
vided as input to a distributed pre-processing framework
1704. The distributed pre-processing framework 1704 then
performs some preliminary processing using certain fog
resources at the network edge (e.g., near the cameras or
sensors that captured the visual data), such as data pre-
processing, filtering, and/or aggregation. The resulting fil-
tered stream 1705 may then be stored in data storage 1706
for subsequent use in responding to visual search queries
and/or user-defined vision functions (UVFs) 1709 from
end-users.

[0222] For example, end-users may subsequently submit
visual search queries and/or user-defined vision functions
(UVFs) 1709 associated with the visual data captured by the
visual fog system. Accordingly, the UVFs 1709 are provided
to a UVF compiler 1710, which compiles the UVFs 1709
into a vision dataflow graph 1711 that can be used to execute
the UVFs. For example, the vision dataflow graph 1711 is
provided to a distributed UVF execution framework 1712,
which distributes or schedules workloads associated with the
vision dataflow graph 1711 across the available fog nodes in
the visual fog architecture.

[0223] After the workloads finish executing, the distrib-
uted UVF execution framework 1712 generates an output
1713 resulting from execution of the UVFs 1709. For
example, the output 1713 may include, or may be derived
from, a filtered stream of visual data and/or metadata 1707
generated by execution of the UVFs 1709. Moreover, in
some embodiments, the resulting stream of visual data
and/or metadata 1707 may then be stored in data storage
1706 for responding to subsequent visual search queries or

UVFs.
[0224] Storage
[0225] As the volume of visual data generated in the

real-world continues to grow, it is becoming increasingly
common for visual data to be processed automatically by
computers rather than manually reviewed by humans. Due
to the increasing volume of visual data, however, data access
has become a bottleneck in visual data processing, as
existing visual data storage approaches suffer from various
deficiencies.

[0226] To illustrate, image classification is a common
visual data operation that uses a neural network to identify
the contents of an image. For example, in machine learning,

Aug. 6, 2020

a convolutional neural network (CNN) is a type of feed-
forward artificial neural network where the input is generally
assumed to be an image. CNNs are commonly used for
image classification, where the goal is to determine the
contents of an image with some level of confidence. For
example, a CNN is first trained for a specific classification
task using a set of images whose object classes or features
have been labeled, and the CNN can then be used to
determine the probability of whether other images contain
the respective object classes.

[0227] Visual data (e.g., images, video) must first be
loaded from a storage system before it can be processed by
a CNN. In the past, the data access latency has typically been
less than the CNN vision processing latency, allowing the
data access to be performed during the CNN processing.
However, as hardware and software optimizations continue
to improve the performance of CNN vision processing
algorithms, the data access latency of existing solutions has
become the bottleneck. Moreover, existing solutions typi-
cally store visual data in its original format rather than a
format designed to aid with visual data processing, which
further hinders performance.

[0228] Existing solutions are also unable to efficiently
search visual data. For example, given a large data set (e.g.,
millions of images), the ability to efficiently identify a subset
of relevant images using a query is important. The output of
a CNN used for image classification typically includes a
vector of values corresponding to the probability of various
objects existing in an image. However, existing solutions
typically use this information for the task at hand and then
discard it, requiring the processing to be repeated for sub-
sequent use. For example, a CNN used to process an image
with a dog and a cat may provide a probability for both, but
if the goal was to find images with dogs, the information
about cats is typically lost or discarded, thus preventing
future use. In this manner, a subsequent search for images
that contain cats would typically require the CNN to be run
again on each image.

[0229] Accordingly, FIG. 18 illustrates an example
embodiment of a visual data storage architecture 1800
designed to provide efficient access to visual data and
eliminate the deficiencies of existing storage solutions used
for visual data processing. In particular, storage architecture
1800 provides efficient metadata storage for searching visual
data, as well as analysis-friendly formats for storing visual
data.

[0230] In the illustrated embodiment, for example, storage
architecture 1800 includes a request server 1802 for receiv-
ing visual search queries from a client API 1801, a metadata
database 1804, a visual compute library 1806, and a persis-
tent data storage 1810, as explained further below.

[0231] In some embodiments, for example, storage archi-
tecture 1800 may provide a unified API 1801 for visual data
access (e.g., for both visual data and metadata). For
example, visual data is commonly stored directly as files or
in various types of databases (e.g., key-value, relational,
and/or graph databases). Visual metadata is typically stored
in databases, for example, while images and videos are
typically stored as files. Moreover, different types of file
systems and databases provide API functions in various
programming and/or query languages in order to enable
users to access and store data. Accordingly, in some embodi-
ments, visual storage architecture 1800 may be implemented
with a unified API (e.g., JSON-based) that supports multi-

US 2020/0250003 Al

modal queries for retrieving any type of visual data from any
storage source. In some embodiments, for example, the
unified API could be used to retrieve and/or combine visual
metadata and the original visual data from different storage
locations. The unified API may also allow certain types of
processing to be performed on visual data before it is
returned to the requesting user. Further, the unified API may
allow users to explicitly recognize visual entities such as
images, feature vectors, and videos, and may simplify access
to those visual entities based on their relationship with each
other and with other entities associated with a particular
vision application.

[0232] Moreover, in some embodiments, a multi-tier lazy
data storage approach may be used to store visual data more
efficiently (e.g., using long- or short-term storage in different
portions of the distributed edge-to-cloud network). For
example, multiple storage tiers may be used to store visual
data in different locations and for varying amounts of time
based on the type or importance of the visual data. In some
embodiments, for example, video cameras may store all
video captured within the past day, gateways may store
video with motion activities within the past week, and the
cloud may store video associated with certain significant
events within the past year.

[0233] Similarly, intelligent placement and aging of visual
data across the storage tiers may further improve the data
storage efficiency (e.g., determining where to store the visual
data within the distributed edge-to-cloud system, when the
data should be moved from hot to warm to cold storage, and
so forth). For example, visual data and metadata can be
distinguished and segregated based on data access patterns.
Moreover, analysis friendly storage formats can be used to
enable data to be read faster when needed for vision pro-
cessing. These various data formats may be used to form the
hot, warm, and cold tiers of data that can be mapped to
various heterogeneous memory and storage technologies,
based on the intended use and lifetime of the data. For
example, storage tiers can be used to represent hot, cold, and
optionally warm data. Hot data is accessed frequently; warm
data is accessed occasionally; and cold data is accessed
rarely (if ever). Accordingly, cold data may be stored on
slower hardware since low access latency for retrieval of the
data is less important. In this manner, intelligent decisions
can be used to determine when and which portions of visual
data should remain in the hot tiers and when it should be
migrated to colder tiers, and which storage format should be
used. For example, regions of interest may remain in hot
storage in the analysis friendly format much longer than the
entire image/video.

[0234] Metadata database 1804 is used to store metadata
in a manner that facilitates efficient searches of visual data.
For example, when performing image classification using a
CNN, the resulting image-object relationships or probabili-
ties can be stored as metadata, and the metadata can be used
for subsequent searches of the images, thus eliminating the
need to repeatedly process the images for each search. For
example, FIG. 19 illustrates an example of a vision process-
ing pipeline 1900 that leverages metadata for searching
visual data. In the illustrated example, a stream of incoming
visual data is received from a network or file system at block
1902, vision processing is performed on the visual data to
derive metadata (e.g., using a CNN) at block 1904, the
metadata is stored at block 1906, search queries for relevant
visual data are received at block 1908, and the search queries

Aug. 6, 2020

are then satisfied using either the metadata obtained at block
1906 or additional vision processing performed at block
1904.

[0235] In some embodiments, storage architecture 1800
may store visual metadata as a property graph to identify
relationships between visual data, such as images that con-
tain the same object or person, images taken in the same
location, and so forth. For example, FIGS. 20 and 21
illustrate examples of representing visual metadata using a
property graph. In this manner, visual metadata can be easily
searched to identify these relationships, thus enabling flex-
ible search queries such as “find all images taken at location
Y that contain person A.”

[0236] Moreover, in some embodiments, metadata data-
base 1804 of storage architecture 1800 may be implemented
as a persistent memory graph database (PMGD) to enable
visual metadata to be searched more -efficiently. For
example, using persistent memory (PM) technology, a graph
database containing the visual metadata can be stored both
in-memory and persistently. In this manner, a persistent
memory graph database (PMGD) can be designed to lever-
age a memory hierarchy with data structures and transac-
tional semantics that work with the PM caching architecture,
reduce write requests (addressing PM’s lower write band-
width compared to DRAM), and reduce the number of
flushes and memory commits. This approach enables a graph
database of visual metadata to be searched efficiently to
identify relevant visual data.

[0237] Further, feature vector storage optimizations may
be used to achieve fast searching of visual metadata. For
example, feature vectors can be generated by various vision
algorithms to identify regions or features of interest in visual
data (e.g., faces, people, objects), and they are typically
represented as vectors of n-dimensional floating-point val-
ues. Finding the nearest neighbor for a given feature vector
is a common operation that is computationally expensive,
especially at the cloud scale due to billions of potential
feature vectors (e.g., a feature vector for each interesting
region of each image or video frame). Accordingly, in some
embodiments, feature vectors may be represented and stored
as visual metadata using an efficient format. For example,
visual metadata may be stored using an analysis-friendly
array format that indicates where the feature vectors reside,
and an index may be built on interesting dimensions within
the metadata storage to narrow the search space.

[0238] Storage architecture 1800 also includes a separate
data storage 1810 for storing the visual data itself, such as
images or videos. Segregating the metadata and visual data
in this manner enables each type of data to be mapped to the
most suitable hardware in a heterogeneous system, thus
providing flexibility for the request server 1802 to identify
the most efficient way to handle a visual data request.
[0239] Moreover, storage architecture 1800 is also capable
of storing visual data on data storage 1810 using an analytic
image format designed to aid in visual processing. In the
illustrated embodiment, for example, visual compute library
(VCL) 1806 of storage architecture 1800 is designed to
handle processing on analytic image formats 1807 in addi-
tion to traditional formats 1808. For example, visual com-
pute library 1806 can implement an analytic image format
1807 using an array-based data management system such as
TileDB, as described further with respect to FIG. 22. The
analytic image format 1807 provides fast access to image
data and regions of interest within an image. Moreover,

US 2020/0250003 Al

since the analytic image format 1807 stores image data as an
array, the analytic image format 1807 enables visual com-
pute library 1806 to perform computations directly on the
array of image data. Visual compute library 1806 can also
convert images between the analytic image format 1807 and
traditional image formats 1808 (e.g., JPEG and PNG).
Similarly, videos may be stored using a machine-friendly
video format designed to facilitate machine-based analysis.
For example, videos are typically encoded, compressed, and
stored under the assumption that they will be consumed by
humans. That assumption is often leveraged for video
encoding by eliminating information that human eyes and
brains cannot process. Videos intended for machine-based
processing, however, may benefit from alternative storage
methods designed to speed up the time required to retrieve
full images or regions of interest within a video or video
frame, and even enhance the accuracy of machine-learning
video processing mechanisms.

[0240] FIG. 22 illustrates an example embodiment of an
analytic image format 2200 designed to aid in visual data
processing. In some embodiments, for example, storage
architecture 1800 may use analytic image format 2200 to
store images in a format that facilitates visual data process-
ing and analysis.

[0241] Deep learning neural networks, such as CNNs, are
frequently used for image processing, including object/edge
detection, segmentation, and classification, among other
examples. Images are typically read from disk during both
training and inferencing, for example, using background
threads to pre-fetch images from disk and overlap the disk
fetch and decode times with the other compute threads.
However, compute cycles may still be wasted reading the
images from disk and decompressing/decoding the images
to prepare them for processing, thus reducing the overall
throughput (e.g., images/second) of an image processing
system.

[0242] Moreover, traditional lossy image formats (e.g.,
JPEG) are designed to compress image data by discarding
high-frequency information that is not perceptible by
humans. While the discarded information may be meaning-
less to humans, however, it can improve the accuracy and
performance of deep learning neural networks used for
image processing.

[0243] For example, images can be compressed either in a
lossless or lossy manner. Lossless image compression pre-
serves all the information in the image, while lossy com-
pression takes advantage of visual perception and statistical
properties to achieve better compression rates, but results in
some data being lost. The JPEG compression algorithm is a
commonly used lossy algorithm that is often used for images
on the web. The JPEG algorithm is based on discrete cosine
transforms (DCT), and discards high-frequency details that
are not perceptible to the human eye, which results in much
smaller image file sizes. However, in cases where exact
image reproduction is required, or when the image will be
edited multiple times, lossless compression is preferred. For
example, PNG is an image file format that supports lossless
compression using a bitmap image. With PNG, images are
transformed using a filter type on a per-line basis, and then
compressed using the DEFLATE algorithm. There are
numerous other image formats with similar technologies
behind them that are suitable for different applications and
use cases. While a traditional lossless image format (e.g.,

Aug. 6, 2020

PNG) could be used to retain all image data for image
processing purposes, that comes at the cost of a lower
compression rate.

[0244] Further, images stored using traditional formats
(e.g., JPEG and PNG) must be converted into an internal
array format before any processing can begin. For example,
before any operations can be performed on images stored
using traditional formats, the entire image file must be read
from disk and decoded into an internal array format. In
analytics, however, operations such as resizing and cropping
are often performed before any sort of learning or under-
standing happens, thus rendering traditional image formats
inefficient for image processing and analytics.

[0245] Accordingly, traditional image formats (e.g., JPEG
and PNG) are designed for human consumption, and per-
forming operations on them is often time-consuming and
inefficient. Moreover, lossy image formats (e.g., JPEG)
discard information that may be useful in machine learning,
and thus are not well-suited for image processing. Moreover,
while existing database management systems could be used
to store images, they are not designed for image data and
thus do not store image data efficiently.

[0246] The analytic image format 2200 of FIG. 22 is
designed to aid in image processing and alleviate the defi-
ciencies of existing image formats. For example, image
format 2200 is implemented using an array-based data
storage format that is lossless and eliminates the expensive
decoding process that is required for processing traditional
image formats. In some embodiments, for example, analytic
image format 2200 could be implemented using an array-
based data storage manager such as TileDB. TileDB is a data
management system designed for efficiently managing large
volumes of scientific data represented using arrays. While
TileDB is not specific to images, it is designed to provide
fast access to array-based data. Accordingly, in some
embodiments, image format 2200 can be implemented using
TileDB to achieve the performance boost of TileDB for
image processing purposes.

[0247] Insome embodiments, for example, analytic image
format 2200 can be implemented by defining how the pixel
data of an image is stored and accessed in an array-based
format (e.g., using an array-based data storage manager such
as TileDB). In this manner, image format 2200 enables
efficiency in processing large images, which reduces the
overall time for image analytics. As visual understanding
algorithms get faster and the hardware to perform the
algorithms gets better, the time to retrieve and process the
images is becoming more and more significant. However, by
using analytic image format 2200, storage and retrieval of
images does not become a bottleneck in the visual process-
ing pipeline.

[0248] For example, analytic image format 2200 allows an
image to be stored as a lossless compressed array of pixel
values. Accordingly, when image data is needed for pro-
cessing, the image data does not need to be decoded before
being processed, as required for traditional image formats.
This improves the speed at which data is retrieved and made
usable, yet still provides some level of compression. While
this approach requires images to be written to the analytic
image format 2200 prior to training or inference, the addi-
tional write overhead is minimal.

[0249] Moreover, because TileDB outperforms many
array database managers for both sparse and dense data
access, it is an ideal choice for implementing analytic image

US 2020/0250003 Al

format 2200. In other embodiments, however, analytic
image format 2200 can be implemented using any other type
of array-based data manager or data format. The use of a
fast, enhanced array storage system such as TileDB enables
image format 2200 to eliminate slow reads of images from
disk, and remove the in-loop conversion of traditional image
formats to arrays.

[0250] Image format2200 is also beneficial in applications
where subarray accesses are common, such as accessing
regions of interest in an image. For example, an array data
manager such as TileDB can be used to improve the speed
of common operations that are needed for image analytics,
such as resize and crop, by enabling fast subarray accesses.
[0251] FIG. 22 illustrates the process of converting an
image into an analytic image format 2200 using an array-
based data manager such as TileDB. In the illustrated
example, the original image is first received 2202 and is then
divided into a plurality of tiles 2204 using an optimal tile
size, and the tiles are then compressed and written to
memory on a per-tile basis 2206 using an array-based
storage format.

[0252] In some embodiments, the optimal tile size for
analytic operations can be dynamically determined for each
image. For example, in order to determine the optimal tile
size for a particular image, a random portion of the image
may be selected and then processed using different tile sizes
and compression algorithms in order to determine the ideal
tile size and compression for that image. Moreover, since
image processing operations are often postponed until the
data is actually needed, there is a period of time available to
carry out the experimentation without impacting perfor-
mance.

[0253] An image that does not fit perfectly into tiles of the
selected tile size will have partially empty tiles that are
padded with empty characters, as depicted in FIG. 22. In this
manner, the original size of the image may be stored as
metadata (e.g., height, width, and number of channels), and
when the image is subsequently read from storage, the
metadata can be checked to determine the actual dimensions
of the image to avoid reading the empty characters or
padding.

[0254] For high-resolution images, image format 2200
improves the speed of common operations such as reading
and writing, as well as the speed of operations used in image
analytics, such as cropping and resizing. For example,
storing images using image format 2200 improves read
performance, as the images are compressed but not encoded,
and thus do not need to be decoded when they are read from
the file system. In addition, image format 2200 enables fast
access to subarrays of image pixels, making cropping a
simple matter of reading a particular subarray rather than
reading the entire image and then cropping it to the appro-
priate size.

[0255] For example, FIG. 23 illustrates a graph 2300
comparing the performance of analytic image format 2200
from FIG. 22 with the PNG image format, which is a
traditional lossless image format. As shown by FIG. 23, the
analytic image format provides better performance than
PNG for writes, reads, crops, and resizes. The largest
improvement is seen in cropping, as the analytic image
format allows only the pertinent information to be read from
the file, rather than reading the entire image file and then
cropping to the desired size. Accordingly, the performance
improvement for common data access and analytic opera-

Aug. 6, 2020

tions demonstrates that analytic image format 2200 is highly
beneficial for image processing purposes.

[0256] FIG. 50 illustrates an example write processing
flow 5000 for traditional and analytic image formats. In the
illustrated processing flow 5000, for example, raw pixel data
5002 can be written to disk 5010 using either a traditional
image format or an analytic image format. The top path of
processing flow 5000 illustrates the flow for writing tradi-
tional image formats (e.g., PNG), while the bottom path
illustrates the flow for writing analytic image formats.

[0257] With respect to traditional image formats, for
example, raw pixel data 5002 is encoded 5004, compressed
5006, and then stored 5010. With respect to analytic image
formats, however, raw pixel data 5002 is compressed 5008
and then stored 5010, but the encoding step is omitted.
While the resulting analytic image format may result in a
larger file size on disk, the latency of data access operations
(e.g., writes) and other image operations may be reduced.

[0258] Moreover, the read processing flow for traditional
and analytic image formats may be implemented as the
reverse of the write processing flow 5000. For example, with
respect to traditional image formats, the encoded/com-
pressed data is read from disk, decompressed, and then
decoded into the original image. With respect to analytic
image formats, the compressed data is read from disk and
then decompressed into the original image, but the decoding
step is omitted since the encoding step was omitted during
the write processing flow 5000.

[0259] TABLE 1 illustrates an example analytic image
format schema. In some embodiments, for example, the
analytic image format schema of TABLE 1 could be imple-
mented using an array-based database manager (e.g.,
TileDB) to store images as dense arrays.

TABLE 1

Example analytic image format

PARAMETER TYPE EXAMPLE VALUE
cell order fixed oW major
tile order fixed oW major
number of dimensions fixed 2
dimension names fixed “height”, “width”
number of attributes fixed 1
compression fixed Lz74

array height variable 3534

array width variable 5299
domain variable [0, 3533, 0, 5298]
tile height variable 589

tile width variable 757

[0260] The schema of TABLE 1 specifies parameters
about the array that can be used to arrange the image data.
Moreover, some parameters of the analytic image format are
fixed, while others are determined on a per-image basis. For
example, images have only two dimensions, a height and a
width, thus fixing the number of dimensions as well as the
names of the dimensions. The number of attributes is set to
one, which means each cell holds the blue, green, and red
(BGR) values for the corresponding pixel. All three values
are generally read together, as a pixel is defined by all three
values. In other embodiments, however, the color values
may be stored separately. The intra-tile and array-level tile
ordering is fixed to be row major. Row major order means
that data is written and read from left to right in rows within

US 2020/0250003 Al

a tile, and tiles are written and read in the same manner. This
information allows the array database to efficiently perform
subarray reads.

[0261] The dimensions and domain of the array depend on
the resolution of the original image and therefore are cal-
culated dynamically on a per-image basis. Since images
often do not have an evenly divisible number of pixels in one
or both dimensions, this occasionally results in the dimen-
sions of an array not matching the original resolution of the
image. This is reflected in TABLE 1, where the array height
is one pixel larger than the image height. To make up the
difference between an image dimension and an array
domain, the image is padded with empty characters. An
example of this can be seen in FIG. 22, where the white
space within certain tiles corresponds to empty characters. In
the actual array, the size of the array domain is increased by
a single pixel when needed. The original size of the image
(height, width, and number of channels) is stored as meta-
data by default. When an image in the analytic format is
read, the metadata is read first in order to determine the
dimensions of the image, thus avoiding reading the empty
characters.

[0262] Tile extents depend on the array dimensions and
are calculated once the array dimensions are known. All tiles
have the same height and width. The optimal number of tiles
may vary based on image content and resolution, and thus in
some embodiments, the optimal number of tiles may be
determined on a per-image basis. For example, in order to
determine the best tile size, a portion of the image may be
randomly selected and tested using different tile sizes and
compression algorithms to determine the best combination
for that image. Since all operations are postponed until the
data is actually needed, there is a period of time to carry out
the experimentation that does not affect the performance. In
other embodiments, however, a predefined minimum num-
ber of tiles per dimension (e.g., 4 tiles per dimension) may
be used as a basis to determine tile height and width.
[0263] The compression algorithm used to compress the
analytic image data has a fixed default (e.g., the 1L.Z4
compression algorithm), but other compression algorithms
can be set manually.

[0264] FIG. 51 illustrates an example embodiment of a
visual compute library (VCL) 5100 for traditional and
analytic image formats. For example, VCL 5100 provides an
interface through which a user can interact with the analytic
image format as well as traditional image formats.

[0265] When a user creates an analytic image using VCL
5100, the analytic image schema is automatically set using
the parameters described above in TABLE 1. VCL 5100 then
creates a layer of abstraction with function calls of TileDB
5102 (e.g., the array-database manager used in the illustrated
embodiment) combined with specialized transformation
operations to provide an interface to the analytic image.
VCL 5100 also extends the abstraction layer to OpenCV
5104, providing support for PNG and JPEG image formats.
VCL 5100 uses OpenCV 5104 to perform both /O and
transformation operations on images that are stored in either
PNG or JPEG format. For images stored in the analytic
format, VCL 5100 handles the transformation operations
and uses TileDB 5102 for /O operations.

[0266] To initially store an image in the analytic format,
the raw pixel data of an image is passed to VCL 5100 in
some manner (e.g., as a path to a PNG or JPEG file stored
on disk, an OpenCV matrix, a buffer of encoded pixel data,

Aug. 6, 2020

a buffer of raw pixel data, and so forth). This data is
converted to a raw pixel buffer in order to write to the
analytic format. Since the TileDB array schema for images
has already been set at this point (e.g., using the parameters
of TABLE 1), the TileDB functions can be used to write the
data to disk.

[0267] Reading an image in the analytic format requires
the metadata to be read first to determine the original image
resolution. This ensures that only image data is read and that
empty characters are ignored. The raw analytic-format or
TileDB data is read into a buffer, keeping the data in the
order in which it was written, which is referred to as “tile
order” (e.g., as illustrated in FIG. 52). This is because if the
data never needs to be returned to the user (e.g., if the user
just wants to manipulate it and write it out again), it is faster
to use the tile order buffer. In cases where the data is to be
returned to the user, however, the buffer is re-ordered into
image order, which results in a buffer that has each row of
the image sequentially (e.g., as illustrated in FIG. 52). Image
order, for example, is typically expected by other programs
such as OpenCV 5104.

[0268] Crop, another frequently used operation in image
processing, is used to retrieve a region of interest within an
image for processing. Rather than reading the entire image
and then selecting a sub-region (as is required for traditional
image formats), the analytic or TileDB crop function uses
the crop parameters to specify a subarray of the analytic
image data. The subarray is then the only portion of the
image that is read.

[0269] Resize, another frequently used operation in image
processing, is used to resize the dimensions of an image
(e.g., to either a smaller or larger size). The TileDB resize
occurs after the image has been read, but while the data is
still in tile order. VCL 5100 implements a version of resize
for TileDB that uses a bilinear interpolation, following the
OpenCV default. For example, in a linear interpolation, a
new value is calculated based on two points; bilinear inter-
polation does this in two different directions and then takes
a linear interpolation of the results. These points are iden-
tified by (row, column) in the original image. Given the data
is in tile order, it is necessary to identify which tile each
point is part of in order to locate the value of that point in
the buffer. The resulting resized image buffer is in image
order, although other approaches may be used to keep it in
tile order.

[0270] Compression/Compressive Learning

[0271] The performance of large-scale visual processing
systems can be improved using efficient compression algo-
rithms and techniques for storing and processing visual data.
The compression approaches of existing visual processing
solutions, however, suffer from various deficiencies. For
example, existing solutions require visual data to be fully
decompressed before any processing can be performed (e.g.,
using deep learning neural networks). Moreover, existing
solutions typically compress and store images individually,
thus failing to leverage the potential compressive benefits of
collections of similar or related images with redundant
visual data.

[0272] Accordingly, this disclosure presents various
embodiments for compressing and processing visual data
more efficiently. In some embodiments, for example, neural
networks can be designed to operate on compressed visual
data directly, thus eliminating the need to decompress visual
data before it can be processed. Moreover, context-aware

US 2020/0250003 Al

compression techniques can be used to compress visual data
and/or visual metadata more efficiently. For example, con-
text-aware compression can be used to compress distinct
instances of redundant visual data more efficiently, such as
a group of images taken close in time, at the same location,
and/or of the same object. Similarly, context-aware com-
pression can be used to compress visual metadata more
efficiently (e.g., using a context-aware lossless compression
codec). In some embodiments, for example, visual metadata
could be compressed by pre-training a convolutional neural
network (CNN) to classify visual metadata, replacing long
strings of visual metadata with shorter symbols (e.g., pre-
defined human codes), performing multi-scale de-duplica-
tion on the visual metadata, and finally compressing the
resulting visual metadata using a compression algorithm
(e.g., the LL.Z77 lossless compression algorithm or another
similar alternative).

[0273] FIGS. 24A-C and FIG. 89 illustrate example
embodiments of a multi-domain cascade convolutional neu-
ral network (CNN). In distributed visual analytics systems,
for example, image and video is often compressed before
transmission (e.g., from the pixel domain to a compressed
domain), and subsequently decompressed after transmission
(e.g., back to the pixel domain) before any processing can be
performed, such as deep learning using neural networks. As
an example, image and video captured by edge devices may
be compressed and transmitted to the cloud, and then
decompressed by the cloud before any further processing
begins.

[0274] This approach suffers from various disadvantages.
First, extra computation is required to fully decompress the
visual data before it can be processed, thus significantly
increasing the total processing time (e.g., by up to 100% in
some cases). For example, before processing can be per-
formed, the visual data must be fully decompressed back to
the pixel domain using hardware or software decoding.
Accordingly, given that not all processors include built-in
video decompression accelerators, decompression may
incur an additional cost for video analytics.

[0275] Next, extra bandwidth is required to transmit the
decompressed data between separate processing compo-
nents (e.g., between a decompression engine and an analysis
engine), thus significantly increasing bandwidth usage (e.g.,
by up to 20 times in some cases).

[0276] Moreover, the requirement to fully decompress
visual data prior to processing precludes the ability to
leverage a fully distributed neural network in the edge-to-
cloud sense. For example, the use of distributed analytics to
process visual data exclusively in the pixel domain requires
the visual data to be analyzed at multiple scales.

[0277] Further, relying on the cloud to perform processing
on visual data captured by edge devices often results in
wasted transmission bandwidth, as many images or videos
transmitted from the edge to the cloud may not contain any
objects or features of interest. In many cases, for example,
it could be possible to perform object detection and classi-
fication closer to the network edge (e.g., near the sensors that
capture the visual data) using lower complexity analytics
algorithms, potentially saving the transmission cost of insig-
nificant or unimportant data.

[0278] Accordingly, FIGS. 24A-C illustrate an example
embodiment of a multi-domain cascade CNN 2400 that can
be used to process visual data in the compressed and pixel
domains, thus eliminating the requirement to decompress

Aug. 6, 2020

visual data before it can be processed. In this manner,
multi-domain cascade CNN 2400 can be used to perform
distributed visual analytics in a visual fog system using
compressed domain data as input.

[0279] In some embodiments, for example, multi-domain
cascade CNN 2400 may be a cascaded CNN that includes
multiple decision stages. For example, in a first or early
decision stage, a subset of the compressed domain visual
data or features may be used (e.g., motion vectors) to
attempt to generate an early decision. If the visual data
cannot be detected or classified in the early stage, additional
compressed domain data (e.g., motion prediction residuals)
may be provided as input to a subsequent or late decision
stage. Finally, for improved accuracy and/or in the event the
late decision stage is unsuccessful, the visual data may be
fully decompressed and a final decision stage may be
performed using the decompressed visual data.

[0280] In the illustrated embodiment, for example, CNN
2400 includes an early decision stage (illustrated in FIG.
24A), a late decision stage (illustrated in FIG. 24B), and a
final decision stage (illustrated in FIG. 24C). Moreover,
CNN 2400 is designed to process compressed visual data
2402 as input (e.g., video sequence data compressed with a
motion-compensated predictive coding scheme such as
H.264).

[0281] In some embodiments, for example, compressed
visual data 2402 provided as input to CNN 2400 may first be
partially decoded to separate and extract different syntax
elements (e.g., motion vectors, macroblock (MB) coding
modes, quantized prediction residuals), thus producing a
subset of partial compression data 2404.

[0282] As shown in FIG. 24 A, in the early decision stage,
the partial compression data 2404 (e.g., motion vectors) is
provided as input to a first stage CNN 24054 to attempt to
identify an early decision 2406. In some embodiments, the
CNN processing may then terminate if an early decision can
be made. For example, in some embodiments, the early
decision stage may be performed by a fog or edge node near
the sensor that captured the visual data. Accordingly, if an
early decision can be made, it may be unnecessary to
transmit additional visual data to another node (e.g., in the
cloud) for a subsequent processing stage, thus saving band-
width and/or resources (e.g., energy) that would otherwise
be required for the later stage. For example, assuming the
goal is to detect moving pedestrians using traffic cameras, if
there is no motion detected, there likely are no moving
objects. Accordingly, an early decision can be made, and any
further transmission or processing of the visual data can be
aborted. In other embodiments, however, the subsequent
CNN processing stages of CNN 2400 may still be performed
even if an early decision can be made. Moreover, the
complexity of the first stage CNN 24054 may vary based on
different use cases, resource availability, and so forth.
[0283] If the early decision stage is unable to detect or
classify the partial compression data 2404 using the first
stage CNN 2405a, CNN 2400 may proceed to a late decision
stage, as shown in FIG. 24B. In the late decision stage of
FIG. 24B, for example, additional compression data 2410
(e.g., motion prediction residuals) is evaluated using a
second stage CNN 240556 to attempt to determine a late
decision 2408.

[0284] Finally, for improved accuracy and/or in the event
the late decision stage is unsuccessful (e.g., the late decision
stage is unable to detect or classify the additional compres-

US 2020/0250003 Al

sion data 2410 using the second stage CNN 24055), CNN
2400 may proceed to a final decision stage, as shown in FIG.
24C. In the final decision stage of FIG. 24C, for example, the
compressed visual data 2402 may be fully decompressed
using a decompression engine 2412, and the decompressed
visual data 2414 (e.g., pixel domain data) may then be
evaluated using a final stage CNN 2405¢ to determine a final
decision 2416.

[0285] Accordingly, the collective stages of multi-domain
cascade CNN 2400 are depicted in FIG. 24C, where an early
stage is used to generate an early decision based on an initial
subset of compressed domain data, and later stages are used
to generate re-fined or final decisions based on additional
compressed domain data and eventually pixel domain data.
[0286] The described embodiments of multi-domain cas-
cade CNN 2400 provide numerous advantages. First, visual
data (e.g., images or video) does not need to be fully
decompressed before its contents can be analyzed using
deep learning neural networks, thus reducing memory usage
and computation typically required for decoding or decom-
pressing the visual data. Next, the cascading approach of
CNN 2400 avoids the need to transmit certain compressed
data to the cloud, such as when an early decision can be
reached by an edge or fog node, thus improving bandwidth
usage. Finally, a large portion of the overall analysis often
occurs in the early decision stage, which typically involves
a simplified CNN or machine learning model, thus reducing
the overall computational complexity.

[0287] FIG. 89 illustrates a flowchart 8900 for an example
embodiment of a multi-domain cascade convolutional neu-
ral network (CNN). In various embodiments, for example,
flowchart 8900 may be implemented using the visual com-
puting architecture and functionality described throughout
this disclosure.

[0288] In the illustrated example, the cascaded CNN is
designed to process visual data captured by edge devices
(e.g., sensors and/or cameras) in multiple stages using a
different CNN at each stage. For example, the early stages
may use CNNs primarily designed to process compressed-
domain data, while the later stages may use CNNs primarily
designed to process pixel-domain data.

[0289] Moreover, in some embodiments, the respective
stages may be performed by different processing devices
deployed between the network edge (e.g., near the source of
the visual data) and the cloud. For example, when visual data
is captured, compressed, and transmitted from the edge to
the cloud, the respective nodes and/or processing devices
along the path of traversal may perform certain processing
stage(s). In some embodiments, for example, processing
devices near the network edge may perform early processing
stages using CNNs that primarily operate on compressed-
domain data, while processing devices in and/or near the
cloud may perform later processing stages using CNNs that
primarily operate on pixel-domain data. Moreover, process-
ing devices in the fog (e.g., between the edge and the cloud)
may perform processing stages in the middle using CNNs
that operate on compressed-domain data, pixel-domain data,
and/or a combination of both.

[0290] In this manner, visual data can be processed in a
distributed manner as it traverses the respective devices and
nodes along the path from the edge to the cloud, without
having to decompress the visual data at each hop.

[0291] For example, given that edge devices (e.g., devices
at or near the source of the visual data) are typically

Aug. 6, 2020

resource-constrained devices, they may be designed to per-
form limited initial processing (e.g., using lower-complexity
algorithms) directly on the compressed visual data.

[0292] In some embodiments, for example, these “early-
stage” devices may use CNNs that are trained to process
certain types of compressed-domain features, such as
motion vectors, prediction residuals, transform coefficients,
quantization parameters, macroblock (MB) modes, and so
forth. Motion vectors, for example, are used to represent
motion that occurs between compressed video frames that
contain similar content, while prediction residuals are used
to represent the difference or residual between similar video
frames (e.g., after applying a motion vector). Transform
coeflicients are the coefficients of the particular type of
transform used to compress the data, such as a discrete
cosine transform (DCT), integer transform, continuous
wavelet transform (CWT), fast fourier transform (FFT), and
so forth. Quantization parameters serve to reduce the pre-
cision of certain portions or blocks of visual data based on
importance (e.g., low-frequency blocks such as backgrounds
may be represented with less precision without impacting
human perception). Macroblock (MB) modes refer to the
types of transforms (e.g., DCT, integer, CWT, FFT) and
parameters that are used to compress different blocks of
visual data.

[0293] Accordingly, the CNNs used by the “early-stage”
devices may be trained to analyze certain types of com-
pressed-domain features, such as any of those discussed
above. In this manner, these “early-stage” devices can
perform some level of initial processing without having to
decompress the visual data (e.g., using certain features of the
compressed data). Moreover, in some embodiments, certain
types of metadata that may be included in the compressed
bitstream may also be used in the “early-stage” analysis.
Further, in some embodiments, if an edge device that
originally captured the visual data has sufficient processing
capabilities (e.g., a smart-camera), that device may perform
some initial processing on the raw visual data before it is
compressed for transmission. Moreover, when the visual
data is subsequently compressed and transmitted to other
devices for subsequent CNN processing stages, metadata
generated from the initial processing may be included as part
of the compressed visual data.

[0294] Moreover, if these “early-stage” devices are able to
sufficiently interpret the visual data based on the initial
processing, subsequent transmission and/or processing of
the visual data may be avoided. For example, with respect to
a surveillance application, if an early-stage device is able to
conclude that there is no movement within the captured
visual data, the device may conclude that no further pro-
cessing is necessary. However, if the early-stage device
either detects movement or is unable to reliably determine
whether there is any movement, the early-stage device may
send some or all of the compressed data to the next pro-
cessing device or node in the network, which may perform
a subsequent stage of processing using a different CNN.
[0295] In this manner, after a particular device completes
an associated processing stage, the device may forward
certain data along for further processing, or the device may
terminate the processing altogether, depending on whether
the device was able to definitively reach a decision and/or
interpret the visual data. For example, if the device is unable
to definitively reach a decision, the device may forward
some certain visual data to the next device or node, such as

US 2020/0250003 Al

some or all of the compressed data, certain decompressed
data, and/or any relevant metadata that was generated during
the current or preceding processing stages. In some cases,
for example, even when a device is unable to definitively
interpret the visual data, the device may be able to draw
certain conclusions and/or derive certain information asso-
ciated with the visual data, which it may represent as visual
metadata. Accordingly, if helpful, this visual metadata may
also be forwarded to the processing devices used to perform
subsequent stages.

[0296] In this manner, the CNNs associated with subse-
quent stages may be designed to process additional features
associated with the visual data (e.g., additional types of
compressed-domain data, visual metadata generated during
preceding stages, and eventually raw uncompressed visual
data) using algorithms that are progressively more complex
as the visual data flows through more sophisticated process-
ing nodes in or near the cloud. Eventually, if the processing
performed in preceding stages is inconclusive or incomplete
when the visual data reaches a device in or near the cloud
(e.g., a cloud-based server), the device may fully decom-
press the visual data in order to process the raw visual data
using a more sophisticated, computationally-intensive CNN.
[0297] In the example illustrated by FIG. 89, flowchart
8900 implements an example embodiment of a cascaded
CNN. The flowchart begins at block 8902 by capturing
visual data using one or more sensors, such as cameras
and/or other types of vision sensors, which may be deployed
at or near the “edge” of a network.

[0298] The flowchart then proceeds to block 8904, where
the visual data is compressed by a first device. For example,
the first device may be one of a plurality of devices in a
distributed computing network, such as a sensor that cap-
tured the visual data and/or another edge device near that
sensor. Moreover, the first device may compress the visual
data using any suitable compression technique(s) (e.g.,
H.264).

[0299] The flowchart then proceeds to block 8906, where
the compressed data is transmitted from the first device to,
and subsequently received by, another device in the network
(e.g., a nearby edge device such as an edge gateway).
[0300] The flowchart then proceeds to block 8908, where
the received data is processed using an associated CNN. For
example, each device that receives some form of the com-
pressed visual data may perform a particular stage of pro-
cessing on the compressed data. Moreover, each stage of
processing may be performed using a different convolutional
neural network (CNN) trained to analyze different types of
visual data (e.g., compressed visual data, raw visual data,
and/or some combination of both).

[0301] For example, certain devices at or near the network
edge, and/or in the fog, may use CNNs that are designed to
operate on compressed data directly, such as by analyzing
certain types of compressed data features (e.g., motion
vectors, prediction residuals, transform coefficients, quanti-
zation parameters, and/or macroblock coding modes). In
some embodiments, for example, the CNNs used by differ-
ent edge devices may be respectively designed to operate on
different types of compressed data features. Moreover, in
some embodiments, the different types of compressed data
features may be respectively generated and/or provided by
different sources (e.g., sensors or other devices).

[0302] As another example, certain devices in the fog
(e.g., somewhere between the edge and cloud) may use

Aug. 6, 2020

CNNs that are designed to operate on compressed data,
uncompressed data, and/or some combination of both,
depending on their processing capabilities. Finally, certain
devices in or near the cloud may use CNNs that are designed
to operate on partially decompressed data and/or fully
decompressed visual data.

[0303] Accordingly, when a particular device receives the
compressed visual data, the device may perform a current
stage of processing using the current CNN associated with
that device.

[0304] The flowchart then proceeds to block 8910, where
an output is obtained from the CNN for the current process-
ing stage. In some cases, for example, the output from the
CNN may indicate certain information associated with the
visual data, such as the likelihood of the visual data con-
taining certain features, objects, actions, movements, char-
acteristics, scenarios, conditions, and so forth.

[0305] The flowchart then proceeds to block 8912 to
determine if the processing associated with the visual data is
complete (e.g., based on the output from the CNN(s) used in
the current and/or preceding processing stages).

[0306] For example, if the CNN in the current processing
stage was unable to sufficiently interpret the visual data for
purposes of deriving requisite information and/or reaching
certain processing decision(s), the processing associated
with the visual data may be incomplete. Accordingly, the
flowchart proceeds back to block 8906, where the com-
pressed data is transmitted to other processing device(s) in
the network to perform additional stages of processing using
different CNNG.

[0307] The flowchart repeats in this manner as the com-
pressed visual data is transmitted across the respective
processing devices from the edge to the cloud, until it is
eventually determined at block 8912 that the processing is
complete. For example, if the CNN in the current processing
stage was able to sufficiently interpret the visual data for
purposes of deriving requisite information and/or reaching
certain processing decision(s), the processing associated
with the visual data may be complete, and the flowchart may
proceed to block 8914 to output a result associated with the
visual data. For example, the result may indicate the par-
ticular information and/or decisions that were derived based
on the processing associated with the visual data.

[0308] At this point, the flowchart may be complete. In
some embodiments, however, the flowchart may restart
and/or certain blocks may be repeated. For example, in some
embodiments, the flowchart may restart at block 8902 to
continue capturing and processing visual data.

[0309] FIGS. 25-31 illustrate the use of butterfly opera-
tions to implement a multi-domain convolutional neural
network (CNN) that is capable of processing both raw and
compressed visual data.

[0310] As discussed above, many visual analytics systems
require visual data to be fully decompressed before any
visual processing can be performed (e.g., using deep learn-
ing neural networks), which is an approach that suffers from
various inefficiencies, including higher processing latency,
additional transmission bandwidth, and so forth. Accord-
ingly, this disclosure presents various embodiments of a
deep learning neural network that is capable of analyzing
compressed visual data directly. In particular, the described
embodiments present a multi-domain CNN that uses butter-
fly operations to enable visual data processing in either the
pixel domain or the compressed domain.

US 2020/0250003 Al

[0311] To illustrate, existing deep learning CNNs (e.g.,
inception or ResNet CNN models) typically repeat an inner
module multiple times, and the inner module aggregates the
results from multiple convolution layers and/or the original
input at the end (analogous to a bottleneck). For example,
FIGS. 25A-B illustrate a traditional 27-layer inception
model CNN 2500, and FIGS. 26 and 27 illustrate example
inner modules 2600 and 2700 for an inception model CNN.
In particular, FIG. 26 illustrates an inner module 2600
implemented without dimension reduction, while FIG. 27
illustrates an inner module 2700 implemented with dimen-
sion reduction. These CNN implementations are designed to
process visual data in the pixel domain (e.g., raw or uncom-
pressed visual data).

[0312] FIGS. 28 and 29, however, illustrate example CNN
inner modules 2800 and 2900 that use butterfly operations to
enable multi-domain visual data processing in either the
pixel domain or the compressed domain. Butterfly opera-
tions, for example, are partial inverse transforms that can be
used when transforming compressed domain data (e.g., DCT
domain data) back to the pixel domain. Accordingly, by
incorporating butterfly layers into a CNN, the CNN can be
provided with compressed visual data as its original input,
and as the compressed data is processed by the successive
CNN layers, the compressed data is at least partially
inversely transformed using the butterfly layers in the CNN.
[0313] FIG. 28 illustrates an inner CNN module 2800
implemented without dimension reduction, while FIG. 29
illustrates an inner CNN module 2900 implemented with
dimension reduction. Moreover, as shown in these
examples, additional butterfly layers or filters are added in
parallel to the regular convolution layers. In some embodi-
ments, for example, 2x2 and/or 4x4 butterfly operations can
be added in parallel to the regular convolution and pooling
layers. For example, in some embodiments, the butterfly
operations could be implemented similar to the example
butterfly operation illustrated in FIGS. 31A-B.

[0314] With respect to inner module 2800 of FIG. 28, for
example, butterfly layers 2830a,b are added in parallel to
convolution layers 2810a-c¢ and pooling layer 2820, and the
butterfly layers 2830 include vertical N-point butterfly
operations 2830a and horizontal N-point butterfly opera-
tions 28305. For example, in some embodiments, the but-
terfly operations may be performed on both vertical and
horizontal data elements within the visual data. Similarly,
with respect to inner module 2900 of FIG. 29, butterfly
layers 2930a,b are added in parallel to convolution layers
2910a-e and pooling layers 2920a-b, and the butterfly layers
2930 include vertical N-point butterfly operations 2930a and
horizontal N-point butterfly operations 29305.

[0315] Note that this approach, however, does not require
multiple butterfly layers to be stacked within a single inner
module, as the CNN does not have to perform a complete
inverse DCT. For example, the goal of multiple convolution
layers is to extract/transform the input data to a feature space
where the fully connected layers can easily separate different
clusters. Accordingly, the butterfly layers do not have to
perform a complete inverse DCT, and instead, they can
simply be designed to aid in extracting and transforming the
input data into the feature space. In this manner, a complete
or entire stack of organized butterfly layers does not need to
be included in the CNN.

[0316] Moreover, the weights of each butterfly can be
adjusted during the training phase, and thus the decision of

Aug. 6, 2020

whether to use the butterfly layers and/or how much to rely
on them will be adjusted automatically.

[0317] FIG. 30 illustrates an alternative embodiment of a
multi-domain CNN 3000 with butterfly layers 3002 and
normal layers 3004 arranged sequentially rather than in
parallel.

[0318] FIGS. 31A-B illustrate an example of a one-dimen-
sional (1D) N-point butterfly operation. In particular, the
illustrated example is a 4-point butterfly operation, meaning
the butterfly operation is performed over a distance of four
data points 3110a-d. In other embodiments, however, but-
terfly operations may be implemented over any number of
data points. Moreover, in some embodiments, data points
3110a-d may represent compressed pixel data, such as DCT
coeflicients.

[0319] In some embodiments, for example, butterfly
operations may be successively performed on a collection of
one-dimensional (1D) elements from the visual data, such as
horizontal or vertical data elements within the visual data.
For example, each butterfly operation may generate two
outputs or channels using separate addition and subtraction
operations (e.g., by computing the sum of two points over a
large distance and the difference of two points over a large
distance). For example, the 1°° and 4” points of the input
may be added together to compute their sum (1 point+4”
point), and also subtracted to compute their difference (1%
point-4” point). Additional butterfly operations may be
successively performed over the input in this manner using
a rolling window. For example, in the next butterfly opera-
tion, the sum and difference may be computed using the 2*¢
and 5” points, and the process may repeat in this manner
until all elements in the input have been processed.

[0320] In FIGS. 31A-B, for example, the addition and
subtraction operations for a butterfly operation are shown. In
particular, FIG. 31A illustrates the addition operation, and
FIG. 31B illustrates the subtraction operation. In FIG. 31A,
for example, the 1° point (31104) and the 4% point (3110d)
are added together to compute a new point (3120q) that
represents their sum. Similarly, in FIG. 31B, the 4” point
(31104d) is subtracted from the 1% point (3110a) to compute
a new point (3130d) that represents their difference.
[0321] Accordingly, butterfly operations can be incorpo-
rated into a CNN in this manner in order to enable process-
ing of visual data in both the pixel domain and compressed
domain (e.g., DCT domain), thus eliminating the require-
ment of fully decompressing visual data before analyzing its
contents using a deep learning neural network. For example,
rather than explicitly performing an inverse DCT transform
to fully decompress visual data before processing it using a
CNN, the CNN can instead be implemented using butterfly
layers to inherently incorporate decompression functionality
into the CNN, thus enabling the CNN to be provided with
compressed data as input.

[0322] FIGS. 32 and 33 illustrate an example embodiment
of a three-dimensional (3D) CNN 3200 that is capable of
processing compressed visual data. In some embodiments,
for example, 3D CNN 3200 could be used in the implemen-
tation of, or in conjunction with, the compression-based
CNN embodiments described throughout this disclosure
(e.g., the CNNs of FIGS. 24 and 28-31).

[0323] Many visual analytics systems require visual data
to be decompressed before any processing can be performed,
such as processing by a deep learning neural network. To
illustrate, FIG. 34 illustrates an example of a pixel-domain

US 2020/0250003 Al

CNN 3400, and FIG. 35 illustrates an example of an
associated pixel-domain visual analytics pipeline 3500. In
the illustrated example, pixel-domain CNN 3400 performs
object detection and classification for visual analytics using
data in the pixel or image domain (e.g., using decompressed
visual data). For example, the convolutional kernels in the
early layers of the CNN implement two-dimensional (2D)
convolutions on the image data, and multiple layers of
convolutions, pooling, and rectified linear unit (RelL.U)
operations are repeated in order to successively extract
combinations of features from the earlier layers. Moreover,
because CNN 3400 operates on pixel-domain data, com-
pressed visual data must be fully decompressed before it can
be processed by CNN 3400. For example, as shown by
visual analytics pipeline 3500 of FIG. 35, the original pixel
domain data 3502 is first compressed by a video encoder
3510 (e.g., prior to transmission over a network), and the
compressed data 3504 is subsequently decompressed by a
video decoder 3520 before performing video analytics 3540
(e.g., using a CNN).

[0324] In the illustrated embodiment of FIGS. 32 and 33,
however, 3D CNN 3200 processes compressed visual data
directly using a 3D format designed to improve processing
efficiency. For example, the input image may be transformed
into the DCT domain and reshaped into a 3D format in order
to separate the DCT transform coefficients into different
channels. In this manner, the reshaped DCT transform data
is arranged in a manner that provides better correlation
between the spatial and transform domain coefficients. The
reshaped DCT transform data can then be processed directly
by a CNN (e.g., using 3D convolutions to perform feature
extraction), which ultimately enables the CNN to be trained
faster. For example, by eliminating the decompression step
required by existing approaches, processing efficiency is
improved, particularly for computing environments that do
not include built-in hardware video decompression accel-
erators.

[0325] Insome embodiments, for example, 3D CNN 3200
may be designed to operate directly on compressed visual
data (e.g., video frames) represented in the DCT domain
using a 3D matrix. For example, in some embodiments, the
DCT block indices may be represented by the x and y
dimensions of the 3D matrix, while the DCT transform
magnitude vectors may be organized along the z dimension.
In this manner, the convolutional kernels in the first layer of
the new CNN architecture can be implemented using 3D
filters designed to better capture the spatial and frequency
domain correlations and features of the compressed data,
thus improving the performance of the CNN operation in the
DCT domain.

[0326] The majority of common video and image encod-
ing schemes use discrete cosine transforms (DCT) to convert
spatial pixel intensities to frequency domain representations.
The illustrated embodiment is based on the observation that
once image data is split into 4x4 pixel blocks and passed
through a transform such as DCT, the transformed data has
different correlation properties than the original data. For
example, with respect to a DCT transform, the DC coeffi-
cients of adjacent blocks are often strongly correlated, while
the corresponding higher frequency AC coefficients of adja-
cent blocks may be similarly correlated.

[0327] Accordingly, FIG. 32 illustrates an approach for
transforming a 2D image into a 3D matrix of DCT data,
which is arranged in a manner that allows the DCT data to

Aug. 6, 2020

be processed more efficiently by a CNN. In the illustrated
example, an input image of size NxN (reference numeral
3210) is first broken up into 4x4 pixel blocks (example
reference numeral 3212), and each 4x4 pixel block is passed
through a DCT transform. The resulting DCT transform
domain data (reference numeral 3220) is then stored in a 3D
matrix, where the x and y dimensions correspond to the
spatial block indices and the z dimension contains vectors of
DCT coefficients (reference numeral 3222), which include
16 coeflicients per vector. Accordingly, the resulting trans-
form domain data (reference label 3220) has dimensions of
size KxKx16, where K=N/4.

[0328] Next, as shown in FIG. 33, the transform domain
data represented using the 3D matrix (reference label 3220)
is input into the CNN (reference label 3200), which includes
a first layer of 3D convolutional kernels that use 3D filters.
This layer extracts both spatially correlated features in the
x-y plane along with any specific signatures in the frequency
axis (z dimension), which can be used as input to succeeding
layers.

[0329] The illustrated embodiment provides numerous
advantages, including the ability to directly process com-
pressed visual data in an efficient manner, thus eliminating
the need to decompress the data before analyzing its con-
tents (e.g., using a deep learning neural network). In this
manner, the overall computational complexity of visual
analytics can be reduced. Moreover, because compressed or
DCT domain data is quantized and thus represented using a
more compact form than the original visual data (e.g., video
frame), the overall CNN complexity may be further reduced
compared to a conventional pixel-domain CNN. For
example, with respect to visual data (e.g., images or video)
compressed in certain compression formats such as JPEG or
M-JPEG, the DCT coefficients are quantized, and typically
the highest frequency components may be zeroed out by the
quantization. Thus, the total volume of non-zero data pro-
cessed by the CNN is reduced compared to the original
image data. Accordingly, based on the data volume reduc-
tion of the compressed data (e.g., due to DCT coeflicient
quantization), the CNN complexity may be further reduced,
and the training speed of convergence may improve.
[0330] FIG. 90 illustrates a flowchart 9000 for an example
embodiment of a multi-domain convolutional neural net-
work (CNN). In various embodiments, for example, flow-
chart 9000 may be implemented using the visual computing
architecture and functionality described throughout this dis-
closure.

[0331] A typical CNN is designed to operate on uncom-
pressed or raw visual data, thus requiring the visual data to
be fully decompressed before any processing can be per-
formed. For example, the CNN may have multiple layers,
and each layer may have one or more filters that are typically
designed to process uncompressed or “pixel-domain” visual
data (e.g., convolution and pooling filters). In the illustrated
example, however, the multi-domain CNN is capable of
processing both uncompressed and compressed visual data.
For example, the multi-domain CNN includes additional
filters designed to process compressed visual data, which
may be added in parallel to the existing pixel-domain filters
of certain layers. In some embodiments, for example, the
additional “compressed-domain” filters may be imple-
mented using butterfly filters or 3D convolution filters (e.g.,
as described above in connection with FIGS. 25-35). Fur-
ther, during training, the CNN can be trained to rely on the

US 2020/0250003 Al

respective pixel-domain filters or compressed-domain fil-
ters, as appropriate, depending on whether the input is
uncompressed or compressed. For example, as with typical
CNNs, the weights of each compressed-domain filter can be
adjusted during the training phase, and the decision of
whether to use these compressed-domain filters and/or how
much to rely on them will be adjusted automatically. In this
manner, the CNN is capable of processing visual data in
either the pixel domain or the compressed domain.

[0332] In some embodiments, for example, the com-
pressed-domain filters may be implemented using butterfly
filters (e.g., as described in connection with FIGS. 25-31).
These butterfly filters may be added in parallel to the
existing pixel-domain CNN filters (e.g., convolution and
pooling filters) or sequentially (e.g., using one or more
butterfly layers that precede the typical CNN layers). In this
manner, the butterfly filters will perform partial inverse
transforms on the visual data, thus helping to transform the
visual data (when compressed) into a feature space that can
be processed by the CNN.

[0333] Alternatively, or additionally, the compressed-do-
main filters may be implemented using 3D convolution
filters designed to operate on compressed visual data (e.g.,
as described in connection with FIGS. 32-35). For example,
two-dimensional (2D) compressed visual data may be trans-
formed into a three-dimensional (3D) representation in order
to group related transform coefficients into the same chan-
nel. In this manner, a 3D convolution can then be performed
on the transformed 3D compressed data, thus enabling the
related transform coefficients to be processed together.
[0334] In the example illustrated by FIG. 90, flowchart
9000 implements an example embodiment of the described
multi-domain CNN. The flowchart begins at block 9002,
where a visual representation is captured using one or more
sensors, such as cameras and/or other types of vision sen-
sors. The flowchart then proceeds to block 9004, where
visual data corresponding to the visual representation is
obtained. In some embodiments, for example, the visual data
may be obtained by or from a device near the sensors and/or
over a network. Moreover, the visual data may be either
uncompressed or compressed.

[0335] The flowchart then proceeds to block 9006, where
the visual data is provided as input to a multi-domain CNN,
and then to block 9008, where the input is provided to a first
layer of the CNN.

[0336] The flowchart then proceeds to block 9010, where
the input is processed using pixel-domain and/or com-
pressed-domain filter(s) of the current CNN layer. The
pixel-domain filters, for example, may be typical CNN
filters, such as convolution and pooling filters. The com-
pressed-domain filters, however, may be filters designed to
process compressed visual data, such as butterfly filters or
3D convolution filters. For example, the compressed-do-
main filters may be used to process noncontiguous elements
of the visual data that are typically correlated when the
visual data is compressed. Moreover, the CNN can be
trained to rely on processing associated with the pixel-
domain filters when the visual data is uncompressed, and
further trained to rely on processing associated with the
compressed-domain filters when the visual data is com-
pressed.

[0337] In some embodiments, for example, the com-
pressed-domain filters may be butterfly filters, which may
each be used to perform a partial inverse transform associ-

Aug. 6, 2020

ated with the visual data. For example, a butterfly filter may
compute a sum and a difference for a plurality of pairs of
elements within the visual data. Each pair of elements, for
example, may be positioned at locations within the visual
data that are a particular distance apart (e.g., horizontally or
vertically).

[0338] Alternatively, or additionally, the compressed-do-
main filters may be 3D convolution filters. A 3D convolution
filter, for example, may be used to perform processing
associated with three-dimensional (3D) visual data that is
generated based on a three-dimensional (3D) transformation
of the visual data. For example, the 3D visual data may be
generated by performing a 3D transformation on the visual
data, and the resulting 3D visual data may then be provided
as input to the 3D convolution filter.

[0339] In some embodiments, for example, the 3D trans-
formation rearranges the visual data into three dimensions
such that there is a correlation among one or more adjacent
elements within a particular dimension when the visual data
used for the 3D transformation is compressed. For example,
when the visual data is compressed, the 3D transformation
may group related or correlated transform coefficients (e.g.,
DCT coefficients) into the same channel, thus allowing those
coeflicients to be processed together.

[0340] In some embodiments, for example, the 3D visual
data may be generated by first partitioning the visual data
into multiple blocks, where each block includes a plurality
of elements of the visual data. For example, when the visual
data is compressed, the elements may correspond to trans-
form coefficients (e.g., DCT coefficients). The blocks may
then be arranged along a first dimension and a second
dimension within the 3D visual data, while the elements
associated with each block may be arranged along a third
dimension of the 3D visual data. In this manner, when the
visual data used for the transformation is compressed, the
resulting 3D visual data contains related or correlated trans-
form coefficients (e.g., DCT coefficients) in the same chan-
nel, thus allowing those coefficients to be processed
together.

[0341] The flowchart then proceeds to block 9012 to
determine whether there is a subsequent layer in the CNN.
If the answer at block 9012 is YES, the flowchart proceeds
to block 9014 to provide input to the next layer of the CNN.
In some embodiments, for example, the output of the current
layer of the CNN may be provided as input to the next layer
of the CNN. If the answer at block 9012 is NO, the CNN
processing is complete, and the flowchart then proceeds to
block 9016 to classify the visual data based on the output of
the CNN.

[0342] At this point, the flowchart may be complete. In
some embodiments, however, the flowchart may restart
and/or certain blocks may be repeated. For example, in some
embodiments, the flowchart may restart at block 9002 to
continue capturing and processing visual data.

[0343] FIGS. 36 and 37 illustrate example embodiments
of visual analytics pipelines 3600 and 3700 that perform
visual analytics on compressed visual data (e.g., using the
compression-based CNN embodiments described through-
out this disclosure). As shown by these FIGURES, the
decoding or decompression step in the visual analytics
pipeline is optional and/or may be omitted entirely. For
example, as shown by visual analytics pipeline 3600 of FIG.
36, the original pixel domain data 3602 is first compressed
by a video encoder 3610 (e.g., prior to transmission over a

US 2020/0250003 Al

network), and the compressed data 3604 may optionally be
partially decompressed by a video decoder 3620 before
performing visual analytics 3630 on the fully or partially
compressed data 3606. Similarly, as shown by visual ana-
Iytics pipeline 3700 of FIG. 37, the original pixel domain
data 3702 is first compressed by a video encoder 3710 (e.g.,
prior to transmission over a network), and visual analytics
(e.g., image classification) 3720 is then directly performed
on the compressed data 3704.

[0344] FIG. 38 illustrates a performance graph 3800
showing the precision of a CNN trained using compressed
visual data (e.g., 4x4 transform DCT inputs), such as the
compression-based CNNs described throughout this disclo-
sure.

[0345] FIG. 39 illustrates a flowchart 3900 for an example
embodiment of context-aware image compression. In some
embodiments, flowchart 3900 may be implemented using
the embodiments and functionality described throughout
this disclosure.

[0346] Today, many people rely on the cloud for storing or
backing up their photos. Typically, photos are stored as
individually compressed files or units. In the current com-
puting era, however, that approach is often inefficient. For
example, people increasingly use their mobile devices to
take photos, and each new generation of mobile devices are
updated with cameras that support more and more mega-
pixels, which results in larger volumes of photos that require
more storage space. Moreover, people often capture multiple
photos of the same object or scene during a single occasion,
which often results in a close temporal correlation among
those photos, along with substantial redundancy. Accord-
ingly, due to the redundancy across similar photos, individu-
ally compressing and storing each photo can be an inefficient
approach. For example, traditionally, each photo is com-
pressed and saved independently using a particular image
compression format, such as JPEG. By compressing each
photo individually, however, current approaches fail to
leverage the inter-picture correlations between groups of
similar photos, and thus more storage space is required to
store the photos. For example, two photos that are nearly
identical would still require double the storage of a single
photo.

[0347] Accordingly, in the illustrated embodiment, groups
of similar or related photos are compressed and stored more
efficiently. For example, context information associated with
photos is extracted and used to identify similar or related
photos, and similar photos are then compressed jointly as a
group. The contextual information, for example, could be
used to identify a group of pictures from a single user that
were taken very close in time and/or at the same location. As
another example, the contextual information could be used
to identify a group of pictures taken by different users but at
the same location. Accordingly, the identified group of
similar photos may be compressed using video coding in
order to leverage the inter-photo correlations and ultimately
compress the photos more efficiently. In this manner, com-
pressing related or correlated images using video compres-
sion rather than standard image compression can signifi-
cantly reduce the storage space required for the photos (e.g.,
2-5 times less storage space in some cases). Accordingly,
this approach can be used to save or reduce storage in the
cloud.

[0348] The flowchart may begin at block 3902 by first
obtaining a new photo. In some cases, for example, the new

Aug. 6, 2020

photo could be captured by the camera of a mobile device.
In other cases, however, any type of device or camera may
be used to capture the photo.

[0349] The flowchart may then proceed to block 3904 to
collect context information associated with the new photo.
For example, when a photo is newly captured (e.g., by a
mobile device), corresponding context information associ-
ated with the photo is collected, such as a timestamp, GPS
coordinates, device orientation and motion states, and so
forth.

[0350] The flowchart may then proceed to block 3906 to
determine if a matching master photo can be identified for
the new photo. In some embodiments, for example, the
context information of the new photo is compared to the
context information of other previously captured master
photos to determine whether the new photo is closely
correlated to any of the existing master photos. For example,
if the photo is taken in the same location, within a certain
amount of time, and with little phone movement compared
to a master photo, it is likely that the new photo is highly
correlated with the master photo. Further, in some embodi-
ments, image processing techniques (e.g., feature extraction/
matching) can then be applied to confirm the photo corre-
lation. In some embodiments, for example, a scale-invariant
feature transform (SIFT) may be used to determine whether
a pair of photos are sufficiently correlated or matching (e.g.,
by detecting, extracting, and/or comparing image features).
Further, in some embodiments, image data itself may be
treated as context information that can be used to identify
similar or correlated photos, such as image pixels, image
structures, extracted image features, and so forth.

[0351] If a matching master photo is identified at block
3906, the flowchart may then proceed to block 3908 to
encode the new photo with the matching master photo. In
some embodiments, for example, a video codec (e.g., H.264)
may be used to compress the new photo as an inter-frame
associated with the master photo. For example, video codecs
typically provide inter-frame encoding, which effectively
utilizes the temporal correlation between similar images to
improve the coding efficiency.

[0352] Insome embodiments, a master photo may include
any photo that is compressed without reference to other
parent or related images, while a slave photo may include
any photo that is compressed with reference to a master or
parent image (e.g., using inter-frame mode of a video
codec). Accordingly, a slave photo must efficiently record or
correlate relevant information of its master photo, so that
when the slave photo needs to be decoded for display of the
entire image, the associated master photo can be quickly
identified.

[0353] If a matching master photo is NOT identified at
block 3906, the flowchart may then proceed to block 3910
to encode the new photo by itself. For example, when the
new photo does not match any of the existing master photos,
the new photo is encoded without referencing any other
photos, and the flowchart may then proceed to block 3912 to
designate the new photo as a master photo, allowing it to
potentially be compressed with other subsequently captured
photos.

[0354] At this point, the flowchart may be complete. In
some embodiments, however, the flowchart may restart
and/or certain blocks may be repeated. For example, in some
embodiments, the flowchart may restart at block 3902 to
continue obtaining and compressing newly captured photos.

US 2020/0250003 Al

[0355] FIG. 64 illustrates an example embodiment of an
image storage system 6400 that leverages context-aware
image compression. In some embodiments, for example,
image storage system 6400 may be used to implement the
context-aware image compression functionality from flow-
chart 3900 of FIG. 39.

[0356] In the illustrated embodiment, image storage sys-
tem 6400 includes an image storage device 6410 and a
plurality of mobile devices 6420a-c, as described further
below.

[0357] Image storage device 6410 includes at least one
processor 6411, memory clement 6412, communication
interface 6413, and data storage 6414. Data storage 6414
contains a context-aware image compression engine 6415
and a plurality of compressed images 6416. Context-aware
image compression engine 6415 includes logic and/or
instructions that can be executed by processor 6411 in order
to perform context-aware image compression, which
enables compressed images 6416 to be compressed and
stored more efficiently.

[0358] Mobile devices 6420a-c each include at least one
processor 6421, memory element 6422, communication
interface 6423, data storage 6424, camera 6425, and sensor
(s) 6426. For simplicity, the underlying components of
mobile devices 6420a-¢ are only illustrated for mobile
device 6420a.

[0359] The respective components of image storage sys-
tem 6400 may be used to implement context-aware image
compression functionality (e.g., as described further in con-
nection with FIGS. 39 and/or 56). In particular, image
storage system 6400 provides efficient storage of images by
compressing groups of similar or related images together
based on context information associated with the images.
[0360] In some embodiments, for example, image storage
system 6400 may include a data storage 6414 containing a
plurality of compressed images 6416 captured by a mobile
device 6420 associated with a particular user. The com-
pressed images 6416 may include both master and slave
images. In some embodiments, for example, a master image
may be an image compressed without reference to any other
images (e.g., compressed by itself and/or in isolation), while
a slave image may be an image compressed with reference
to at least one master image. The compressed images 6416
may also include associated context information. In general,
context information associated with a particular image can
include any type of information associated with the context
in which the image was captured, such as time, location,
device identity, device orientation or direction, device move-
ment, and so forth. In some embodiments, for example,
certain context information may be collected by one or more
sensors 6426 of a mobile device 6420, such as a GPS
receiver, gyroscope, accelerometer, compass, and so forth.
[0361] Accordingly, when a mobile device 6420 captures
a new image using its associated camera 6425, the mobile
device 6420 may provide the uncompressed image and its
associated context information to image storage device 6410
(e.g., via communication interface 6423). In this manner, the
context information can be leveraged to identify any previ-
ously captured images 6416 that may be similar to the newly
captured image. In particular, by identifying correlations
based on the context information, it can be determined
whether the newly captured uncompressed image is associ-
ated with a corresponding compressed master image 6416
stored on image storage device 6410. For example, the

Aug. 6, 2020

newly captured image may be determined to be associated
with a compressed master image 6416 if it was captured
within a certain amount of time, at the same or similar
location, by the same mobile device, at a similar device
orientation or direction, and/or with little or no device
movement.

[0362] Further, in some embodiments, image feature
matching techniques (e.g., a SIFT algorithm) can then be
applied to confirm the image correlation. For example,
image feature matching can be used to identify a correlation
between features of the newly captured image and the
contextually-similar master image 6416.

[0363] If it is determined that the newly captured uncom-
pressed image is associated with a corresponding com-
pressed master image 6416, then the uncompressed image
may be compressed with reference to the corresponding
master image. In some embodiments, for example, the
uncompressed image may be compressed with reference to
the corresponding master image using inter-frame encoding.
Inter-frame encoding effectively leverages the redundancy
between similar images to improve the coding efficiency
(e.g., as described further below in connection with FIG.
65). In some embodiments, for example, a video codec that
uses inter-frame encoding (e.g., H.264) may be used to
perform the compression. The resulting compressed image
may then be designated as a slave image since it was
compressed with reference to a master image.

[0364] If it is determined that the newly captured uncom-
pressed image is not associated with any compressed master
images 6416, then the uncompressed image may be com-
pressed without reference to any other images. In some
embodiments, for example, the uncompressed image may be
compressed using intra-frame encoding. Intra-frame coding
leverages spatial redundancy (e.g., correlations among pix-
els within a single frame or image) to improve the coding
efficiency. The resulting compressed image may then be
designated as a master image since it was compressed
without reference to any other images. In this manner, the
resulting compressed image may subsequently be used as a
master image to compress subsequently captured images
that are determined to be similar.

[0365] Accordingly, after compressing the newly captured
image (e.g., either with or without reference to a correspond-
ing master image), the resulting compressed image may then
be stored on image storage device 6410.

[0366] The example embodiment of context-aware image
compression illustrated and described in connection with
FIG. 64 is merely illustrative of many possible embodi-
ments. In various embodiments, for example, the compres-
sion approach described above may be performed periodi-
cally to compress batches of recently captured images
together rather than compressing each image sequentially as
it is captured. In addition, in some embodiments, certain
images may be compressed with reference to multiple
master images, and/or certain images may serve as both
master and slave images (e.g., an image that is compressed
with reference to a master image but is also used to compress
another slave image). Moreover, in various embodiments,
the underlying components and functionality of image stor-
age system 6400, image storage device 6410, and/or mobile
devices 6420 may be combined, separated, and/or distrib-
uted across any number of devices or components. In
various embodiments, for example, image storage device
6410 may either be implemented in the cloud (e.g., as a

US 2020/0250003 Al

cloud-based data storage server), implemented in the net-
work edge (e.g., within each mobile device 6420 and/or as
a standalone edge storage device), and/or distributed across
both the cloud and the network edge. For example, in some
embodiments, the compression and/or storage functionality
of image storage device 6410 may be implemented by
and/or integrated within each mobile device 6420.

[0367] FIG. 65 illustrates an example 6500 of inter-frame
encoding for context-aware image compression. In the illus-
trated example, a slave image 6510 is compressed as an
inter-frame with reference to a master image 6520 in order
to produce a compressed slave image 6530.

[0368] In the illustrated example, the slave image 6510 is
first divided into multiple blocks, which may be referred to
as macroblocks, and each macroblock is then compressed
using inter-frame encoding. For simplicity, the illustrated
example only depicts the inter-frame encoding process for a
single macroblock 6512 of slave image 6510, but the
remaining macroblocks of slave image 6510 may be
encoded in a similar manner.

[0369] Rather than encoding the raw pixel values of slave
macroblock 6512, the inter-frame encoding process for slave
macroblock 6512 begins by identifying a master image 6520
that contains a similar matching macroblock 6522. In some
embodiments, for example, a matching master macroblock
6522 in a corresponding master image 6520 may be iden-
tified using context information and/or feature matching
algorithms, as described further throughout this disclosure.

[0370] The slave macroblock 6512 and corresponding
matching master macroblock 6522, however, may be in
different positions within their respective image frames
6510, 6520. Accordingly, motion estimation may be per-
formed to identify the relative movement and/or positions of
the slave macroblock 6512 and the corresponding matching
master macroblock 6522. In some embodiments, for
example, a motion vector 6531 may be generated that points
to the position of matching master macroblock 6522 in the
master image 6520. For example, the motion vector 6531
may start at the position of the slave macroblock 6512 and
may end at the corresponding position of the master mac-
roblock 6522.

[0371] Further, while the slave macroblock 6512 and the
matching master macroblock 6522 may be similar, it is
unlikely that they are an exact match. Accordingly, the
differences between the slave macroblock 6512 and the
matching master macroblock 6522 are computed in order to
produce a prediction error 6532.

[0372] The slave macroblock 6512 can then be encoded
into a compressed format, which may include a reference to
the corresponding master image 6520, the motion vector
6531, and the prediction error 6532. The remaining macro-
blocks of the slave image 6510 may be encoded in a similar
manner to produce a compressed slave image 6530.

[0373] In this manner, the compressed slave image 6530
can be subsequently decoded to re-produce the original slave
image 6510. For example, for each encoded macroblock in
the compressed slave image 6530, a master image 6520 can
be identified based on the associated master image reference,
a corresponding macroblock 6522 in the master image 6520
can be identified based on the associated motion vector
6531, and the raw pixels of the slave macroblock 6512 can
then be recovered from the master macroblock 6522 based
on the associated prediction error 6532.

Aug. 6, 2020

[0374] The illustrated example of FIG. 65 is merely illus-
trative of a variety of possible implementations of inter-
frame encoding for context-aware image compression. In
various embodiments, for example, inter-frame encoding
may be performed by dividing a slave image into any
number of underlying macroblocks, or alternatively, inter-
frame encoding may be performed on a slave image as a
whole, among other possible variations.

[0375] Privacy/Security

[0376] In distributed visual processing systems, it is
important to implement effective privacy and security poli-
cies to protect sensitive visual data of underlying users or
subjects (e.g., images or video with people’s faces). Accord-
ingly, in some embodiments, the visual fog architecture
described throughout this disclosure may be implemented
using a variety of privacy and security safeguards.

[0377] In some embodiments, for example, privacy-pre-
serving distributed visual processing may be used in order to
schedule or distribute vision workloads across available fog
nodes in an efficient manner, while also adhering to any
applicable privacy and/or security constraints.

[0378] Similarly, a multi-tiered storage approach may be
used to store visual data in different locations and/or for
different durations of time, depending on the particular level
of sensitivity of the data. For example, the cloud may be
used for long term storage of less sensitive or high-level
visual data or metadata, while edge devices (e.g., on premise
gateways) may be used for storage of highly sensitive visual
data.

[0379] Moreover, certain vision operations may be imple-
mented using privacy-preserving approaches. For example,
for some vision applications (e.g., automated demographics
identification), feature extraction and recognition may be
implemented using cameras and sensors that capture top-
down views rather than intrusive frontal views.

[0380] As another example, gateway cloud authentication
may be used to securely authenticate gateways and/or other
fog devices to the cloud using JSON web tokens.

[0381] As another example, wallets or distributed keys,
along with MESH or GOSSIP based communication proto-
col, can be used to provide improved and more secure key
management solutions.

[0382] Stream multiplexing may be used in application
layer routing for streaming media, for example, by multi-
plexing visual sensors over multiple channels and introduc-
ing entropy to make channel prediction more difficult. For
example, additional security can be provided by introducing
entropy and other noise (e.g., chaff signals) designed to
complicate channel prediction, thus thwarting efforts of
malicious actors to pick up on video feeds.

[0383] As another example, a self-sovereign blockchain
can be used to provide multi-tenant device identification.
For example, the blockchain can be used to handle the
orchestration and acceptance of device identities across
multiple visual fog networks (e.g., even for legacy systems),
thus allowing devices to assert their identity without relying
on third party or centralized services. A self-sovereign
blockchain can similarly be used for other purposes, such as
managing a collection of distributed computing algorithms.
[0384] As another example, blockchain lifecycle manage-
ment (e.g., managing the instantiation and lifecycle of
blockchains) can be used to provide an additional level of
security on blockchains used in a visual fog architecture. For

US 2020/0250003 Al

example, blockchain lifecycle management can be used to
ensure that a particular blockchain is implemented correctly
and behaves as expected.

[0385] As another example, stakeholder management can
be used to provide a set of protocols and frameworks to
allow self-interests to be asserted, while arbitrating against
conflicts in an equitable way.

[0386] FIGS. 40A-C illustrate an example embodiment of
a privacy-preserving demographic identification system
4000. Identifying human demographic attributes (e.g., age,
gender, race, and so forth) can be leveraged for a variety of
use cases and applications. Example use cases include
human-computer interaction, surveillance, business and
consumer analytics, and so forth. In retail and healthcare
segments, for example, defining a target audience and devel-
oping customer profiles has become a critical factor for
successful brand strategy development.

[0387] In some embodiments, for example, computer
vision and/or facial recognition technology may be used to
identify human demographics. For example, demographics
could be identified based on frontal and/or side facial
features extracted using computer vision facial recognition
technology. The use of frontal facial recognition technology
in public, however, may implicate potential privacy con-
cerns. Moreover, demographic identification is crucial
across different domains and should not be limited to only
frontal-based sensors and recognition techniques, particu-
larly in the Internet-of-Things (IoT) era, which is projected
to have over 20 billion connected devices by year 2020.
Further, when limited to frontal-based vision sensors, it may
be challenging to develop a demographics identification
system that overcomes the person occlusion problem, while
also providing wide processing viewing angles.

[0388] Accordingly, in the illustrated embodiment of
FIGS. 40A-C, privacy-preserving demographic identifica-
tion system 4000 uses one or more top-view sensors 4015 to
identify human demographics. In some embodiments, for
example, either a single sensor 4015 or multiple sensors
4015 may be used to capture top-down views of humans,
rather than conventional frontal views. Moreover, human
demographics may then be identified based on features
extracted from the top-down views captured by the sensors
4015. In this manner, the use of top-view sensors 4015
enables human demographics to be automatically identified
while preserving privacy, providing wider sensor viewing
angles, and reducing susceptibility to occlusion.

[0389] FIG. 40A illustrates a high-level implementation of
demographic identification system 4000. In the illustrated
embodiment, edge devices 4010 include multiple sets of
top-view sensors 4015a-¢ that are used for sensing humans.
For example, each set of top-view sensors 4015a-¢ may
include one or more sensors that are capable of capturing
information about their surrounding environment. The infor-
mation captured by top-view sensors 4015a-c is then pro-
cessed in the fog 4020 to detect humans and identify their
demographics. The contextual information extracted by the
fog 4020 (e.g., human demographics) may then be trans-
mitted to the cloud 4030 for further analytics, such as people
profiling or generating heat maps. Alternatively, or addition-
ally, certain contextual information may be withheld or
obfuscated due to users’ privacy policies, or if contributed,
it may be encrypted to prevent unauthorized disclosures.
Function currying may also be used, where the analytics
algorithm is distributed and applied at the edge or endpoint

Aug. 6, 2020

and where an analytics result (that aggregates multiple
results) is output by the curry function.

[0390] FIG. 40B illustrates an example of a set of top-view
sensor(s) 4015 associated with demographic identification
system 4000 of FIG. 40A. As shown in the illustrated
example, top-view sensors 4015 include a collection of one
or more sensors positioned above an area that is accessible
to humans 4002. In some embodiments, for example, top-
view sensors 4015 could be mounted to the ceiling of a retail
store near the entrance. Moreover, top-view sensors 4015
can include any type and/or combination of sensor(s), such
as a vision camera, infrared camera, light detection and
ranging (LiDAR) sensor, and so forth. In this manner,
top-view sensors 4015 can be used to capture top-view
representations of humans 4002 that pass below the sensors.
Moreover, as described further with respect to FIG. 40C, the
top-view representations captured by top-view sensors 4015
can then be processed further to identify the demographics
of humans 4002 captured by the sensors.

[0391] FIG. 40C illustrates an example of the demograph-
ics identification process performed by the fog 4020 in
demographic identification system 4000 of FIG. 40A. In the
illustrated example, the demographics identification process
involves (i) training a demographics classification model,
and (ii) identifying demographic information using the
trained demographics classification model with top-view
sensor data as input.

[0392] The process of training the demographics classifi-
cation model is illustrated by blocks 4021-4024. At block
4021, a training database of top-view human data must first
be obtained or generated. In some embodiments, for
example, the training database may include data captured by
top-view sensors 4015, such as camera images, infrared
images, point clouds, and so forth. At block 4022, features
that are typically representative of human demographics are
then selected/trained from the database using feature extrac-
tion methodologies, such as principal component analysis
(PCA), discrete cosine transforms (DCT), machine learning
(e.g., deep learning using a neural network), and so forth. At
block 4023, the selected/trained features are then provided
as input to a process used to train a demographics classifi-
cation model. At block 4024, the trained demographics
model is then saved in the fog 4020 for subsequent use
during the demographics identification process, as described
further below.

[0393] The process of identifying human demographics is
illustrated by blocks 4025-4029. At block 4025, sensor data
is captured by edge devices 4010 using one or more top-
view sensor(s) 4015, such as a vision camera, infrared
camera, LiDAR sensor, and so forth. The raw sensor data
(e.g., RGB images, thermal images, point clouds) is then
transmitted from the edge 4010 to the fog 4020 in order to
perform data pre-processing in the fog 4020 (e.g., on-
premises), such as data transformations, de-noising, and so
forth. At block 4026, person detection is then performed on
the pre-processed input stream. In some embodiments, for
example, the pre-processed input stream is analyzed to
determine if a person is captured in the underlying visual
data. As an example, pre-processed image data from a
top-view camera may be analyzed to determine if the image
contains a person, and if so, the portion of the image that
contains the person may be extracted. At block 4027,
features that are typically representative of human demo-
graphics are then selected or extracted from the detected

US 2020/0250003 Al

person using feature extraction/machine learning tech-
niques. At block 4028, the extracted features from block
4027 and the pre-trained demographics model from block
4024 are then used by a demographics classifier to classify
the demographic attributes of the detected person. At block
4029, demographic information associated with the detected
person is then identified based on the output of the demo-
graphics classifier. Privacy requirements may cause 4029
demographics information to be separated from 4021 data
that associates person data with demographics data. A user-
controlled privacy mechanism may authorize the association
or linking of person data with demographic data. The
original image used to derive person data and demographic
data may be hidden from further access so as to prevent
subsequent re-derivation of privacy sensitive content/con-
text.

[0394] The described embodiments of top-view demo-
graphics identification provide numerous advantages. As an
example, the described embodiments enable demographic
information to be accurately identified based on top-down
views of humans captured using a single- or multi-sensor
approach. Compared to a frontal view approach, for
example, a top-down or aerial perspective provides a wider
angle of view for processing, reduces the problem of block-
ing or occlusion of people captured by the sensors, and
preserves depth information associated with people and
features captured and processed by the system. In addition,
the described embodiments are less privacy-intrusive, as
they only capture top views of people rather than other more
intrusive views, such as frontal views. The described
embodiments also identify demographic information based
on permanent or lasting anthropometry features rather than
features that may change or vary. Moreover, unlike motion-
based detection approaches, the described embodiments are
operable using only static views or images and do not
require continuous image sequences or videos. Further, the
described embodiments can be leveraged for a variety of use
cases and applications, including retail, digital surveillance,
smart buildings, and/or other any other applications involv-
ing human sensing, person identification, person re-identi-
fication (e.g., detecting/tracking/re-identifying people across
multiple monitored areas), and so forth.

[0395] FIG. 53 illustrates a flowchart 5300 for an example
embodiment of privacy-preserving demographics identifica-
tion. In some embodiments, for example, flowchart 5300
may be implemented by demographics identification system
4000 of FIGS. 40A-C.

[0396] The flowchart may begin at block 5302 by obtain-
ing sensor data from a top-view sensing device. A top-view
sensing device, for example, may be used to capture sensor
data associated with the environment below the top-view
sensing device (e.g., from a top-down perspective). In some
embodiments, the top-view sensing device may include a
plurality of sensors, including a camera, infrared sensor, heat
sensor, laser-based sensor (e.g., LiDAR), and so forth.
[0397] The flowchart may then proceed to block 5304 to
perform preprocessing on the sensor data, such as data
transformations, filtering, noise reduction, and so forth. In
some embodiments, for example, the raw sensor data may be
transmitted to and/or obtained by a processor that is used to
perform the preprocessing. For example, the preprocessing
may be performed by an edge processing device at or near
the network edge (e.g., near the top-view sensing device),
such as an on-premise edge gateway.

Aug. 6, 2020

[0398] The flowchart may then proceed to block 5306 to
generate a visual representation of the environment below
the top-view sensing device. The visual representation, for
example, may be generated using the sensor data captured
by the top-view sensing device (e.g., camera images, infra-
red images, point clouds, and so forth). In some embodi-
ments, for example, the visual representation may be a
three-dimensional (3D) representation or mapping of the
environment from a top-down perspective. Moreover, in
some embodiments, the visual representation may be gen-
erated at or near the network edge (e.g., near the top-view
sensing device). For example, in some embodiments, an
edge processing device (e.g., an on-premise edge gateway)
may be used to generate the visual representation.

[0399] The flowchart may then proceed to block 5308 to
determine whether a person is detected in visual represen-
tation. For example, if a person was located under the
top-view sensing device when the sensor data was captured,
then the visual representation generated using the sensor
data may include a representation of the person from a
top-view perspective. Accordingly, the visual representation
may be analyzed (e.g., using image processing techniques)
to determine whether it contains a person. In some embodi-
ments, for example, the person detection may be performed
at or near the network edge (e.g., near the top-view sensing
device) by an edge processing device (e.g., an on-premise
edge gateway).

[0400] If it is determined at block 5308 that a person is
NOT detected in the visual representation, the flowchart may
proceed back to block 5302 to continue obtaining and
processing sensor data until a person is detected.

[0401] If it is determined at block 5308 that a person is
detected in the visual representation, however, the top-view
representation of the person may be extracted from the
visual representation, and the flowchart may then proceed to
block 5310 to identify one or more features associated with
the person. In some embodiments, for example, the top-view
representation of the person may be analyzed to identify or
extract anthropometric features associated with the person
(e.g., features or measurements associated with the size and
proportions of the person). For example, in some embodi-
ments, the anthropometric features may be identified by
performing feature extraction using an image processing
technique, such as a discrete cosine transform (DCT), prin-
cipal component analysis (PCA), machine learning tech-
nique, and so forth. Moreover, in some embodiments, the
feature identification or extraction may be performed at or
near the network edge (e.g., near the top-view sensing
device) by an edge processing device (e.g., an on-premise
edge gateway).

[0402] The flowchart may then proceed to block 5312 to
identify demographic information associated with the per-
son (e.g., age, gender, race) based on the identified features.
In some embodiments, for example, a machine learning
model may be trained to recognize demographic information
based on human anthropometric features. In this manner, the
machine learning model can be used to classify the identified
features of the person to recognize the associated demo-
graphic information.

[0403] In some embodiments, the demographics identifi-
cation may be performed at or near the network edge (e.g.,
near the top-view sensing device) by an edge processing
device (e.g., an on-premise edge gateway). Moreover, in
some embodiments, the edge processing device may trans-

US 2020/0250003 Al

mit the demographics information (e.g., using a communi-
cation interface) to a cloud processing device to perform
further analytics, such as generating a heat map or a people
profile.

[0404] At this point, the flowchart may be complete. In
some embodiments, however, the flowchart may restart
and/or certain blocks may be repeated. For example, in some
embodiments, the flowchart may restart at block 5302 to
continue obtaining and processing sensor data from a top-
view sensing device.

[0405] FIGS. 41-43 illustrate an example embodiment of
privacy-preserving distributed visual data processing.
[0406] In visual computing, multi-target multi-camera
tracking (MTMCT) and target re-identification (RelD) are
some of the most common workloads across different use
cases. MTMCT involves tracking multiple objects across
multiple views or cameras, while RelD involves re-identi-
fying an object (e.g., by extracting robust features) even
after the object undergoes significant changes in appearance.
For example, in retail, MTMCT is often used to track
shoppers within a store, while RelD may be used to extract
and summarize robust features of shoppers so they can later
be re-identified (e.g., using MTMCT) in different circum-
stances, such as when a shopper has a significant change in
appearance or visits a different store.

[0407] Currently, there are no coherent end-to-end (E2E)
solutions for performing MTMCT and RelD that are scal-
able to large-scale visual computing systems (e.g., with tens
of thousands of camera streams or more). In particular,
bandwidth limitations render it challenging to deploy such a
system in a conventional cloud computing paradigm where
cameras send continuous video streams to the cloud for
processing. For example, due to the large volume of video
data generated by such systems, it is not feasible to funnel
all of that data to the cloud for processing. On the other hand,
it is unlikely that edge devices near the source of the video
data are capable of processing a complete visual processing
workload in real time.

[0408] Moreover, privacy is also a challenge in scaling out
such a system, as sending visual data to the cloud for
processing may implicate privacy concerns. For example, in
order to preserve customer privacy, many retailers will not
allow any video or images to be transmitted out of their
stores, or they may surrender original images of customers
and retain only uncorrelated demographics or person data. In
some cases, customer consent may be required before a store
is authorized to link specific customer data with its associ-
ated demographics.

[0409] Accordingly, FIGS. 41-43 illustrate an embodi-
ment that solves the problem of scaling out visual computing
systems with MTMCT and RelD capabilities in a privacy-
preserving manner. The illustrated embodiment presents an
edge-to-edge (E2E) architecture for performing MTMCT
and RelD across edge devices, gateways, and the cloud. The
architecture is scalable and privacy-preserving, and can be
easily generalized to many vertical applications or use cases,
such as shopper insights in retail, people searching in digital
security and surveillance, player tracking and replays in
sports, and so forth.

[0410] In some embodiments, for example, vision work-
loads may be scheduled and executed across visual fog
nodes based on specified privacy constraints. As an example,
privacy constraints for an MTMCT and/or RelD workload
may require tasks that output pictures with faces to remain

Aug. 6, 2020

on-premises (e.g., neither the tasks nor their output are
assigned or transmitted beyond the premise or to the cloud),
be anonymized (e.g., face-blurred), and/or be deployed only
on devices with enhanced link security.

[0411] In some embodiments, for example, rather than
funneling every bit of visual data to the cloud for processing,
intelligent decisions can be made regarding how visual data
and workloads are processed and distributed across a visual
computing system. Based on the privacy requirements of a
particular visual application, for example, a privacy bound-
ary can be defined within the end-to-end paradigm of a
visual computing system in order to achieve performance
efficiency while also preserving privacy.

[0412] In some embodiments, for example, job partition-
ing can be used to partition a visual analytics workload into
a directed acrylic graph (DAG) with vertices that represent
primitive visual operations and edges that represent their
dependencies. In this manner, the graph can be used to
represent the various tasks and associated dependencies for
a particular workload. Moreover, a privacy policy can be
defined separately for each dependency. Similarly, a device
connectivity graph can be used to represent the various
devices and their connectivity in the edge-to-cloud para-
digm, and a privacy level agreement (PLA) can be estab-
lished for each edge of connectivity in the graph. In this
manner, the edge-to-cloud architecture can be implemented
to include a coherent management interface that performs
end-to-end workload distribution without compromising pri-
vacy. For example, using the job partitioning approach
described above, workload distribution effectively becomes
a mapping problem of assigning the tasks of a workload onto
devices in the edge-to-cloud paradigm. In some embodi-
ments, for example, a global scheduler can be used to
determine an optimal mapping between tasks and devices in
order to maximize performance while preserving privacy
constraints.

[0413] In some cases, a PLA may be similar to an SLA
agreement that considers users’ privacy profiles and a will-
ingness on behalf of the store to provide privacy preserving
functionality. Visual Fog devices, sensors, and gateways
may further implement a PLA policy using hardened mecha-
nisms wherein a trusted execution environment (TEE) such
as Intel SGX or ARM TrustZone establishes a tamper-
resistant environment that enforces the PLA policy.

[0414] FIG. 41 illustrates an example visual workload
graph 4100 for performing MTMCT and RelD. Example
workload 4100 includes a plurality of tasks, including pre-
processing 4102, detection 4104, tracking 4106, matching
4108, and database access 4110. Further, the dependencies
between these various tasks are represented by the solid and
dotted lines in the illustrated example. Moreover, the solid
lines represent unrestricted access or transmission of the
original visual data, while the dotted lines represent
restricted or privacy-preserving access or transmission (e.g.,
transmitting only visual metadata, such as feature vectors).
In this manner, a privacy policy can be defined for the
workload, for example, by specifying whether each task has
unrestricted access or restricted access to the original visual
data.

[0415] FIG. 42 illustrates an example of an edge-to-cloud
device connectivity graph 4200. In the illustrated example,
graph 4200 illustrates the connectivity between various
devices of a 3-tier edge-to-cloud network, which includes
cameras 4210a-c, gateways 4220a-b, and the cloud 4230. In

US 2020/0250003 Al

particular, the device connectivity is illustrated for both
edge-to-cloud communications (e.g., camera to gateway to
cloud) as well as peer-to-peer communications (e.g., gate-
way-to-gateway). Moreover, the connectivity between the
respective devices is represented using solid and dotted
lines. For example, the solid lines represent high-security
connectivity links, while the dotted lines represent limited-
security connectivity links. In this manner, a privacy policy
or privacy level agreement (PLA) can be defined for an
edge-to-cloud paradigm, for example, by specifying the
requisite security for each edge of connectivity in the graph.
[0416] FIG. 43 illustrates a privacy-preserving workload
deployment 4300. In particular, workload deployment 4300
illustrates an example deployment of the workload 4100 of
FIG. 41 on edge-to-cloud network 4200 of FIG. 42.
[0417] In the illustrated example, privacy is treated as an
explicit constraint when performing task-to-device mapping
to deploy the workload. In some embodiments, for example,
workloads can be represented in linear forms to enable the
mapping problem to be solved efficiently using state of the
art integer linear programming (ILP) solvers.

[0418] In some embodiments, for example, when sched-
uling a particular workload on an edge-to-cloud network, the
workload and the edge-to-cloud network may each be rep-
resented using a graph, such as a directed acrylic graph
(DAG). For example, the workload and its underlying tasks
may be represented by a workload or task dependency graph
G~V Ep), where each vertex vEV ,represents a task, and
each edge (u, v)EE represents a dependency between task
u and task v. Similarly, the edge-to-cloud network may be
represented by a network or device connectivity graph
Gp=(Vp, Ep), where each vertex v&€V , represents a device
in the network, and each edge (u, v)EE, represents the
connectivity from device u to device v.

[0419] Moreover, the privacy policy (PP) for each task
dependency in the workload graph may be defined using a
PP function p: E,~ N, such that the smaller the number (
N), the more vulnerable the data transmission. Similarly,
the privacy level agreement (PL.A) for each connectivity link
in the device connectivity graph may be defined using a PLA
function s: E,—~ N, such that the smaller the number (N),
the more secure the link.

[0420] In this manner, based on the privacy policy (PP)
and privacy level agreement (PLLA) functions, a privacy
constraint (PC) can be defined as s(d)=p(e), Ve€E ,, dEf(e),
where £ E,—X,_E,, is the mapping function from a
particular workload to the edge-to-cloud paradigm. Essen-
tially, f maps an edge in a workload graph to a path in an
edge-to-cloud connectivity graph. For example, in the con-
text of visual fog computing, f is a scheduling function that
determines the particular fog devices that the tasks of a
workload should be assigned to, along with the particular
network connectivity links between pairs of fog devices that
should be used for the data transmissions. Accordingly, the
above privacy constraint (PC) requires the privacy level
agreement (PLA) of a particular connectivity link to be
capable of accommodating the privacy policy (PP) of a
particular data transmission sent over that connectivity link.
For example, in some embodiments, a data transmission of
PP level 1 (unrestricted access) can only map to a link of
PLAlevel 1 (high security), while a data transmission of PP
level 2 (privacy-preserving) can map to connectivity links of
PLA level 1 (high security) and PLA level 2 (limited
security).

Aug. 6, 2020

[0421] Moreover, in some embodiments, a visual fog
schedule that adheres to the above privacy constraint (PC)
can be determined using integer linear programming (ILP).
Integer linear programming (ILP) is a mathematical optimi-
zation or feasibility technique for solving or optimizing a
mathematical model represented by linear relationships. In
particular, ILP can be used to optimize a linear objective
function, subject to additional linear equality and linear
inequality constraints. In some cases, for example, an ILP
problem can be expressed as follows:

minimize: ¢’x (objective term)
subject to: Ax=b (inequality constraint)
Cx=d (equality constraint)

and: x€{0,1}% (binary constraint).

[0422] Moreover, this ILP model can be used to determine
an optimal schedule fthat satisfies a specified objective (e.g.,
total network utilization), while also adhering to other
additional constraints, such as a privacy constraint and any
other device, network, or mapping constraints. For example,
when using the example IL.P model above to perform visual
fog scheduling, x presents the collection of possible sched-
ules f, K is the length of x, the objective term presents a
scheduling objective to be minimized (e.g., total network
utilization), and the inequality/equality constraints present
any additional constraints, such as device, network, map-
ping, and/or privacy constraints. The above privacy con-
straint (PC), for example, can be presented as an inequality
constraint of the ILP problem.

[0423] FIG. 54 illustrates a flowchart 5400 for an example
embodiment of privacy-preserving distributed visual pro-
cessing. In some embodiments, for example, flowchart 5400
may be implemented using the visual computing embodi-
ments described throughout this disclosure (e.g., the pri-
vacy-preserving distributed visual processing techniques of
FIGS. 41-43 and/or the visual computing architecture
described throughout this disclosure).

[0424] The flowchart may begin at block 5402 by identi-
fying a new workload. In some embodiments, for example,
the new workload may include a plurality of tasks associated
with processing sensor data captured by one or more sen-
sors. For example, in some embodiments, the sensor data
may be visual data captured by one or more vision-based
sensors (e.g., a camera, infrared sensor, and/or laser-based
sensor).

[0425] The flowchart may then proceed to block 5404 to
generate a workload graph based on the workload. In some
embodiments, for example, the workload graph may include
information associated with the underlying tasks of the
workload, along with the task dependencies among those
tasks.

[0426] The flowchart may then proceed to block 5406 to
generate or identify a device connectivity graph. In some
embodiments, for example, the device connectivity graph
may include device connectivity information associated
with a plurality of processing devices, such as edge, cloud,
and/or intermediary network processing devices. The device
connectivity information, for example, may include infor-
mation associated with the device connectivity links among
the plurality of processing devices.

[0427] The flowchart may then proceed to block 5408 to
identify a privacy policy associated with the workload

US 2020/0250003 Al

and/or its underlying tasks. In some embodiments, for
example, the privacy policy may comprise privacy require-
ments associated with the task dependencies among the
workload tasks.

[0428] The flowchart may then proceed to block 5410 to
identify privacy level information associated with the plu-
rality of processing devices. In some embodiments, for
example, the privacy level information may include privacy
levels provided by the device connectivity links among the
plurality of processing devices. Moreover, in some embodi-
ments, the privacy level information may be specified by a
privacy level agreement.

[0429] The flowchart may then proceed to block 5412 to
identify a privacy constraint for workload scheduling based
on the privacy policy and the privacy level information. In
some embodiments, for example, the privacy constraint may
require the privacy level of a particular connectivity link to
be capable of accommodating the privacy policy of any task
dependency mapped to that connectivity link for data trans-
mission.

[0430] The flowchart may then proceed to block 5414 to
determine a workload schedule. The workload schedule, for
example, may include a mapping of the workload onto the
plurality of processing devices. Moreover, in some embodi-
ments, the workload schedule may be determined based on
the privacy constraint, the workload graph, and the device
connectivity graph. For example, in some embodiments, the
workload schedule may be determined by solving an integer
linear programming model based on the privacy constraint,
the workload graph, and the device connectivity graph (e.g.,
as described in connection with FIGS. 41-43). In this
manner, a resulting workload schedule is determined in a
manner that adheres to the privacy constraint. In some cases,
the privacy constraint may require disassociation of the
sensed or inferred content (such as demographic data, user
data, or other context) from the workload graph, device
connectivity graph, workload schedule, and/or other com-
ponent of the sensor network operation. Furthermore, the
workload schedule may employ curry functions wherein a
privacy constraint may direct the scheduling function to
perform an analytics function locally (avoiding distribution
of potentially privacy sensitive data to an aggregation and
analytics node that may be under the control of an untrusted
party). Moreover, in some embodiments, a machine learning
model may be used to optimize privacy-constrained work-
load scheduling.

[0431] In some embodiments, the resulting workload
schedule may then be distributed to the plurality of process-
ing devices (e.g., via a communication interface) in order to
execute the workload.

[0432] At this point, the flowchart may be complete. In
some embodiments, however, the flowchart may restart
and/or certain blocks may be repeated. For example, in some
embodiments, the flowchart may restart at block 5402 to
continue scheduling new workloads.

[0433] FIGS. 44-46 illustrate example embodiments of
self-sovereign device identification for distributed comput-
ing networks. In some embodiments, for example, a fog
node (e.g., loT sensor, actuator, camera, controller, gateway,
and/or any other type of fog node) may be a “multi-tenant”
node that is capable of participating in multiple different
distributed computing networks (e.g., visual fog networks).
In some embodiments, multi-tenant processing may involve
use of a tenant isolation technology, such as a Trusted

Aug. 6, 2020

Execution Environment (TEE) (e.g., Intel SGX or ARM
TrustZone). Additionally, tenant isolation may be achieved
using operating system-imposed resource restrictions,
namespace restrictions, and/or process access controls, oth-
erwise known as “containers.” Tenant isolation may further
be achieved using virtualization, where a first VM isolates a
first tenant from a second tenant of a second VM.

[0434] Further, certain networks may require a new fog
node to be “onboarded” or “commissioned” before the fog
node is allowed to access each network (e.g., using the
onboarding/commissioning protocols of the Open Connec-
tivity Foundation (OCF) and/or Intel’s Secure Device
Onboard (SDO) technology). Many visual computing solu-
tions, however, may assume that ownership of a node is
singular, meaning each node has only one owner. Accord-
ingly, ownership disputes may arise from a multi-tenant fog
node’s participation in multiple fog networks. The true or
original owner of a multi-tenant fog node, however, has an
interest in avoiding these ownership disputes. Accordingly,
many visual computing solutions are unsuitable for multi-
tenant fog nodes, which may participate in multiple fog
networks while also abiding by each network’s onboarding
or commissioning protocols (e.g., as defined by OCF or Intel
SDO).

[0435] Accordingly, in the illustrated embodiments, a
multi-tenant fog node can use a self-sovereign device iden-
tity in order to allow the node owner to retain an assertion
of ownership even when the fog node participates in, or
roams to, other fog networks. In some embodiments, for
example, a self-sovereign identity blockchain may be used
to register the identities of fog nodes or devices. A block-
chain, for example, may be a dynamic list of records or
blocks that are linked and/or secured using cryptographic
approaches. In some embodiments, for example, each block
in a blockchain may include a hash pointer linking to a
previous block, a timestamp, transaction data, and so forth.
Accordingly, in some embodiments, a blockchain can be
used as a distributed ledger for recording transactions in an
efficient, verifiable, and/or permanent manner. In visual
computing, for example, before adding a device identifier
for a new fog node, a blockchain may optionally be used to
verify that the identifier has not been previously asserted by
another node. Further, the public key used to verify the
device identity of the fog node may also be contributed to
the blockchain, allowing the device to later prove it is the
rightful owner of its identity.

[0436] FIG. 44 illustrates an example embodiment of a
distributed computing architecture 4400 with multi-tenant
device identification. In the illustrated embodiment, archi-
tecture 4400 includes fog networks A and B 4410q-b,
self-sovereign identity blockchain 4420, and new fog device
4430, as described further below.

[0437] A new fog device 4430 that is seeking to be used
in multiple fog networks 4410, but is not exclusive to any
particular fog network, may not have sufficient resources or
capabilities to create and maintain virtual sandbox environ-
ments for each of the fog networks. Moreover, each fog
network 4410 may have a large set of its own local fog
devices that are exclusive to that network and do not roam
into other fog networks. Accordingly, reusing device iden-
tifiers may not pose a significant problem of duplicative
identifiers until a new device 4430 with a conflicting identity
roams into a particular fog network.

US 2020/0250003 Al

[0438] There is often a cost associated with changing the
identity of a device, however, as credentials, access tokens,
and application logic may be linked to the device identity.
Moreover, the respective owners of devices with conflicting
identifies have a self-interest in resolving the conflict (e.g.,
to avoid ownership disputes), but without bearing the cost.
For example, the conflicting devices may respectively view
each other as “foreign,” and thus each device may want the
other “foreign” device to bear the cost of an identity change.
Accordingly, to resolve the opposing self-interests of
devices with conflicting identities, a blockchain 4420 may
be used to provide a fair algorithm for giving preference to
a device for its use of an identity. In some embodiments, for
example, the device that first registered a particular identity
with the blockchain 4420 is given preference in the event of
a conflict.

[0439] FIG. 45 illustrates an example call flow 4500 for
performing name registration of a self-sovereign device
identity. In some embodiments, for example, registration of
a self-sovereign device identity may be performed before
onboarding a new fog device onto a visual fog network. For
example, prior to being on-boarded onto a visual fog net-
work, a fog device may register its choice of device identity
with a blockchain.

[0440] Moreover, the blockchain may have a policy for
preventing duplicative identity registrations, for example, by
first checking for duplicates and only allowing registration if
no duplicates exist. For example, duplicative identity detec-
tion may be performed by blockchain processing nodes as a
requirement for vetting transaction blocks used for identity
registration. In the illustrated call flow 4500, for example,
each node performs the following steps:

[0441] (1) receive transaction request from new device:
TX,,..={S1, “A71C3”}, where S1=Sign_K_;;.(“A71C3”);

[0442] (2) compute hash HI=SHA256(“A71C3”);

[0443] (3) search hash tree of transaction attributes, where
B, _,.ss=Search(TxTree, H1);

[0444] () IF B, ~H1” THEN return ERROR_DUP_
FOUND;

[0445] (5) ELSE IF B,_,,.,= ” THEN add TX,,,, to the

current block where CurrentBlock=[1X,,,,, TX,, TX, ,, ..
L TX,

[0446] (6) compute new current block hash BH=SHA256
([TXn+1s Tan TXn—ls AR TXn—m])s

[0447] (7) write BH to the blockchain at B, ,,,, (current
position); and

[0448] () insert the tuple (H1, BH, B,) into TxTree.
[0449] In some embodiments, however, a less restrictive

policy may be used, such as a policy that does not check for
duplicates during identity or name registration, and instead
relies on dispute resolution to resolve duplicative identities.
For example, at the time a device is on-boarded onto a new
fog network, the blockchain can be consulted to determine
if the identifier has previously been used, and if so, conflict
resolution can be performed. The advantages of a less
restrictive policy include improved performance and the
ability to support mass registration workloads, among other
examples.

[0450] FIG. 46 illustrates an example call flow 4600 for
conflict resolution of self-sovereign device identities. In
some circumstances, for example, it may be unnecessary to
verify that a new device identifier is globally unique at the
time of registration, and instead, conflicting identities may
be addressed when a new device is on-boarded onto a local

Aug. 6, 2020

fog network and an existing device already has the same
identity. For example, privacy goals may be achieved by
using non-global identifiers and by switching identifiers
when interactions involve an entity from a foreign network.
Achieving privacy goals may result in more frequent device
ID collisions that are resolved dynamically (rather than a
strategy that involves manufacturers supplying globally
unique IDs that subsequently may be used to cross-correlate
a diverse set of transactions occurring on multiple networks
and involving multiple owners and users).

[0451] Accordingly, in some embodiments, conflicting
device identities on a particular fog network may be
resolved using conflict resolution call flow 4600. In the
illustrated call flow 4600, for example, a blockchain is used
to resolve conflicts based on identity registration priority
(e.g., the first device that registered a duplicative identity
with the blockchain receives preference). Accordingly, this
approach does not require device identifiers to be globally
unique, but in the event multiple devices on the same fog
network have the same identity, it requires one of the devices
to select a different identifier when interacting with that
particular network. Moreover, the dispute over which device
should pay the cost of changing its identity is resolved using
the blockchain. By way of comparison, FIG. 47 illustrates an
example of device onboarding or commissioning in a visual
fog network without employing conflict resolution.

[0452] In this manner, based on the illustrated embodi-
ments of FIGS. 44-46, device identity assertion can be
performed at any time during manufacturing of a device,
such as a system-on-a-chip (SoC) or any other type of
computing chip, circuit, or device. Moreover, rather than an
assertion of device “ownership,” device identity assertion
involves an assertion of identity ownership, where the
device is the owner of the identity. Accordingly, any appro-
priate entity within the supply chain of a particular device
(e.g., an original design manufacturer (ODM), original
equipment manufacturer (OEM), distributor, retailer, value-
added reseller (VAR), installer, or end customer) may assert
the identity of a device based on the sophistication and
capability of the particular entity.

[0453] FIGS. 48 and 49 illustrate example embodiments
of algorithm identification for distributed computing using a
self-sovereign blockchain.

[0454] Distributed computing interoperability depends on
agreement among participating nodes regarding the particu-
lar algorithms used to process information at each node. In
some cases, for example, algorithm agreement among nodes
may depend on a central authority that manages a registry or
database of algorithm identifiers. In this manner, distributed
nodes must rely on the registry for selection of the appro-
priate algorithms, otherwise interoperability is not achieved.
[0455] This dependence on central authorities can lead to
service disruptions, however, such as when a registry goes
offline, a registry is slow to publish new algorithm identifiers
(e.g., thus slowing the pace at which new algorithms can be
deployed), a central authority becomes the target of politi-
cizations (e.g., registration requests are held in ransom for
processing fees, political favors, and/or other forms of
manipulation that are not tied to the economics of the
distributed computing application), and so forth. For
example, these approaches are often highly centralized and
may involve international or governmental institutions,
which may be prone to politicizations and/or government
regulation (e.g., net neutrality). Moreover, since agreement

US 2020/0250003 Al

on which algorithms to use is fundamental to distributed
computing, a centralized approach for managing algorithm
identifiers can create an artificial bottleneck or choking
point, and entities seeking to impose regulation or control
can effectively leverage the centralized design to restrict or
prevent interoperability among distributed computing
nodes.

[0456] Accordingly, in the illustrated embodiments of
FIGS. 48 and 49, a blockchain is used to register a collection
of distributed computing algorithms (e.g., using self-sover-
eign algorithm identifiers). In some embodiments, for
example, the blockchain may process an algorithm registra-
tion request as a blockchain transaction, where the registrant
selects a unique algorithm identifier and specifies the algo-
rithm function. In various embodiments, the algorithm func-
tion may be specified in human-readable form (e.g., as a
natural language explanation or pseudocode), machine-read-
able form, and/or machine-executable form. Moreover, as a
condition or prerequisite to accepting the algorithm regis-
tration, the particular algorithm may be subjected to various
levels of “certification” by blockchain processing nodes. In
this manner, an algorithm may be accepted with progressive
levels of assurance without altering the registered algorithm
identifier.

[0457] Accordingly, the described embodiments allow
anyone that discovers a useful distributed computing algo-
rithm to make that algorithm known and available to a large
community. Blockchain networks, for example, are pre-
sumed to be large in number and open to large communities
of users. In this manner, members of the community can
build distributed computing systems without being hindered
by bureaucratic roadblocks and oversight. As a result, the
time between algorithm development and practical deploy-
ment can be minimized.

[0458] FIG. 48 illustrates an example embodiment of a
distributed computing architecture 4800 with self-sovereign
algorithm identification. In the illustrated embodiment,
architecture 4800 includes fog networks A and B 4810a-b,
along with a self-sovereign blockchain 4820 for registering
and identifying distributed computing algorithms 4430. In
some embodiments, for example, architecture 4800 could be
used to register and/or identify algorithms used for visual
fog computing.

[0459] As an example, if a useful distributed computing
algorithm 4430 is invented, discovered, and/or improved
upon in a first fog network (e.g., fog network A 48104a), the
first fog network may register the new algorithm in a
self-sovereign blockchain 4420 used for algorithm identifi-
cation. The blockchain processing nodes of the blockchain
4420 may then progressively vet the algorithm in order to
provide progressively stronger assurances regarding its
legitimacy (e.g., based on the computational properties and
outcome of the algorithm). Moreover, a second fog network
(e.g., fog network B 48105) may subsequently be notified of
the availability of the new algorithm, and may determine
whether the new algorithm has been adequately vetted (e.g.,
by consulting the vetting status of the algorithm in the
blockchain 4420). If the second fog network is satisfied with
the vetting of the new algorithm, the second fog network
may agree to use the algorithm. For example, in some
embodiments, after the algorithm has been adequately vet-
ted, the first fog network and second fog network may agree
to begin using the new algorithm.

Aug. 6, 2020

[0460] In some embodiments, the algorithm registration
and vetting process may involve: (1) registration of a
self-sovereign algorithm identifier (SSAI); (2) peer-review
of a human-readable description of the algorithm; (3)
machine analysis of a machine-readable representation of
the algorithm (e.g., analysis by a logic processor to identify
safe behavioral properties); and (4) execution of a machine-
executable implementation of the algorithm (e.g., execution
in a sandbox environment used to analyze expected behav-
ior). Moreover, once a certain threshold (e.g., a majority) of
blockchain processing nodes or evaluators achieve similar
vetting results, the algorithm identity and its vetting criteria/
results are recorded in a block of the blockchain 4420.
[0461] FIG. 49 illustrates an example call flow 4900 for
registering a distributed computing algorithm using a self-
sovereign blockchain. In some embodiments, for example,
an algorithm may be registered using a self-sovereign block-
chain to facilitate use of the algorithm across one or more
distributed or fog computing environments. In some cases,
for example, a distributed computing environment may be
referred to as Functions-as-a-Service (FaaS) or “serverless”
functions where the compute environment performs particu-
lar function(s), and where the function name is registered
with a blockchain and disambiguated from other functions
such that all computing nodes agree regarding the function
name and semantics. Moreover, in some embodiments, the
blockchain may leverage various levels of vetting to ensure
the algorithm behaves as expected, and verify that the
algorithm identifier is not already in use.

[0462] In the illustrated call flow 4900, for example, each
blockchain processing node performs the following steps:
[0463] (1) receive transaction request from new device:
TX,.,={S1, “91E21”}, where S1=Sign_K; .(“91E21”,
“Human-readable-description”, “Machine-readable-descrip-
tion”, “Machine-executable-implementation”);

[0464] (2) optional algorithm vetting (e.g., peer-review of
a human-readable algorithm description, logical analysis of
a machine-readable algorithm description/representation,
sandbox execution of a machine-executable algorithm
form);

[0465] (3) compute hash HI=SHA256(*“91E217);

[0466] (4) search hash tree of transaction attributes, where
B, ,oss—Search(TxTree, H1);

[0467] (5) IF B, ,,,~H1” THEN return ERROR_DUP_
FOUND;

[0468] (6) ELSE IF B_ .=~ THEN add TX,,,, to the

current block, where CurrentBlock=[TX, , ,, TX,, TX,_,, ..

S IX, 0

[0469] (7) compute new current block hash BH=SHA256
(X105 TX,,, TX,_y, TX,, 1)

[0470] (B) write BH to the blockchain at B, ,,, (current
position); and

[0471] (9) insert the tuple (H1, BH, B,_,,,,) into TxTree.
[0472] Once the vetting process completes, the blockchain

contains a vetted and registered instance of the algorithm
and its associated identifier. In this manner, distributed
computing nodes may then begin using the algorithm (e.g.,
based on the algorithm identifier and optionally its machine-
readable and/or machine-executable forms).

[0473] FIG. 91 illustrates a flowchart 9100 for an example
embodiment of a device identity blockchain. In various
embodiments, for example, flowchart 9100 may be imple-
mented using the visual computing architecture and func-
tionality described throughout this disclosure.

US 2020/0250003 Al

[0474] In some embodiments, for example, a device iden-
tity blockchain may be used to manage self-sovereign device
identities for a collection of devices that are capable of
participating in and/or communicating over multiple net-
works (e.g., [oT devices capable of participating in multiple
IoT networks, cameras/sensors capable of participating in
multiple visual fog networks, and/or any other type of device
capable of participating in multiple distributed computing
networks). Moreover, in some embodiments, the device
identity blockchain may be managed by one or more block-
chain processing devices. For example, in some cases, a
collection of blockchain processing devices may collec-
tively manage a device identity blockchain in a distributed
manner.

[0475] Accordingly, a particular device can register its
associated device identity with the device identity block-
chain before the device joins one or more distributed com-
puting networks. In this manner, when the device subse-
quently attempts to onboard onto particular network(s), the
network(s) can query the device identity blockchain to
verify that the device is the true owner of its asserted device
identity.

[0476] For example, when a new device attempts to
onboard onto a particular network, the blockchain process-
ing device(s) may receive an identity lookup request from
the network, which may request the blockchain devices to
lookup or search for a transaction in the device identity
blockchain that is associated with the device identity
asserted by the new device. The corresponding device
identity transaction may then be transmitted back to the
network, thus allowing the network to verify that the device
identity asserted by the new device is actually owned by or
registered to that device. As the device attempts to onboard
onto other networks, a similar process may be followed so
that those networks can similarly confirm that the new
device is the true owner of its asserted identity.

[0477] The flowchart begins at block 9102, where a device
identity transaction is received from a first device. In some
embodiments, for example, the device identity transaction
may contain and/or indicate a device identity, a digital
signature, and/or a public key associated with the first
device.

[0478] The flowchart then proceeds to block 9104, where
a hash of the device identity is computed (e.g., using Secure
Hash Algorithm 2 (SHA-2) or any other suitable hash
algorithm).

[0479] The flowchart then proceeds to block 9106 to
determine, based on the computed hash, whether the device
identity is already registered in the device identity block-
chain. In some embodiments, for example, a hash tree
associated with the device identity blockchain may be
searched to determine whether the blockchain contains an
existing transaction associated with the hash.

[0480] If the answer at block 9106 is YES, the flowchart
then proceeds to block 9108, where an error is returned/
transmitted to the first device to indicate that the device
identity is already registered.

[0481] If the answer at block 9106 is NO, the flowchart
then proceeds to block 9110, where the device identity
transaction is added to the device identity blockchain. In
some embodiments, for example, the device identity trans-
action may be added to a current block of recent transactions
associated with the device identity blockchain. Once the
current block is complete, the current block may then be

Aug. 6, 2020

hashed and written to the device identity blockchain. In this
manner, once the device identity transaction has been added
to the blockchain, an error will be returned if other devices
subsequently attempt to register the same device identity.

[0482] At this point, the flowchart may be complete. In
some embodiments, however, the flowchart may restart
and/or certain blocks may be repeated. For example, in some
embodiments, the flowchart may restart at block 9102 to
continue processing device identity transactions.

[0483] FIG. 92 illustrates a flowchart 9200 for an example
embodiment of a blockchain for managing distributed com-
puting algorithms. In various embodiments, for example,
flowchart 9200 may be implemented using the visual com-
puting architecture and functionality described throughout
this disclosure.

[0484] In some embodiments, for example, an algorithm
blockchain may be used to manage the algorithms used by
processing devices of distributed computing network(s)
(e.g., algorithms used by IoT devices on IoT network(s),
algorithms used by cameras/sensors and/or other processing
devices on visual fog network(s), and/or algorithms used by
any other type of device for any type of distributed com-
puting network). Moreover, in some embodiments, the algo-
rithm blockchain may be managed by one or more block-
chain processing devices. For example, in some cases, a
collection of blockchain processing devices may collec-
tively manage an algorithm blockchain in a distributed
manner.

[0485] In this manner, as new algorithms are developed
for devices of distributed computing network(s), the algo-
rithms can be submitted to the algorithm blockchain, vetted,
and then added to the blockchain after the appropriate
vetting is complete. In this manner, once a new algorithm is
added to the blockchain, that algorithm can then be used by
devices of certain distributed computing network(s).

[0486] For example, a first network may submit a new
algorithm to the blockchain processing device(s), and the
new algorithm may subsequently be added to the algorithm
blockchain after the appropriate vetting and/or validation is
performed). A second network may then be notified that the
new algorithm is available, and the second network may
then query the algorithm blockchain to verify that the new
algorithm is available and has been properly validated or
vetted.

[0487] Forexample, after the second network is notified of
the availability of the new algorithm, the blockchain pro-
cessing device(s) may receive an algorithm lookup request
from the second network (e.g., which specifies the algorithm
identifier). The blockchain processing device(s) may then
search the algorithm blockchain to identify the algorithm
registration transaction associated with the algorithm iden-
tifier, and the corresponding algorithm registration transac-
tion may then be transmitted to the second network. If the
second network determines that the new algorithm has been
properly vetted (e.g., based on the validation information
contained in the algorithm registration transaction), the
underlying devices in the second network may then begin to
use the new algorithm.

[0488] The flowchart begins at block 9202, where an
algorithm registration transaction is received from a particu-
lar network (and/or from a device associated with that
network). The algorithm registration transaction, for
example, may contain an algorithm identifier, a description

US 2020/0250003 Al

of an algorithm, and/or a representation of the algorithm
(e.g., a machine-readable and/or machine-executable repre-
sentation of the algorithm).

[0489] The flowchart then proceeds to block 9204, where
certain tests are performed in order to validate the algorithm.
For example, the representation of the algorithm may be
analyzed to identify one or more behavioral properties (e.g.,
to identify behavior that is either deemed safe or otherwise
unsafe/insecure/malicious). The representation of the algo-
rithm may also be executed (e.g., in a sandbox) and its
execution may be monitored and/or analyzed. In some cases,
these validation tests may be collectively performed by the
blockchain processing devices.

[0490] Once the blockchain devices have finished vetting
the algorithm, the flowchart then proceeds to block 9206 to
determine whether the algorithm has been validated. If the
answer at block 9206 is NO, the flowchart then proceeds to
block 9208, where the algorithm is rejected. If the answer at
block 9206 is YES, the flowchart then proceeds to block
9210, where the algorithm registration transaction is added
to the algorithm blockchain. One or more networks may then
be notified of the availability of the algorithm, and devices
on those networks may begin to use the algorithm.

[0491] At this point, the flowchart may be complete. In
some embodiments, however, the flowchart may restart
and/or certain blocks may be repeated. For example, in some
embodiments, the flowchart may restart at block 9202 to
continue processing algorithm registration transactions.

[0492] Applications

[0493] The visual fog architecture and embodiments
described throughout this disclosure can be used for a
variety of large-scale visual computing applications and use
cases, such as digital security and surveillance, business
automation and analytics (e.g., retail and enterprise), trans-
portation (e.g., traffic monitoring, navigation, parking, infra-
structure planning, security or amber alerts), education,
video broadcasting and playback, artificial intelligence, and
so forth.

[0494] As an example, the described embodiments could
be used to implement wearable cameras for first responders
that are capable of automatically detecting events or emer-
gency situations and performing certain responsive mea-
sures, such as notifying the appropriate personnel, triggering
recording of the event by related or nearby cameras, and so
forth.

[0495] As another example, the described embodiments
could be used to implement a digital surveillance and
security (DSS) system with people search or facial recog-
nition capabilities across visual data streams from multiple
different cameras, sensors, and/or locations.

[0496] As another example, the described embodiments
could be used to implement a digital surveillance and
security (DSS) system with license plate identification and
fraud detection capabilities (e.g., identifying a car with a
license plate that does not match the corresponding vehicle
record, identifying multiple cars with same license plate, and
so forth).

[0497] As another example, the described embodiments
could be used to provide customer insights and analytics
(e.g., for retail shoppers), such as an intra-store shopper trip
summary (e.g., a list of products or departments interacted
with by a shopper), an inter-store shopper trip summary
(e.g., identifying repeat customers by differentiating

Aug. 6, 2020

between new and returning customers as they enter a store
with a single or multiple locations), and so forth.

[0498] Similarly, the described embodiments could be
used to provide visualization of customer or shopper insights
and analytics (e.g., visualizing a graph representation of
visual metadata for human consumption).

[0499] As another example, the described embodiments
could be used to perform automated demographics identi-
fication in a privacy-preserving manner (e.g., using top-view
cameras or sensors for demographic mapping of gender, age,
race, and so forth).

[0500] As another example, the described embodiments
could be used to perform heat mapping in retail stores or
other brick-and-mortar environments to generate a repre-
sentation of the crowd (e.g., using top-view sensors or
cameras and/or multi-modal crowd emotion heat mapping).
In some embodiments, for example, heat mapping could be
leveraged for optimization of store layouts, among other
examples.

[0501] As another example, the described embodiments
could be used to implement multi-modal real-time customer
reviews. For example, customer reviews and/or customer
satisfaction information could be collected and analyzed in
real-time using multi-sensory data, which can be translated
into quantitative customer-to-customer reviews for any
products or in-store activities of a particular store or brick-
and-mortar environment.

[0502] Similarly, the described embodiments could be
used to implement multi-modal retailer-shopper double
review, which may focus on collection and analysis of both
product reviews from customers and customer reviews from
retailers.

[0503] As another example, the described embodiments
could be used for automated customer satisfaction analysis.
For example, visual data could be used to measure customer
satisfaction at check-out based on non-verbal communica-
tion or body language. In this manner, customer satisfaction
can be automatically inferred without requiring manual
customer feedback (e.g., via a button or survey).

[0504] As another example, the described embodiments
could be used to monitor the effectiveness of employee-
customer interactions. For example, visual data could be
used to measure and track the effectiveness of communica-
tion between customers and salespeople with respect to
finding desired products or items. In some embodiments, for
example, visual data could be used to track users within a
store, identify customer-employee contact and interactions,
and monitor the employee and/or customer responses.

[0505] As another example, the described embodiments
could be used to provide dynamic ambience environments
by identifying contextual information (e.g., relationships or
actions) within a group of people. For example, visual data
could be used to identify individuals and their associated
contextual information to determine whether they are part of
the same group (e.g., based on physical proximity and/or
corresponding movement), and if so, to identify various
parameters or characteristics of the group (e.g., a family
shopping together in a store).

[0506] As another example, the described embodiments
could be used to implement double auction real-time bidding
(RTB). In some embodiments, for example, visual data
could be used to implement multi-shopper, multi-bidder
real-time bidding (RTB) for brick-and-mortar retailers.

US 2020/0250003 Al

[0507] As another example, the described embodiments
could be used to monitor and detect changes to store layouts
based on visual data and/or sensors.

[0508] As another example, the described embodiments
could be used for robotic inventory tracking and logistics
(e.g., using stationary and/or moving cameras to track inven-
tory of retail stores, warehouses, offices, and so forth).
[0509] As another example, the described embodiments
could be used for robotic equipment inspection (e.g., using
computer vision technology to inspect the safety and/or
health of equipment in a factory, plant, warehouse, store,
office, and so forth).

[0510] As another example, the described embodiments
could be used to provide automated tipping recommenda-
tions, for example, based on multi-sensory inputs and/or
visual data reflective of factors that typically impact cus-
tomer tipping behavior.

[0511] As another example, the described embodiments
could be used for workplace automation, such as workplace
quality control, employee monitoring, and so forth. In some
embodiments, for example, visual data could be used to
analyze employee emotions in order to improve productiv-
ity.

[0512] As another example, the described embodiments
could be used for education and/or automated learning (e.g.,
using visual data to analyze student behavior in the class-
room or at home in order to provide further assistance when
appropriate).

[0513] As another example, the described embodiments
could be used for video playback, such as user-centric video
rendering, focused replays, and so forth. For example,
user-centric video rendering could be used to perform
focused rendering on 360-degree video by analyzing what
the user is focusing on, and performing no or low-resolution
processing on portions of the video that are outside the focus
area of the user (e.g., for virtual-reality (VR) and/or aug-
mented-reality (AR) applications). As another example,
focused video replays could be used to automatically focus
the rendering of a video replay on an area of interest, such
as the portion of a sports replay where most players are
located.

[0514] As another example, the described embodiments
could be used to train artificial intelligence systems. In some
embodiments, for example, visual data could be used to
automatically generate ground truth information that can be
used to train artificial intelligence or machine learning
models, such as deep learning neural networks.

[0515] As another example, the described embodiments
could be used to implement a ubiquitous visual computing
witness, as described further below in connection with
FIGS. 55-61.

[0516] These examples are merely illustrative of the lim-
itless universe of visual applications and use cases that can
be implemented using the visual fog architecture described
throughout this disclosure.

[0517] Ubiquitous Visual Computing Witness

[0518] FIGS. 55-56 illustrate an example embodiment of
a ubiquitous visual computing witness. A ubiquitous witness
addresses the problem of collecting evidence for events,
incidents, or anomalies of interest in a timely, accurate, and
comprehensive manner. For example, the police department
is a government agency devoted to law enforcement and
public safety, which often requires them to conduct inves-
tigations into criminal activity, automobile accidents (e.g., to

Aug. 6, 2020

identify the cause), and so forth. Similarly, a neighborhood
watch is an organized group of people devoted to monitoring
and preventing crime and vandalism within a neighborhood.
These types of functions often require evidence to be
collected from various sources, including eye witnesses,
physical environments, electronic sources (e.g., surveillance
systems), and so forth. The major issues in the aforemen-
tioned use cases lie in the fact that often times the most
important evidence is sourced from 3’? parties. In a neigh-
borhood watch, for example, a neighbor’s camera may
capture a much clearer view of an incident in or around a
nearby house. In automobile incident investigations, evi-
dence may need to be collected and combined from multiple
sources, such as nearby cars, roadside infrastructure or
roadside units (RSUs) (e.g., lamp posts, signage, traffic
lights), and so forth. Thus, comprehensive data aggregation
and timeliness are both crucial to the fact-gathering process.

[0519] Existing approaches for evidence gathering suffer
from various drawbacks. For example, there are no auto-
mated solutions for evidence gathering. Moreover, for elec-
tronic devices that continuously generate and/or stream data
(e.g., sensors, cameras), the data retention policies can be
rather short due to resource constraints. For example, data
may only be retained for a couple of hours for vehicle
dashboard/surveillance cameras due to limited storage
capacity on an SD card. Further, manual approaches to
evidence gathering often face various challenges. In particu-
lar, ownership of the data can present problems, especially
in the absence of a shared authority that brokers access to the
data.

[0520] Accordingly, this disclosure describes various
embodiments of a ubiquitous visual computing witness. In
particular, this disclosure proposes a novel new application
of a ubiquitous witness implemented using an infrastructure
of visual fog computing and visual fog networking for
various example use cases. Further, the described ubiquitous
witness addresses the challenges associated with data reten-
tion and data aggregation in connection with evidence
gathering. In particular, the ubiquitous witness provides
real-time data collection using visual fog computing. For
example, when an interesting event (e.g., anomalous,
unusual, rare) occurs, a snapshot of local data is locked (e.g.,
securely stored) by the subject device that detected the
event, thus preventing the data from being overwritten.
Further, the subject that detected the event notifies other
relevant subjects (e.g., nearby subjects in many cases) in real
time to lock their respective counterpart data snapshots.
Further, the data retention problem can be addressed using
quality of service (QoS) designations to prioritize which
data to store versus expire (e.g., visual data versus other
forms of data). Further, with visual fog computing, the data
may be preprocessed to save bandwidth for the next step of
data aggregation. In particular, the ubiquitous witness pro-
vides automated data aggregation using visual fog network-
ing. For example, once data has been retained and optionally
preprocessed by the various subject devices, the collection
of data and metadata distributed across the respective sub-
ject devices is aggregated using visual fog networking
and/or information-centric networking (ICN), thus allowing
the respective data snapshots to be associated together and
properly stored by the devices or nodes in the visual fog
paradigm.

[0521] In this manner, the ubiquitous witness provides
various advantages in connection with evidence gathering.

US 2020/0250003 Al

For example, the central or key evidence associated with an
incident is unimpeded by data retention policies, as the
relevant subject devices are notified in real time to collect
and lock their respective data snapshots. As another
example, information-centric networking (ICN) and/or
event-based data routing can be leveraged to provide a more
efficient approach for collecting, aggregating, and/or routing
data. In some embodiments, for example, relevant data can
be routed by location, time, triggering event, source, desti-
nation (e.g., the responsible authorities), and/or any salient
attributes describing key features of the event or incident.
[0522] FIG. 55 illustrates an example use case 5500 for an
automotive ubiquitous witness. The illustrated use case 5500
includes edge devices 5510a-e, fog devices 5520a-c, and a
communication network 5530. In the illustrated example,
edge devices 5510qa-e are cars with onboard sensors and/or
cameras for collecting data during operation, while fog
devices 5520a-c are traffic lights or other roadside units
(RSUs) with sensors and/or cameras for local or nearby data
collection. Moreover, communication network 5530 may
include visual fog and/or information-centric networking
capabilities, which may be used to facilitate real-time col-
lection and aggregation of data from both cars 5510 and
RSUs 5520 using event-based data management and storage
techniques. In this manner, a ubiquitous automotive witness
may be implemented using a combination of visual fog
computing (VFC) and visual fog networking or information-
centric networking (ICN), as described further below in
connection with FIG. 56.

[0523] FIG. 56 illustrates an example dataflow 5600 for a
ubiquitous witness. In some embodiments, for example,
dataflow 5600 may be performed in connection with the
example automotive use case illustrated in FIG. 55.

[0524] The illustrated dataflow begins at block 5602 by
determining whether an incident has been detected. In
various embodiments, for example, an incident may be
detected by processing sensor data using any suitable
approach, such as identifying unexpected or outstanding
changes in sensor data (e.g., data from internal sensors of
vehicles and/or other types of equipment), performing event
detection and recognition using computer-vision and/or
machine learning techniques, and so forth.

[0525] Once an incident has been detected, that will trig-
ger local data collection by the detecting device (block
5604) along with nearby data collection by any surrounding
devices (block 5608), and the incident will also be given a
name (block 5610).

[0526] For example, at block 5604, the detecting device
performs local data collection, which may involve perform-
ing local analytics in order to acquire and/or generate data
and/or metadata associated with the incident. The metadata,
for example, may include or otherwise identify regions of
interest (ROIs), geolocation names (e.g., addresses, cities,
states, zip codes, landmarks, countries), tagging or labels on
the scene of the incident derived using computer vision
techniques (e.g., image classification or segmentation),
weather, and/or any other contextual or circumstantial infor-
mation associated with the incident, among other examples.
Further, the relevant data may be designated with a high-
priority QoS in order to ensure that the data is retained.
[0527] At block 5606, mechanisms are then employed to
inform nearby devices of the incident, which enables those
devices to lock down their data as well as perform any other
actions that may be appropriate in the particular circum-

Aug. 6, 2020

stances and/or use case. For example, in the context of a
neighborhood watch, ZigBee and/or LTE may be used to
notify nearby devices of an incident for data collection
purposes, while LTE and/or dedicated short-range commu-
nications (DSRC) may be used in the context of automobile
incidents. Regardless of the underlying wireless communi-
cation infrastructure, an alert message is routed from the
device that detected the incident to its neighbors in order to
trigger the process of locking down the relevant data of the
nearby or neighboring devices (block 5608).

[0528] At block 5610, the incident is then given a “name”
for identification, routing, and/or networking purposes. In
some embodiments, for example, the incident name may be
derived using an arbitrary combination of information asso-
ciated with the incident, such as location, time, event, type
of incident, priority/importance/fatalities, image/video cap-
tured of the event, and so forth. In this manner, the concat-
enation of this descriptive information can serve as the event
name 5612 for purposes of requesting the underlying event
data within an information-centric network (ICN), as
described further below.

[0529] At block 5818, for example, an information-centric
network (ICN) may be used to request, route, and aggregate
the relevant data (e.g., local device data 5614 and/or nearby
device data 5616) based on the incident name (e.g., the
attributes associated with the data). In this manner, the
network can then route or be queried for data associated with
a particular incident of interest. For example, evidence of
theft in a neighborhood watch may be requested and sub-
sequently directed to a nearby police station 5822, while
evidence of automobile speeding may be requested and
subsequently directed to the department of motor vehicles
(DMV) 5824 and/or an insurance company.

[0530] Moreover, the data associated with an incident may
also be stored by certain network resources 5820 in order to
satisfy subsequent queries relating to the incident. For
example, at block 5826, users may query for evidence
associated with an incident using the various attributes in the
incident name. For example, a user might only know the
approximate time and place of an incident for purposes of
querying the network, and thus the network can disseminate
the query to the relevant data stores, and those with relevant
data can then reply.

[0531] In this manner, a ubiquitous witness can be imple-
mented by leveraging visual fog computing to perform data
processing and/or pre-processing at edge and/or fog nodes,
followed by using visual fog networking and/or information-
centric networking (ICN) to associate and/or aggregate the
collection of evidence for an incident (e.g., data and meta-
data from various sources), timely route the evidence to the
appropriate destination(s), and/or store the evidence in the
appropriate data stores. Further, in some embodiments, a
ubiquitous witness may be implemented within a network
topology that leverages “converged node” routers, as
described further below in connection with FIGS. 62-63.
[0532] FIGS. 57-60 illustrate examples of anomaly detec-
tion and event reconstruction for a ubiquitous visual com-
puting witness. With respect to the automotive industry, for
example, vehicles currently come equipped with an array of
sensors designed to sense and record a multitude of data
(e.g., speed, direction, fuel levels). These sensors are often
present internally within a vehicle as well as mounted
externally on the vehicle. Externally mounted sensors, for
example, may include visual/audio sensors such as cameras

US 2020/0250003 Al

that are used for recording or capturing the road, lane
boundaries, surrounding vehicles or obstacles, and so forth.
Moreover, with respect to the ongoing development of
connected and autonomous vehicles, the range and func-
tionality of such sensors is only going to increase. Similarly,
the number of sensors deployed to instrument the roadside
infrastructure is also going to increase dramatically. An
important use case for this enormous volume of collected
data is anomaly detection, such as the detection of an
unusual event or incident involving vehicles, people, and/or
infrastructure. For example, proximate sensory data can be
assimilated in order to reconstruct the sequence of events
leading up to the anomaly in a multi-dimensional manner.
Further, when the anomaly is a vehicular accident involving
damage to a person or property, this type of reconstruction
can also be used to determine the primary responsible parties
for purposes of restitution and insurance, particular in the
absence of traditional eye witnesses.

[0533] Currently, however, the data generated by the vari-
ous sensors in vehicles and roadside infrastructure is often
isolated, as it is often stored in separate vendor- or applica-
tion-specific clouds. There are various reasons for this,
including but not limited to the following: (1) sensors within
a single vehicle may be deployed by different manufacturers
and their respective data may be routed to vendor-owned
clouds; (2) obtaining data from nearby vehicles is often
difficult, as the vehicles may be manufactured by different
vendors that have different ways of capturing and storing
information, including potentially different proprietary for-
mats for sensory data; and (3) the entities involved may or
may not be available or traceable in the first place.

[0534] Accordingly, with respect to existing solutions,
sensor fusion exists strictly within each individual vehicle
and is strictly siloed by each sensor vendor. Thus, sensor
fusion can only be leveraged to aggregate image data
collected from the field of view of each vehicle in isolation.
Moreover, while existing video aggregation solutions can
collect streams from multiple cameras (e.g., infrastructure-
based solutions such as video surveillance or augmented
reality), those solutions are ineffective when the sensors are
owned by multiple different manufacturers, their “black
box” data is generally proprietary, and there is very little
cross-organization access or coordination. Accordingly,
video aggregation and stitching using cameras in roadside
infrastructure is typically limited to specific functions (e.g.,
traffic management services, awareness of road conditions,
and/or surveillance). These respective approaches fall short
in addressing anomaly detection in a globally distributed
fashion, on the fly (e.g., in real time), and from multiple
parties, particularly with respect to the fusion of data from
both static and mobile entities.

[0535] Accordingly, this disclosure presents a solution for
multi-dimensional anomaly event reconstruction for smart
automated systems, such as autonomous vehicles and smart
cities. In particular, the described embodiments enable
multi-dimensional reconstruction of detected anomalies,
where the multi-dimensional aspect refers to the ability to
recreate an event from many different perspectives using
multi-modal sensory information from multiple sources.
These sources can include sensors, cameras, and/or other
audio/visual elements, which may reside in multiple
vehicles, roadside infrastructure, and/or the “black box” of
information required by regulation for each vehicle. The
objective is to solicit enough reconstruction data to recreate

Aug. 6, 2020

the event (which occurred at a particular point in time and
space) in multiple dimensions (from different vantage
points), while simultaneously scoping the solicitation within
a bounded region of relevance.

[0536] Anomaly detection and event reconstruction is a
multi-stage process that begins when a potential anomaly is
detected. In some embodiments, for example, an anomaly
may be detected by analyzing sensor data from one or more
sources using any suitable processing techniques (e.g., com-
puter vision, machine learning, artificial neural networks).
The detection and identification of the anomaly (e.g., time,
location and/or type of anomaly) may then serve as inputs to
the event reconstruction process. In some embodiments, for
example, the event reconstruction process may involve (1)
digital witness identification, (2) data gathering, and (3)
multi-dimensional event reconstruction, as described below.

1. Digital Witness Identification

[0537] Once the anomaly is detected, the first stage of the
response is identifying the parties involved, including those
involved directly in the anomaly and those that are digital
witnesses to the anomaly, both of which may possess data
needed to reconstruct the anomaly.

2. Data Gathering

[0538] The second stage involves data gathering from the
relevant parties that have been identified. The data gathering
stage can be implemented using any suitable approach
and/or technology, including a cloud-based solution that
uses [P-based routing, and/or an edge-based solution that
leverages information-centric networking (ICN) or ICN-
based routing, among other examples. Further, in some
embodiments, a network topology implemented with “con-
verged node” routers may be leveraged to facilitate the data
gathering process, as described further below in connection
with FIGS. 62-63.

3. Multi-Dimensional Event Reconstruction

[0539] The third stage then uses the gathered data to
perform multi-dimensional event reconstruction. In some
embodiments, for example, three-dimensional (3D) event
reconstruction may be used to recreate the event from a
variety of different types of sensory data (e.g., image, audio,
video), using different media-appropriate processing algo-
rithms to assimilate all the sensory information in a time-
synchronized fashion.

[0540] Accordingly, this disclosure presents a novel solu-
tion for general anomaly detection and event reconstruction,
which can be leveraged for a variety of use cases, including
connected and autonomous vehicles that live within a smart
transportation infrastructure. In this manner, the sensing
capabilities of multiple vehicles and the surrounding infra-
structure can be leveraged for anomaly detection and event
reconstruction purposes.

[0541] FIG. 57 illustrates an example use case 5700 for
automotive anomaly detection and event reconstruction. The
illustrated use case 5700 includes a plurality of cars 5710
driving on a road, along with multiple roadside units (RSUs)
5720 on the side of the road (e.g., traffic lights, lampposts,
road signs, and/or other roadside infrastructure). The cars
5710 and RSUs 5720 are each equipped with a collection of
sensors and/or cameras for capturing data associated with
their respective operating environments, along with com-

US 2020/0250003 Al

munication interface(s) to facilitate communication with
each other and/or other networks.

[0542] Moreover, the illustrated example portrays a snap-
shot in time and space of an automotive anomaly that
involves a collision between two vehicles. The collision may
be detected and recorded as an anomalous incident (e.g.,
with details of time and location) by any of the vehicles
involved in the collision (either directly involved or indi-
rectly involved as witnesses) and/or the roadside infrastruc-
ture or RSUs. In various embodiments, for example, an
anomaly may be detected by processing sensor data using
any suitable approach, such as identifying unexpected or
outstanding changes in sensor data (e.g., data from internal
sensors of vehicles and/or other types of equipment), per-
forming event detection and recognition using computer-
vision and/or machine learning techniques, and so forth.
[0543] Once an anomaly has been detected, the exact
sequence of events leading up to the collision and slightly
beyond can then be reconstructed, as described further
below. For example, FIGS. 58-60 present various solutions
for anomaly detection and reconstruction using both Internet
Protocol (IP) networks and Information-Centric Networks
(ICN).

[0544] With respect to IP-based embodiments, for
example, the event reconstruction process begins by iden-
tifying all entities that may have useful data for the recon-
struction process. In many cases, for example, it can be
assumed that potentially relevant entities are those that
reside within a region of interest referred to as the “anomaly
coverage area” 5730 during a particular time window in
which the anomaly occurred. The process of identifying
these entities or “witnesses” can be triggered in multiple
ways, including by vehicle(s) involved in the incident and/or
nearby roadside infrastructure.

[0545] In some embodiments, for example, the process of
identifying relevant entities or “witnesses” may be triggered
by a vehicle that detects an anomaly, such as a vehicle
directly involved in an incident or a nearby vehicle that
merely witnesses the incident. As noted above, for example,
many vehicles come equipped with sensors, cameras, and
some level of automation, and the scope and sophistication
of that technology is continuously increasing due to the
ongoing development of connected and autonomous
vehicles. Accordingly, a vehicle may leverage those various
technologies to detect an anomalous incident or event (e.g.,
based on a sudden shock, air bag deployment, shock of the
impact with another vehicle, unusual audio or video, and so
forth). On detection of the anomalous event, the vehicle
system triggers an alert and generates an automatic push
request to send all sensor logs (including camera video
streams) within a time window that extends pre- and post-
incident to the vehicle’s cloud systems (e.g., clouds of the
vehicle manufacturer, insurer, municipal authorities, and so
forth). The cloud, upon receipt of data associated with the
anomalous event, may then employ an analytics engine to
perform a search of the visual/sensory data using timestamp
information to find license plates and other identifying
information of the surrounding vehicles and/or infrastruc-
ture. The license plate information may then be mapped to
the corresponding vehicle owners using a vehicle database
(e.g., a publicly available database maintained by the
Department of Motor Vehicles (DMV) in the U.S. or the
equivalent in other countries). The cloud engine then sends
out a request for information to the identified vehicles and

Aug. 6, 2020

their owners to reconstruct the event using an application
server. Alternatively, the vehicles involved in the incident
can process their own logs within their own local analytics
engine even before the upload, and then through the local
analytics engine, identify other vehicles and witnesses that
were within the anomaly coverage area 5730.

[0546] Alternatively, the process of identifying relevant
entities or “witnesses” may be triggered by roadside infra-
structure located within the anomaly coverage area 5730.
For example, roadside infrastructure may include various
types of roadside units (RSUs) with edge and fog computing
capabilities (e.g., storage, processing, communication/rout-
ing, sensors/cameras), such as traffic lights, street lights,
lampposts, road signs, and so forth. In this manner, roadside
infrastructure within the anomaly coverage area 5730 may
detect, witness, or otherwise be alerted to an anomalous
incident, and thus may trigger an alert or response to the
incident. For example, the infrastructure equipment may
send sensory data (e.g., video streaming feeds) from a time
window that extends pre- and post-incident to an appropriate
authority and/or cloud destination (e.g., the roadside unit
(RSU) infrastructure cloud) to provide proof of witness. In
this manner, the event reconstruction process is triggered by
the roadside infrastructure, as described further below in
connection with FIG. 58.

[0547] FIG. 58 illustrates a process flow 5800 for anomaly
detection and reconstruction orchestrated by roadside unit
(RSU) infrastructure over IP networks. In particular, the
RSU local cloud performs analytics using object recognition
techniques and generates an event trigger to its own RSU
cloud (block 5802), while simultaneously uploading its
content to that cloud (block 5804). In parallel, the other
entities involved (e.g., vehicles) also upload their data to
their own local clouds (block 5806). The RSU cloud per-
forms further analytics, obtains additional information on
the entities involved in the anomaly, and sends queries to the
clouds of those entities to gather their data (block 5808).
Those clouds then respond with corresponding data that is
responsive to the anomaly search query (e.g., based on
coverage area, time delta) (block 5810). Further, as more
data is collected and additional processing is performed,
additional entities with potentially relevant data may be
identified, and those entities may be queried for their respec-
tive data in a similar manner. The process may continue in
this manner until the entire dataset associated with the
anomalous incident has been collected from all entities that
have been identified as relevant.

[0548] As an example, once the data solicitation requests
have been sent out, the responsive data may subsequently be
aggregated at the entity that initially triggered the process,
such as the RSU cloud or its associated municipal authority,
the vehicle manufacturer, an insurance provider, and so
forth. Further, in some cases, the same anomaly may be
reconstructed by multiple different participants, such as the
municipal authorities that own the RSUs (e.g., to improve
traffic safety measures), the vehicle manufacturers (e.g., to
improve their connected vehicle technology), and the insur-
ance providers (e.g., to understand societal accident pat-
terns), largely using the same process described above. After
the data is gathered, it must then be stitched together to
re-create the event. In various embodiments, for example,
event reconstruction may be performed by consolidating
sensor data from multiple sources and perspectives into a
multi-dimensional representation using any suitable pro-

US 2020/0250003 Al

cessing techniques, such as sensor fusion, computer vision,
artificial neural networks, machine learning, and so forth.
[0549] In some embodiments, the various clouds may
provide application programming interfaces (APIs) that
allow other clouds or entities to query for and receive data
in a format that can be parsed and decoded by the recipients.
Further, each individual database within each individual
cloud may be responsible for determining the legitimacy of
the entities that request or query for data, including whether
they have permission to receive the responsive data. Simi-
larly, the receiver of the data may be responsible for deter-
mining the authenticity of data received in response to its
query. In various embodiments, these types of safeguards
can be implemented using an offline process, or they can
take place in real-time if the requisite systems and authori-
zations for data access have been properly deployed and
configured.

[0550] FIGS. 59-60 illustrates a process flow for anomaly
detection and reconstruction over information-centric net-
works (ICNs). For example, in the illustrated process flow,
it is assumed that the participating entities shown in the use
case of FIG. 57 (e.g., vehicles, surrounding infrastructure,
and/or any other bystanders or witnesses within the anomaly
coverage area) are part of an ICN-enabled network. As
discussed further below, there are two important differences
between ICN and IP networks that can be exploited to
improve operational efficiency in this context.

[0551] First, an ICN network is capable of routing data by
name (which is often a series of attributes related to the data,
such as its purpose, owner, location, and/or other contextual
information) rather than by IP address, which enables loca-
tion-independent routing. This capability can be leveraged
through the use of a “fuzzy request,” which requests
anomaly-related data based on a name that includes the time
and location of the anomaly, as well as a delta of uncertainty,
among other potential characteristics or attributes. In this
manner, the fuzzy request acts as a query to the network
itself, but without having to know the identities or IP
addresses of the entities that detected the anomaly. Further,
the delta of uncertainty allows responses from any entities
that were located within a scoped physical region of inter-
est—and that collected qualifying data of interest—at a time
when the anomaly occurred plus or minus a threshold
margin of error before and after the anomalous event.
[0552] Second, an ICN network offers caching natively at
the routing layer, meaning as data passes through a router it
may optionally be cached for later usage (e.g., when the
source of the data is unavailable due to mobility, interfer-
ence, disconnectivity, an energy-saving sleep mode, and so
forth). This has the side effect of making data available in
multiple locations and potentially much closer to the
requesters, which saves precious and often limited network
resources. As a result, when a fuzzy request is solicited, any
witnesses or nodes with data that was collected within the
approximate time and location of the anomaly may respond
to the fuzzy request, regardless of whether the data was
created or merely cached at that node.

[0553] The entities that have the capability to capture,
create, process and/or store sensory data and make it avail-
able in a form that can be shared at the network routing layer
are known as the “producers” or “publishers” in an ICN
network, while the entities that request information are
known as “consumers” or “subscribers.” The physical net-
work itself is formed through the interconnection of the

Aug. 6, 2020

underlying participants using certain connectivity solution
(s) (e.g., LTE, DSRC, Wi-Fi, 5G), and thus the network
continuously changes as its participants join and leave (e.g.,
as vehicles connect to and disconnect from base stations
while moving from one cell to another).

[0554] This framework enables distributed storage of
anomaly information across vehicles and roadside infra-
structure in the anomaly coverage area, while also allowing
“subscriber” nodes (e.g., the DMV, insurance company
investigation systems, vehicle manufacturer post-accident
services) to pull together all pieces of the stored view of the
anomaly and reconstruct the scene. Given that ICN does not
require the underlying participants to be specifically known
or identifiable, but instead merely requires the name and/or
attributes of relevant data to be known, the process of
gathering anomaly data from numerous sources is much
more straightforward. Scene reconstruction can then take
place in a cascaded and cooperative manner, as described
further below.

[0555] FIG. 59 illustrates the overall system-level process
flow 5900 for anomaly detection and reconstruction via an
ICN network, while FIG. 60 illustrates the process flow
6000 at an individual node within the ICN network. Turning
to FIG. 59, the process flow 5900 begins when one of the
entities (either a static infrastructure element or a mobile
element such as a vehicle) detects an anomaly, such as a
collision. The illustrated example assumes the anomaly is
detected by a roadside unit (RSU), which sends an alert to
trigger the reconstruction process.

[0556] For example, upon detecting the anomaly, the RSU
sends a “scoped interest” packet over the ICN network
(block 5902) using multicast in order to allow the packet to
be heard and/or received by the respective entities that are
within the coverage range of the network. In typical ICN
networks, for example, a subscriber sends an “interest
packet” that contains the precise name of the desired content
or data. In this case, however, because the subscriber does
not know the exact name of the content, the scoped interest
packet merely identifies certain attributes of the desired
content. Thus, the structure of a scoped interest packet
differs from traditional ICN interest packets, as a scoped
interest packet is essentially a “fuzzy” request for data that
satisfies certain criteria rather than a request for data with a
precise name. In some embodiments, for example, a scoped
interest packet may request data based on an approximate
location in space and time, such as data captured within
certain deltas relative to a reference location x,y,z (Refl.oc)
and a reference time t (RefTime).

[0557] The naming convention for such an anomaly re-
construction process is designed and implemented a-priori to
facilitate the search. For example, each participating pub-
lisher follows the same naming convention such that the
object names of the sensory data being recorded are named
consistently, such as using the following format:

[0558]
Name.

[0559] The geographical location could be a standardized
format that is similar to the naming mechanism for map tiles
used to construct vehicular maps. The date and timestamp
reflect the local date and time for the particular geographical
location. The entity name could reflect a unique identity for
avehicle or the infrastructure equipment. The query contains

Geographicall.ocation/Date/Timestamp/Entity-

US 2020/0250003 Al

the geographical location, date, and timestamp in the same
format as the naming convention to facilitate an efficient
search.

[0560] In some embodiments, a scoped interest packet
may also identify and/or include a “function” for each node
to apply to any data collected in response to the interest
packet, such as a particular processing function for aggre-
gating and/or compressing responsive data received at the
intermediate hops before it reaches the original subscriber,
thus improving network efficiency.

[0561] The scoped interest packet is received by multiple
vehicles or nodes (blocks 5904 and 5906), and each node
searches for responsive data and may also forward the
packet along to other nodes (blocks 5908 and 5910).
[0562] The process flow of an individual node is further
illustrated and described in connection with FIG. 60. For
example, turning to FIG. 60, after the RSU has sent a scoped
interest packet (block 6002) that is received by a vehicle or
other node (block 6004), the node checks to see if another
entity has issued a similar interest packet that has been
buffered in the node’s pending interest packet table (block
6006). If a similar interest packet has already been received,
that means the node has already seen this request, and thus
the node deletes the current interest packet (block 6008). If
a similar interest packet has not been received, the node has
not sent this request, and thus the node performs longest
prefix matching for the named content within its cache to
search for responsive content that matches the query param-
eters (block 6010). If responsive content is identified, the
node then saves the content (block 6014).

[0563] However, unlike a conventional ICN where the
transaction ends once a node provides matching content in
response to an interest packet, here the node forwards the
interest packet to other potentially relevant nodes (block
6014) and also stores the packet in its pending interest table
to avoid processing duplicative interest packets for the same
query or incident. In order to bound the region where the
interest packet propagates, a “scoped” region of interest is
defined in the interest packet, such that the interest packet
continues to propagate within the scoped region until the
requisite “proximity” is exceeded. In some cases, for
example, the scoped region may be defined as a certain
radius around the anomalous event, such as a radius that
corresponds to the maximum range or visibility of cameras
that could potentially capture the event. If a particular node
does not find any matching content for a given “scoped
interest” packet, that is an indication that the query has
reached its geographical boundary, and thus the node does
not forward the packet any further (block 6012).

[0564] As responsive data packets are received by the
various nodes and end points in response to the forwarded
scoped interest packet, each node may wait for a certain
timer T to expire in order to gather all responses before
sending its own response to the scoped interest packet (block
6016). In this manner, the ultimate response contains a
comprehensive collection of data from many content pro-
viders rather than only a single content provider. This
approach enables a many-to-one type of transaction at the
network layer, where a single request associated with a
scoped interest packet can be satisfied by multiple providers
who in turn may forward the scoped interest packet along,
although whether each provider also accumulates responses
from multiple providers may be dependent on the type of
query and depth of the network. For example, given that

Aug. 6, 2020

many responses may be received at the intermediate nodes,
the nodes may choose to aggregate and/or filter the received
responses before sending them along with their own
response (block 6018).

[0565] FIG. 61 illustrates a flowchart 6100 for an example
embodiment of a ubiquitous visual computing witness. In
some embodiments, for example, flowchart 6100 may be
implemented using the visual computing architecture and
functionality described throughout this disclosure.

[0566] The flowchart begins at block 6102 by accessing
sensor data captured by one or more sensors of a first device.
The first device, for example, may be a processing device
with one or more processors, sensors, and/or communication
interfaces. The sensors can include any type of device used
for capturing data associated with a surrounding or operating
environment, such as vision sensors for generating visual
representations of a surrounding environment (e.g., cameras,
depth sensors, ultraviolet (UV) sensors, laser rangefinders
(e.g., light detection and ranging (LIDAR)), infrared (IR)
sensors, electro-optical/infrared (60/IR) sensors), internal
sensors of vehicles and other types of equipment, and so
forth. In some embodiments, for example, the first device
may be associated with a vehicle and the sensors may
include a combination of vision sensors and internal
mechanical sensors. Alternatively, the first device may be
associated with a surveillance system and the sensors may
include one or more vision sensors.

[0567] The flowchart then proceeds to block 6104 to
determine that an incident occurred within the vicinity of the
first device. In some embodiments, for example, the incident
may be detected based on an analysis of the sensor data
captured by the sensors of the first device. For example, an
incident may be detected by processing sensor data using
any suitable approach, such as identifying unexpected or
outstanding changes in sensor data (e.g., data from internal
sensors of vehicles and/or other types of equipment), per-
forming event detection and recognition using computer-
vision and/or machine learning techniques, and so forth. In
some embodiments, for example, an anomaly may be iden-
tified during analysis of the sensor data, and it may be
determined that the anomaly is indicative of a particular
incident or event. For example, during steady-state opera-
tion, sensor signals may be monitored and/or recorded to
establish a baseline, and an anomaly may be identified when
the sensor signals deviate from the baseline, which may be
determined using statistical analysis, thresholds, rates, and
so forth. Alternatively, or additionally, data from visual
sensors may be analyzed using image and/or video process-
ing techniques to identify an incident and/or event captured
in the visual data (e.g., using feature recognition, image
classification, artificial intelligence, machine learning, arti-
ficial neural networks, and so forth). Further, in some
embodiments, detection of an incident may be triggered
based on the cumulative detection of multiple anomalies,
incidents, and/or events over a period of time.

[0568] Alternatively, the first device may be notified of the
incident by another device. For example, in some embodi-
ments, the first device may receive a notification associated
with the incident over an information-centric network
(ICN), where the notification comprises a request for data
associated with the incident, and where the request for data
comprises an indication of a plurality of attributes associated
with the incident, which the first device can use to identify
relevant data associated with the incident.

US 2020/0250003 Al

[0569] The flowchart then proceeds to block 6106 to
identify and preserve data associated with the incident. In
particular, the sensor data captured by the first device may
be analyzed in order to identify relevant sensor data that is
associated with the incident. In some cases, for example,
sensor data captured by the first device around the approxi-
mate time and location of the incident may be deemed
relevant to the incident. Accordingly, the relevant sensor
data may be preserved, such as by designating it with a high
priority and/or quality of service (QoS) designation, and
storing it on a suitable memory or storage device. Alterna-
tively, in some embodiments, a snapshot of all available
sensor data may be preserved in response to an incident,
with different designations for the most relevant data versus
the remaining data. In this manner, the full collection of
sensor data will be available for subsequent processing
and/or analysis (e.g., offline), if needed.

[0570] The flowchart then proceeds to block 6108 to
notify and request data from other devices within the vicin-
ity. For example, the first device may broadcast/multicast a
notification with a request for data associated with the
incident to other devices within the vicinity of the first
device. In various embodiments, for example, the notifica-
tion may be transmitted over an information-centric network
(ICN) and/or an IP-based network. Further, in some embodi-
ments, the notification may identify various attributes asso-
ciated with the incident, and/or a name or identifier associ-
ated with the incident, which the receiving devices can use
to identify relevant data associated with the incident.

[0571] The flowchart then proceeds to block 6110 to
determine whether to continue forwarding the request. For
example, when the notification is received by other devices
within the vicinity of the first device, each receiving device
may determine whether it has any relevant data associated
with the incident, as well as whether to continue forwarding
the notification. In some embodiments, for example, each
receiving device may search for relevant data (e.g., sensor
data) based on the attributes of the incident that were
provided in the notification, such as the time and/or location
of the incident. Moreover, if relevant data is identified by a
particular device, that device may forward the notification
and request for data to other devices within its vicinity.
However, if no relevant data is identified by that device, the
device may decline to forward the notification.

[0572] The flowchart then proceeds to block 6112 to
consolidate, aggregate, and/or compress the relevant data
identified and/or received by the respective devices. For
example, as each device identifies its own relevant data and
also receives relevant data from other devices that it for-
warded the notification to, each device may consolidate,
aggregate, and/or compress its collection of data before
providing data in response to the notification. In this manner,
all relevant data from the respective devices is eventually
collected and consolidated in response to the notification
associated with the incident.

[0573] The flowchart then proceeds to block 6114 to
reconstruct the incident based on the consolidated data. In
various embodiments, for example, incident reconstruction
may be performed by generating a multi-dimensional rep-
resentation of the incident from the consolidated data using
any suitable processing techniques, such as sensor fusion,
computer vision, artificial neural networks, machine learn-
ing, and so forth.

Aug. 6, 2020

[0574] The flowchart then proceeds to block 6116 to send
the consolidated data and/or reconstructed incident to an
appropriate entity, such as a police department, DMV, insur-
ance company, vehicle manufacturer, or any other person or
entity that needs the data.

[0575] At this point, the flowchart may be complete. In
some embodiments, however, the flowchart may restart
and/or certain blocks may be repeated. For example, in some
embodiments, the flowchart may restart at block 6102 to
continue detecting, reconstructing, and/or reporting inci-
dents of interest.

[0576] Converged Node

[0577] Inthe Internet-of-Things (IoT), there are increasing
numbers of sensors connecting to networks. Many of them,
such as cameras, are generating high-volume time-sensitive
data streams. Because these sensors are joining at the very
edges of a network, their data typically flows in the direction
from the edge towards the cloud, which is the reverse
direction from how the network was originally provisioned.
Moreover, the size of a single data stream can be significant
from a bandwidth perspective, and thus often results in
latency constraints for real-time applications. Furthermore,
many of these flows are continuous in nature. Thus, if many
high-volume streams simultaneously arrive at and converge
upon the same router, which is often the case in typical
hierarchical and/or wireless network topologies, it is pos-
sible that these data flows will not fit either in memory, local
storage, and/or along the next hop in the network (which
may lead to denial of service if the router is overloaded with
traffic beyond its capacity). Even when the flows are not
high-volume or continuous, if the number of flows is
extremely high, the aggregated bandwidth requirements still
might exceed the available resources (both on and off
platform).

[0578] These scenarios present a problem of data implo-
sion. Current congestion control techniques are inadequate,
as they only partially address the problem when there are
simply too many data streams competing for router buffer
queue resources in the network. For example, a normal layer
3 (L3) router has several strategies to manage an oversized
incoming data stream: (1) simply do not forward packets
that do not fit (e.g., drop them); or (2) indirectly signal the
source, as well as intermediate routers, of the mismatch in
required bandwidth versus available bandwidth (e.g.,
explicit congestion notification (ECN) in IP headers). At the
transport layer (e.g., TCP), retransmission timeouts are used
to detect congestion to reduce the flow of packets until the
congestion is eased. At the application layer, a sender of data
has the opportunity to (1) ask or negotiate configuration
details up front before the data exchange begins, or (2) infer
from routing hints along the path how to fit the data over the
route and/or transform individual data streams (e.g., by
taking a data flow out of its original format and converting
it into a format that would fit the most constrained part of the
path through the system), which can be achieved by dynami-
cally renegotiating with the application how to fit the data
over the network. Congestion can also be addressed by
adding more resources, such as more bandwidth using a
bigger and more expensive backbone for the aggregated
flows, but that is often a very expensive and impractical
solution given the flexibility and potential scale of IoT.
[0579] The existing congestion control techniques at the
application, transport, and routing layer are insufficient, as
the IoT capacity problem exists due to the increase in flows

US 2020/0250003 Al

versus existing capacity, rather than a temporary congestion
problem that relates solely to peak or busy hour traffic.
Further, adding network capacity without incurring signifi-
cant costs is not possible with the existing solutions.
[0580] Although congestion control algorithms seek to
minimize data over-run at traditional router nodes in the
network, congestion ultimately leads to a growing queue of
packets, which increases end-to-end delay. When a queue
overflows, meaning there is no more room to store arriving
data, a router begins to drop packets, which may have a big
impact on flows that require the delivery of in-order packets
or even a modicum of impact on the delivery of flows that
require reliable (but possibly out-of-order) delivery of pack-
ets, which might need to wait a roundtrip for a retransmis-
sion of any packet losses. For example, delay and/or packet
loss can be highly disruptive, not to mention unacceptable
for a camera mounted on a connected car whose data is
meant to be archived as the black box or ground truth for
anomalous car or environmental incidents.

[0581] Accordingly, this disclosure presents various
embodiments of a “converged node” that is designed to
efficiently route/process/cache visual data streams flowing
in an N-to-1 manner in edge and fog computing systems.
The converged node enables the continued transmission of
data even when there is a vast difference between the amount
of incoming data and resources available for the outgoing
data. This is possible due to the collective processing and
caching of contextually-related streams, such as when mul-
tiple cameras capture images from different but overlapping
perspectives.

[0582] The basic idea of the converged node is to extend
the functionality of a traditional L3 router to comprehend
and prevent the implosion of IoT data flows (e.g., the
many-to-1 nature of data flowing upstream from a dense
camera deployment in a smart environment). Because mul-
tiple incoming streams are often contextually related (e.g., in
space, time, and possibly other ways), converged node loT
routers offer a new strategy: process, analyze, and transform
the streams together. For example, a converged node effec-
tively takes multiple incoming streams and transforms them
into a single output stream by performing transformative
compute functions on them, such as analytics, machine
learning, artificial intelligence, and so forth, which serves as
a new kind of “compression.” The new emergent stream is
then stored for re-use by contributing and/or nearby stake-
holders.

[0583] The converged node implicates several new
requirements for L3 routers in order to service loT deploy-
ments that have a need for supporting reverse data flows at
scale (e.g., high-volume, continuous, low-latency, and/or
high-density flows) while avoiding the data implosion prob-
lem. For example, with respect to a converged node, the
network data flows converge on the node and may be
combined or merged from multiple incoming streams into a
single outgoing stream (while in-flight and en-route to
somewhere else). The implications of this convergence of
flows are that the routing, processing, and compute sub-
systems can be co-designed in hardware to support low-
latency handling of the data (e.g., via an internal shared data
bus or shared memory). The extended capabilities of the L3
router, as implemented by the new converged node, are
described further below.

[0584] The functionality of a converged node can be
implemented in software, although additional efficiencies

Aug. 6, 2020

can be gained in a hardware solution (e.g., using accelerators
and/or FPGAs). For example, a hardware version can
employ zero-copy design, which means it would avoid
copying/moving data to each sub-system for consideration,
and instead moves the functionality/service/operation to the
data itself, subscribing to the philosophy of “moving the
compute to the data.”

[0585] The converged node provides a solution to network
congestion that is scalable in a cost-efficient manner and
provides greater performance than existing solutions. For
example, converged node routers can provide significant
cost and performance benefits for network operators and
other entities that deploy servers for edge computing in real
networks, particularly with respect to video and visual data
flows. Additionally, this solution is highly applicable to
contexts where the end-to-end reverse flows pass through
multiple converged nodes, such as when data is organized by
geographic region and thus passes up a hierarchical or
multi-tiered topology (e.g., layered administrative domains
or clouds), which is often the case for video surveillance,
energy monitoring, and healthcare use cases, among other
examples.

[0586] The converged node also provides benefits relating
to time-sensitive capabilities, such as the utility of high-
resolution timestamps (e.g., both to meet time-constrained
delivery and time-sensitive coordination across multiple
streams), implementing time coordinated compute (TCC)
capabilities, and so forth.

[0587] As noted above, a converged node can be imple-
mented by extending the functionality of a traditional router,
such as an L3 router. The process flow within this extended
“converged node” router may be as follows: (1) comprehend
and manage the serious data implosion problem for IoT edge
and fog systems; (2) process multiple contextually-related
streams simultaneously; (3) look beyond packet headers to
analyze if and how a stream is interesting or notable; (4)
look beyond packet headers to analyze if and how the
streams are related and might be “compressed”, in the
broader sense of the term; (5) identify a functional strategy
to emerge with a single new stream going forward, which
may employ different functions for different scenarios,
necessitating the ability to dynamically request and fetch
functions/services/methods; (6) cache the new stream for
re-use by contextually-related stakeholders, particularly
those that are mobile, wireless, low-power, and/or proxi-
mate, for greater resource efficiency; (7) route the new
stream in the reverse direction, which is where it was
headed; (8) provide the option to route the new stream in
other directions, e.g., within a local edge cloud and/or across
neighboring clouds; (9) co-design the routing, computing
and caching sub-systems to minimize time delay on plat-
form; (10) employ zero-copy HW design techniques to
implement efficient hand-off of data between sub-systems;
and (11) leverage time-synchronization capabilities in the
platform to synchronize across multiple data streams, in
preparation for the analysis/transformation phase of the
N-to-1 process.

[0588] There are various ways in which streams might be
considered to be contextually related to each other. For
example, in some embodiments, a broad correlation between
the name of the content and different streams may be used.
In an ICN context, all the streams that respond to a specific
ICN Interest packet asking for data with a particular content
“name” are considered contextually-related. The system

US 2020/0250003 Al

could re-use the entries in the Pending Interest Table (PIT)
as the entries in a directory for “contextually-related”
groups. In a non-ICN context, the system still can leverage
the name of the content or name-like attributes to organize
streams into contextually-related groups, such as the URL/
URI of the content, or the transport packet header tuples
(e.g., sender and receiver addresses and port numbers), or
the streams originating from the same subnet address (e.g.,
same subnet address pre-fix). The use of name-based tech-
niques is beneficial over using deep-packet inspection of the
content itself, which is a highly resource-intensive process.
Alternatively, in some embodiments, in the visual realm,
separate from ICN, streams within a “region of interest”
(e.g., proximity in space and time) may be organized into
contextually-related groups of packets.

[0589] In some embodiments, for example, a converged
node may include the following capabilities on top of
traditional router functionality: (1) analyzing data in data
flows beyond packet headers; (2) defining what it means to
be contextually-related (e.g., within a geographic region of
interest, owned by same vendor, running the same version of
malware software, and so forth); (3) collectively processing
N contextually-related incoming data flows; (4) recom-
mending a function to perform across these flows to “com-
press” them before they are routed/cached; (5) transforming
the N streams into a single, new, less-resource-consuming
data flow; (6) potentially caching/storing the new stream
locally, such as for request and retrieval by nearby proximate
sensors that may have contributed to the new stream and/or
by those who have an interest in the results; and (7) routing
the new data stream to its next intended upstream destina-
tion, which may be the northern direction in which the data
was originally flowing, but may also include a broader
dissemination, such as in the East-West direction to peer
clouds or in the southern direction to interested parties.

[0590] While these functions are generally described as
being performed at a single converged node in the reverse
data flow path (e.g., as shown in FIG. 62), they may be
encountered and repeated multiple times in a cascading
fashion until the data stream reaches its final archival resting
place, as might be the case in a digital surveillance system
that supports multiple levels of N-to-1 converged data flows.
This end-to-end data flow and the processing-caching-rout-
ing capabilities surrounding it may be referred to as a reverse
content distribution network (rCDN). The converged nodes
are viewed as the extended routers along the end-to-end path
in an rCDN, as shown in FIG. 63.

[0591] The converged node differs from previous L3
router solutions in that it requires the router to look inside
the data stream beyond the packet header but rather focus on
the content “packets payload,” which is the more traditional
focus of an L3 router. Additionally, the converged node is
capable of performing its described functionality while the
data streams are in-flight versus post-facto. The converged
node router performs an N-to-1 transformation, which may
represent a range of processing capabilities, including but
not limited to compression, encryption, transcoding, label-
ing, aggregation/grouping some flows into larger flows
based on contextual commonality, sub-sampling, combina-
tion (e.g., stitching), and analytics (e.g., which broadly
refers to any type of analysis, whether it is statistical
analysis, machine learning (ML), deep learning (DL) or
some other form of artificial intelligence or machine learn-

ing).

Aug. 6, 2020

[0592] With respect to the analytics functionality of the
converged node, the process may take the data out of its
original data format and convert it into another format. This
might be the case with summarization of phenomena within
the data stream, such as object recognition and object
counting, or with the labeling of phenomena within the data
stream, to create a new stream of metadata that tracks the
appearance of interesting events in the visual field of view.
[0593] A key benefit of the proposed method is that it
applies to any dense IoT deployment suffering from N-to-1
data implosion, whether or not the streams are video/visual
in nature. Furthermore, this technique couples nicely with
information-centric network architectures, although it is not
dependent on them.

[0594] There are numerous novel concepts associated with
the converged node, including: comprehending and manag-
ing the serious data implosion problem for IoT edge and fog
systems; processing multiple contextually-related streams
simultaneously; looking beyond packet headers to analyze if
and how a stream is interesting or notable; looking beyond
packet headers to analyze if and how the streams are related
and might be “compressed” (in a broader sense of the term);
identifying a functional strategy to emerge with a single new
stream going forward, which may employ different func-
tions for different scenarios, necessitating the ability to
dynamically request and fetch functions/services/methods;
caching the new stream for re-use by contextually-related
stakeholders, particularly those that are mobile, wireless,
low-power, and/or proximate, for greater resource effi-
ciency; routing the new stream in the reverse direction,
which is where it was headed; providing the option to route
the new stream in other directions, such as within a local
edge cloud and/or across neighboring clouds; co-designing
the routing, computing, and caching sub-systems to mini-
mize time delay on the platform; employing zero-copy
hardware design techniques to implement efficient hand-off
of data between sub-systems; and leveraging time-synchro-
nization capabilities in the platform to synchronize across
multiple data streams, in preparation for the analysis/trans-
formation phase of the N-to-1 process.

[0595] Automated Semantic Inference Using Smart Cam-
eras
[0596] Machine learning is commonly used for visual

object recognition using cameras. For example, smart cam-
eras use machine learning (ML)-based object recognition to
detect objects in a camera’s field of view by training an ML
engine using a community of similar objects referred to as
a reference template (RT). When a camera scans a previ-
ously unseen field of objects, it applies pattern recognition
algorithms that produce template results that are compared
with reference template values. The ML designer names the
reference template as a way to characterize the object it
recognizes. For example, after training several spherical
objects, the reference template may be given a name such as
“ball” or “sphere.”

[0597] In order to distinguish between different types of
objects with the same shape, additional training is needed for
each object (e.g., ping pong ball, basketball, soccer ball, and
so forth). The reference template for soccer ball differs from
the reference template for more abstract forms, such as
“ball” or “sphere.” Developing an RT database for a spec-
trum of objects ranging from highly abstract to specific
requires training that is designed for each object classifica-
tion, which can be labor intensive.

US 2020/0250003 Al

[0598] These object recognition approaches suffer from
various drawbacks. For example, object recognition requires
training for each specific object that needs to be recognized.
Further, recognition of abstract objects typically relies on a
convention that allows less precision in the RT matching
probability. For example, a weak probability (e.g., 70%
match rather than 99% match) may be used to conclude that
a more abstract “ball” is matched when the subjects in view
are more specific (e.g., ping pong ball, basketball, soccer
ball). This approach would fail to match a football, however,
which is a ball but is not spherical.

[0599] Further, object classification using formal logic
modeling, such as taxonomies, ontologies, and semantic
entailment tags, are commonly used to describe “things” in
terms of a rich class library that relates specific things to
abstract things. Semantic entailment methods build class
hierarchies of object abstractions, where objects near the
root are more abstract than objects near the leaves. Logic
processors can reason about the fuzzy equivalence of leaf-
node objects by traversing the hierarchy finding a common
parent node. However, semantic libraries rely on commonly
accepted tagging syntax for objects in the hierarchy in order
to correctly relate it to an application domain.

[0600] Semantic databases and ontologies also may
require large storage resources, and updates to the model
often require human vetting to ensure semantic relationships
are accurate.

[0601] Accordingly, FIGS. 66-68 illustrate example
embodiments for performing automated semantic inference
of visual objects using smart cameras. These embodiments
integrate both ML-based object recognition and semantic
modeling technologies within smart cameras, thus enabling
more effective reasoning about object interactions that occur
within the field-of-view.

[0602] The described embodiments provide numerous
advantages. For example, more sophisticated smart cameras
can be created by combining a variety of technologies, such
as 3D cameras, specialized machine learning and/or neural
network processors (e.g., Movidius), advanced storage tech-
nologies such as 3D XPoint and Optane, and so forth. This
enhanced camera technology may be referred to as four-
dimensional (4D) smart camera technology.

[0603] 4D smart camera technology, for example, enables
camera reasoning about object interaction semantics. For
example, given a still image of a picnic at the beach, a
camera can generate XIF (exchangeable image file format)
data that not only recognizes a plate, a beach ball, and the
sun, but that also auto-names the image “picnic at the
beach.” Combined with GPS data, the auto-generated name
could also include the name of the specific beach (e.g.,
“picnic at Cannon beach”).

[0604] Further, semantic modeling with ontology allows
dynamic addition of unseen object classes. For example,
given an object that is not included in the ontology, user
interactions such as crowdsourcing can be leveraged to
automatically create a new tag and add it into the taxonomy.
[0605] As an example, this technology could be used for
a soccer sporting event to identify and/or distinguish the
game ball from other nearby balls (e.g., balls that are out of
play, on the sidelines, and/or in the stands), analyze the field,
goal, ball in play, and player positions, and/or detect rule
violations (e.g., fouls and penalties, such as an offsides
player). In this manner, the technology enables the camera to
play a stronger role in refereeing the game.

Aug. 6, 2020

[0606] In some embodiments, for example, the following
components may be used to implement 4D smart camera
technology: (1) an ML or neural net computing platform
(e.g., Movidius or Neuron platform) with a reference tem-
plate (RT) database for object recognition; (2) an ontology/
taxonomy database that relates a rich set of objects at various
levels of abstraction; (3) a tag vocabulary derived from the
ontology database and used to tag objects in the RT data-
base; (4) a set of goal-oriented inference rules designed to
detect “interesting” object interaction conditions (e.g., rule
violations during a sporting event, a picnic at the beach, and
so forth); and/or (5) cache warmers that continuously update
the caches with interesting reference templates, ontologies,
and rules.

[0607] FIG. 66 illustrates an example embodiment of a 4D
smart camera system 6600. The illustrated example includes
a 4D smart camera 6610, a repository 6620 of reference
templates, ontologies, and/or rules, and a scene or environ-
ment 6630 to be processed.

[0608] For example, 4D smart camera 6610 includes a
camera 6611 that observes training scene(s) 6612 where
known objects are tagged using a tag vocabulary supplied by
an ontology. The training agent may optimize the training by
selecting a variety of semantically similar objects with
different shapes or dimensions (e.g., football, rugby ball,
marble, ping pong ball, planet, and so forth), knowing that
the object ontology will allow “sphere” semantics to be
inferred given that the ontology for “ball” also describes
“sphere” as well as other more abstract and more specialized
representations of “ball.” The reference template values are
stored in an RT repository 6620 for later use by this or
another 4D smart camera 6610.

[0609] Subsequent to training, camera 6611 observes a
scene 6630 containing objects that are matched using an ML,
or neural net object recognition processor (ORP) 6613 (e.g.,
Intel Movidius or Neuron). A reference template (RT) cache
66184 (e.g., Intel 3DXpoint) contains a set of object recog-
nition reference templates designed for commonly recog-
nized objects. The more frequently an object is recognized,
the greater the probability that the reference template will be
found in the cache 6618a.

[0610] Object recognition processor 6613 identifies mul-
tiple objects (as many as can be found in the scene given
available resources) and passes them to a semantic processor
(SP) 6614.

[0611] Semantic processor 6614 uses an ontology cache
66185 to obtain the ontology elements that relate the various
semantically entailed objects to a broader semantic context.
These objects are given to an inference processor (IP) 6615,
where goal-directed rules are applied. The rules are a set of
matching criteria that, when matched, imply a more signifi-
cant context (e.g., a soccer game, an event at the beach).

[0612] Inference processor 6615 may optimize object rec-
ognition and semantic entailment by giving hints to expected
objects. For example, if one rule of inference processor 6615
describes a “picnic at the beach,” then object recognition
processor 6613 might expect to find additional objects, such

2 <

as “sun”, “ocean,” “plate,” and so forth.

[0613] Object recognition processor 6613 may give pro-
cessing priority to recognition of expected objects. If found,
the new objects may be processed for semantic entailment
and added to the reference template (RT), which may more
completely match one of the possible contexts. Hence, 4D

US 2020/0250003 Al

smart camera 6610 can optimize rule matching to focus on
the scene context that is most likely the actual context.
[0614] If inference processor 6615 matches a rule with
high probability, it discloses its choice for the scene context
and scenario to an application processor 6616 that may be
used for improved human-computer interactions. On the
other hand, if inference processor 6615 matches a rule with
lower probability, it may attempt to improve the probability
by supplying hints (as described above), or it may send
cache update requests to the rules repository 6620 directing
it to supply “similar” rules that could match with a higher
score (e.g., higher than the first choice rule).

[0615] Similarly, semantic processor 6614 may warm its
cache (e.g., using cache warmer 66175) by requesting ontol-
ogy data that is “near” the matching ontology elements.
[0616] FIG. 67 illustrates a flowchart 6700 for an example
embodiment of reference template training with semantic
entailment tagging. In some embodiments, for example, the
flowchart of FIG. 67 may be applied as a pre-requisite to the
flowchart of FIG. 68. Once a reference template (RT)
database is sufficiently populated (e.g., using the flowchart
of FIG. 67), it may then be used to perform the operations
described in connection with FIG. 68.

[0617] The flowchart begins at block 6702, where the
ontology database is loaded into a 4D-smart camera ontol-
ogy cache. The flowchart then proceeds to block 6704,
where a large set of objects are trained, resulting in reference
templates (RTs) for the trained objects and/or actions. The
flowchart then proceeds to block 6706, where the RT train-
ing engine uses existing ground truth training values to find
an approximate match to the template value. The flowchart
then proceeds to block 6708, where the RT training engine
performs questions and answers with user(s) to refine the tag
selection, using the ontology to navigate to more specific
object classifications.

[0618] The flowchart then proceeds to block 6710, where
it is determined whether a majority of the user answers
identify a more specific object classification. If the answer at
block 6710 is NO, the flowchart then proceeds to block
6718, where the reference template (RT) is tagged with a
generic tag (obtained from the ontology) and marked for
subsequent Q/A by additional users (when available). If the
answer at block 6710 is YES, the flowchart then proceeds to
block 6712.

[0619] At block 6712, it is determined whether the user
answered classification is in the ontology cache. If the
answer at block 6712 is NO, the flowchart then proceeds to
block 6714, where a new tag is added to the ontology. If the
answer at block 6712 is YES, the flowchart then proceeds to
block 6716, where the reference template (RT) is tagged
with the user identified tag (obtained from the ontology).
[0620] At this point, the flowchart may be complete. In
some embodiments, however, the flowchart may restart
and/or certain blocks may be repeated. For example, in some
embodiments, the flowchart may restart at block 6702 to
continue the reference template training process.

[0621] FIG. 68 illustrates a flowchart 6800 for an example
embodiment of scene selection. For example, the illustrated
flowchart may be used for showing scene selection based on
the appearance of objects and actions that correspond to a
rule base of scenes that are known to be interesting to the
user.

[0622] The flowchart of FIG. 68 combines object and
action recognition using visual machine learning techniques

Aug. 6, 2020

with semantic processing and inference processing to con-
struct a set of scenes in which sensed objects and actions
may interact. Inference rules describe possible/expected
interaction patterns and may suggest additional/expected
objects and actions not currently detected by the sensor(s).
Hints may be given to the sensor that better calibrate or
focus sensing activity to recognize expected objects/actions.
For example, the hint may allow a lower threshold for ML
matching in order to allow for variance in real-world objects,
or it may be used by a semantic processor to look for
adjacent objects/actions in order to identify RT values that
were not originally part of the RT cache.

[0623] This approach makes visual content recognition
software and hardware “smarter” by calibrating the scene
according to expected or common interaction dynamics.
This will decrease recognition latency and improve recog-
nition accuracy for “assistive user awareness” applications.
[0624] The flowchart begins at block 6802, where a 4D
smart camera object and action recognition processor (ORP)
detects objects and actions using a reference template (RT)
database and/or cache.

[0625] The flowchart then proceeds to block 6804, where
the object recognition processor associates an RT tag with
the sensed template and forwards the tagged-template (TT)
to a semantic processor (SP).

[0626] The flowchart then proceeds to block 6806 to
determine whether another object or action has been recog-
nized. If the answer at block 6806 is NO, the flowchart
proceeds back to block 6802. If the answer at block 6806 is
YES, the flowchart proceeds to block 6808, where given
multiple TT instances, the semantic processor searches the
ontology database and/or cache using a tag to identify a
common ontology parent.

[0627] The flowchart then proceeds to block 6810 to
determine whether an expected object or action is in the
current scene. If the answer at block 6810 is NO, the
flowchart then proceeds to block 6822. If the answer at block
6810 is YES, the flowchart then proceeds to block 6812,
where the expected object or action is associated with a
current scene, and the scene is then forwarded to an infer-
ence engine (IE).

[0628] The flowchart then proceeds to block 6814, where
the inference engine consults a rule database and/or cache to
match the current scene with other possible scenes.

[0629] The flowchart then proceeds to block 6816 to
determine whether the current objects fit into a second scene
that is a better fit than the first scene. If the answer at block
6816 is NO, the flowchart proceeds to block 6820. If the
answer at block 6816 is YES, the flowchart proceeds to
block 6818, where the current scene is switched to the
second scene, and the flowchart then proceeds to block
6820.

[0630] At block 6820, it is determined whether additional
expected objects and/or actions are found in the current
scene. If the answer at block 6820 is NO, the flowchart then
proceeds to block 6822. If the answer at block 6820 is YES,
the flowchart then proceeds to block 6824.

[0631] At block 6822, recognition hints are sent to the
object recognition processor and/or the semantic processor,
and the flowchart proceeds back to block 6802.

[0632] At block 6824, it is determined whether the score
of the current scene is above an acceptable accuracy thresh-
old. If the answer at block 6824 is NO, the flowchart
proceeds back to block 6816. If the answer at block 6824 is

US 2020/0250003 Al

YES, the flowchart then proceeds to block 6826, where the
matched scene is reported to a user.

[0633] At this point, the flowchart may be complete. In
some embodiments, however, the flowchart may restart
and/or certain blocks may be repeated.

[0634] Visual Fog Stream Multiplexing for Improved
Security
[0635] Visual Fog deployment scenarios can include thou-

sands of camera sensors transmitting video streams to thou-
sands of viewers. In live media streaming, streams may not
be delivered directly from sensor to viewer and may be
buffered, streamed, and/or replayed by intermediate nodes.
These intermediate nodes, in essence, perform a hop-by-hop
routing function. This makes it easier for potential attackers
to pose as routing nodes to attempt various types of man-
in-the-middle (MITM) attacks.

[0636] Existing solutions trust the buffering/routing nodes
to avoid ‘malicious’ routes and to keep content hidden (if not
already encrypted). Since the video streaming formats need
to support intermediate nodes, they are susceptible to mali-
cious transmission interception, and there is not much a
sender can do to prevent such attacks. For example, if
content is encrypted, the sender and receiver must have the
encryption key, but with visual fog use cases, there could be
thousands of viewers and thousands of senders each requir-
ing different keys. Ensuring the proper keys are available at
the right time is not a scalable solution.

[0637] Accordingly, FIGS. 69-70 illustrate example
embodiments associated with visual fog stream multiplexing
for improved security. The described approach uses inter-
mediate routing capabilities to its advantage by randomizing
the choice of which intermediate node(s) will be used to
stream the content. A series of randomized intermediaries
can be very effective at preventing attackers from anticipat-
ing a route (and therefore targeting a man-in-the-middle
attack).

[0638] The described approach also multiplexes content
across multiple routes so that even if one stream is success-
fully attacked only a subset of the content is subject to
attacker manipulations. For example, if an attacker injected
frames into a stream, there would be a threshold of M
streams that are the same versus (N-M) minority of streams
that differ. These can be ignored.

[0639] Streams can be encrypted on demand using keys
generated for each streaming session (e.g., using Diffie-
Hellman). If the legitimate router/intermediary nodes are
vetted and a member of an enhanced privacy ID (EPID)
group, they can authenticate as trusted intermediaries mak-
ing it difficult for the attacker to assert itself as an interme-
diary. Alternatively, group membership may be asserted
using traditional asymmetric cryptography by assigning a
group name attribute to a certificate and by recycling asym-
metric keys frequently. Another alternative based on sym-
metric key cryptography shares the group symmetric key
with each group participant and recycles the key each time
a group member is removed from the group.

[0640] The described embodiments provide numerous
advantages. For example, this approach increases availabil-
ity of visual fog video content due to built-in redundancy. In
use cases where bandwidth is not a concern, redundancy
applies to all frames. In use cases where bandwidth is a
concern, redundancy applies to key frames and optionally
applies to other frames. For example, in live media stream-
ing, I-frames must have redundancy whereas P-frames or

Aug. 6, 2020

B-frames may not have redundancy; in live 360 VR video
streaming, low-resolution panorama must have redundancy
whereas high-resolution user-specific views may not have
redundancy.

[0641] In addition, the M-of-N threshold mechanism
ensures man-in-the-middle attacks are less successful
because M successful attacks are required to spoof the
viewers. In use cases where bandwidth is a concern, delivery
of'key frames, which are needed to reconstruct other frames,
is guaranteed.

[0642] Further, key management can scale to accommo-
date the M-of-N and redundancy fan out, EPID group keys
can be used to authenticate trustworthy intermediary/router
nodes, and randomization of routes makes it difficult for
attacker to target particular content.

[0643] FIG. 69 illustrates an example embodiment of a
system 6900 for visual fog stream multiplexing.

[0644] The system consists of a visual fog camera and/or
sensor 6910 and one or more subscriber (viewers) 6930 of
a content stream. Content streams may be consumed using
a set of intermediate nodes 6920a-g that buffer, store, and
forward video content, which are called routing nodes.
There may be multiple (N) copies of the content stream
transmitted from camera 6910 to subscriber(s) 6930 so that
multiple subscribers may consume content discretely (hav-
ing distinct playback control). Large content streams may be
divided into multiple content images that are partitioned at
the camera 6910 and stitched together at the subscriber
6930. Buffering and other streaming techniques may be used
to provide a seamless streaming user experience, if desired.

[0645] The illustrated approach produces additional
redundant copies that are communicated over different
routes involving several intermediate routing nodes 6920.
Each routing node 6920 randomizes its selection of the next
hop node so that potential attackers cannot easily predict a
final route. The subscriber(s) 6930 purposefully subscribe to
at least (M) redundant copies of the content so that they can
perform an M-of-N comparison of redundant streams. The
purpose of doing the comparison is to detect possible
tampering. For example, if a malicious routing node (R3)
inserted itself into a route, there would be (M-1) redundant
copies of the content with which to determine which is the
valid copy.

[0646] In use cases where bandwidth is a concern, the
illustrated approach only makes additional redundant copies
of'key frames, while selectively producing redundant copies
of other frames. An application specific ratio for determining
the percentage of redundancy may be calculated given the
network infrastructure. Alternatively, the ratio can also be
adjusted online based on QoS (e.g., using a PID controller).

[0647] The following function can be used for determining
the total number of routes: Total=Product(Count(S), Count
(N)); where subscriber Sx selects M copies from at least N
received copies of Total copies sent. This approach is used
when it is not practical to implement cryptography, key
exchange, and/or or authentication.

[0648] In some cases, it may be practical to implement
vetting procedures for routing nodes where the decision to
perform the routing function can be controlled. Under these
conditions the routing nodes are assigned an EPID group
credential that authorizes them to function as a routing node.
An EPID group key can be used to authenticate routing
nodes:

US 2020/0250003 Al

EPID Group_X=(Name_X,Pub_key(Ky),Priv_keys(K~
-1 -1
oK Ty, K x2),

where z is the number of routing nodes (R)+subscribers
(S)+1 camera (C).

[0649] The EPID private key may be used to sign an
integrity check value associated with each image. Alterna-
tively, if content is to be encrypted, a Diffie-Hellman key
exchange may be performed prior to content delivery, where
G* and G? values are signed by the EPID private key
(K™',,))- The routing node (or subscriber) selected to receive
the content verifies the signature using the EPID public key
(Ky). This ensures only authorized routing nodes can handle
the content images, thus minimizing the potential for a
successful man-in-the-middle attack.

[0650] FIG. 70 illustrates a flowchart 7000 for an example
embodiment of visual fog stream multiplexing.

[0651] In the illustrated flowchart, for example, a camera
may send multiple copies of an image through a multi-hop
routing network, where an attacker cannot easily predict
which router or other MITM hosts to attack and cannot
easily compromise a threshold T of nodes to fool the
subscriber’s threshold policy.

[0652] The flowchart begins at block 7002 by determining
whether a particular frame is a “key” frame. If the answer at
block 7002 is YES, the flowchart proceeds to block 7010. If
the answer at block 7002 is NO, the flowchart proceeds to
block 7004.

[0653] At block 7004, it is determined whether the frame
is a redundant frame. If the answer at block 7004 is NO, the
flowchart proceeds to block 7010. If the answer at block
7004 is YES, the flowchart proceeds to block 7006.

[0654] At block 7006, it is determined whether the current
redundancy () is greater than the allowable redundancy (r):
p>r? If the answer at block 7006 is NO, the flowchart is
complete. If the answer at block 7006 is YES, the flowchart
proceeds to block 7008.

[0655] At block 7008, it is determined whether the fol-
lowing equation is satisfied:

1

Osl—m<r.

Ifthe answer at block 7008 is NO, the flowchart is complete.
If the answer at block 7008 is YES, the flowchart proceeds
to block 7010.

[0656] At block 7010, a frame counter F is incremented:
F=F+1. The flowchart then proceeds to block 7012, where
the following equation is computed:

-1 (1 F]
#= u * max_frames,)

[0657] The flowchart then proceeds to block 7014, where
the camera selects an N>M value.

[0658] The flowchart then proceeds to block 7016 to
choose a routing node R, where x=Count(1,N). The flow-
chart then proceeds to block 7018 to determine whether
routing node R, is closer to destination S. If the answer at
block 7018 is NO, the flowchart proceeds back to block
7016. If the answer at block 7018 is YES, the flowchart
proceeds to block 7020.

Aug. 6, 2020

[0659] At block 7020, it is determined whether X is greater
than N: x>N? If the answer at block 7020 is NO, the
flowchart proceeds back to block 7016. If the answer at
block 7020 is YES, the flowchart proceeds to block 7022,
where the sender chooses a Diffie-Hellman secret integer a
and other values G and P, and computes A=G* mod P. The
flowchart then proceeds to block 7024, where the sender
sends message M1 signed by K™, .

[0660] The flowchart then proceeds to block 7026 to
determine whether the next node is subscriber S. If the
answer at block 7026 is NO, the flowchart proceeds to block
7028. If the answer at block 7026 is YES, the flowchart
proceeds to block 7030.

[0661] Atblock 7028, the routing network selects the next
routing node at random and delivers message M1 to the next
node, and the flowchart proceeds back to block 7022.
[0662] At block 7030, the subscriber chooses a value M
that is less than N, and M/N obtains a threshold value T
describing an acceptable ratio.

[0663] The flowchart then proceeds to block 7032 to
determine whether M/N is greater than T: M/N>T? If the
answer at block 7032 is NO, the flowchart is complete. If the
answer at block 7032 is YES, the flowchart proceeds to
block 7034.

[0664] At block 7034, it is determined whether any mes-
sage is different in the set of messages M1(0, . . ., N-1). If
the answer at block 7034 is YES, the flowchart proceeds to
block 7036, where the current route is added to a blacklist,
and a blacklist counter B is incremented. If the answer at
block 7034 is NO, the flowchart proceeds to block 7038,
where the subscriber verifies message M1 and views its
contents.

[0665] At this point, the flowchart is complete. In some
embodiments, however, the flowchart may restart and/or
certain blocks may be repeated.

[0666] Privacy Preserving Visual Question Answering
(VQA) with Sanitization

[0667] Visual question answering (VQA) involves com-
puting systems that, given a certain visual representation
(e.g., an image), are capable of automatically answering
questions posed by humans in a certain form or syntax (e.g.,
natural language). VQA serves as the most fundamental
means for end-users to easily interact with an abundancy of
visual data.

[0668] In real-world settings, videos are recorded practi-
cally everywhere (e.g., in all retailers and at every street
corner). Brick-and-mortar retailers, for example, may want
to collect as much video data as possible to derive (action-
able) shopper insights, while shoppers may want to prevent
the disclosure of their identities and/or other personal infor-
mation.

[0669] Existing visual processing systems, however, typi-
cally derive analytics and insights from raw images as input
(e.g., by generating attention maps), which can compromise
the privacy of people captured in the images, as it may reveal
their identity and/or other personal information.

[0670] Accordingly, this disclosure presents a privacy-
preserving VQA system that uses intermediate topological
spatiotemporal representations to mask the identity of
people captured in videos. For example, by injecting a novel
intermediate representation of a person into the visual pro-
cessing pipeline, visual queries can be answered without
revealing the identity and/or compromising the privacy of
the person.

US 2020/0250003 Al

[0671] The described approach uses an intermediate sani-
tized representation of a raw image to serve as the input to
a VQA system. In this manner, this approach is privacy-
preserving, as it conceals the identities of people captured in
the original images, yet it still enables meaningful analytics
to be derived, as the topological spatial and temporal rela-
tionships of the original images are preserved. This is
particularly beneficial in the retail context, as it enables
shopper insights to be derived for retail analytics purposes
without revealing the identities of shoppers.

[0672] FIG. 71 illustrates an example embodiment of a
privacy-preserving VQA dataflow 7100. The illustrated
dataflow introduces sanitization (reference numeral 7106)
into the visual processing pipeline in order to convert an
original image or video into a modified privacy-preserving
VQA input.

[0673] Any sanitization technique can be used that pre-
serves the topological spatial and temporal relationships of
the original raw visual data. In some cases, the sanitization
technique may be sufficiently lightweight such that it can be
performed by resource-constrained devices (e.g., devices
with power constraints and/or limited computing capabili-
ties) before they pass the visual data along to the cloud for
further VQA processing.

[0674] In some embodiments, for example, the sanitiza-
tion technique may involve adding random noise to the
original image. For example, the amount of random noise
may be controlled such that the identity of a person in the
original image is concealed while the overall characteristics
of the scene in the image are preserved.

[0675] The sanitization technique may also involve the use
of avatars to mask the identities of people captured in an
image, as shown by FIG. 72. For example, since the identity
of person is revealed by their face, facial detection can be
performed on the original image, and any detected faces can
then be replaced with avatars. In some cases, for example,
a person’s face (e.g., reference numeral 7210a or 72106)
may be replaced with an avatar (e.g., reference numeral
7220a or 72205) that resembles the facial characteristics of
the person without being sufficiently detailed to reveal the
identity of the person. In this manner, the person’s identity
is effectively eliminated in the pixel domain, while still
delivering a contextual user experience involving multiple
participants who can be disambiguated from the others
within the collaboration context. Furthermore, demographic
context that is typically inferable from surrounding visual
frames can be removed, obfuscated, and/or or augmented
with some other virtual context.

[0676] The sanitization technique may also involve pixel-
level labeling with segmentation, as shown by FIG. 73. For
example, an original image 7300 can be converted into a
form that uses discrete pixel labeling for each type of object
7310a-e represented in the image, such as people, trees,
roads, vehicles, buildings, the sky, and so forth. In FIG. 73,
for example, each object type is represented using a different
color.

[0677] This privacy-preserving visual processing
approach serves as the key to scaling out VQA systems (e.g.,
VQA system 7100 of FIG. 71), as the identities of people can
be eliminated at the edge of a visual computing network, yet
the powerful cloud computing infrastructure can still be
leveraged just as effectively for analytics purposes.

[0678] Sanitization also may be informed by convolu-
tional neural networks (CNNs), recurrent neural networks

Aug. 6, 2020

(RNNs), and/or Shepard interpolation neural networks
(SINNs), where a trained “dot product” may be used to filter
privacy-sensitive learned content. For example, a convolu-
tional layer uses the layer’s parameters consisting of a set of
learnable filters (or kernels), which have a small receptive
field, but extend through the full depth of the input volume.
During the forward pass, each filter is convolved across the
width and height of the input volume, computing the dot
product between the entries of the filter and the input and
producing a 2-dimensional activation map of that filter. As
a result, the network learns filters that activate when it
detects some specific type of feature at some spatial position
in the input. An additional layer may use a “stop list” of
kernels that are coded to be privacy-sensitive, such as “faces
of humans” or “geographic locations.” When a content filter
having privacy sensitive input is detected, the privacy filter
kernels are activated to detect if there is a privacy sensitivity.
If true, the convolutional layers will also recognize privacy
sensitivity, which may be used to flag or trigger application
of any of the above privacy mitigation strategies.

[0679] Variable Size Tiles for Array-Based Storage
[0680] Video processing is increasingly becoming a fun-
damental tool for software systems to perform high level
tasks, be it for identifying shopper behaviors in retail stores,
video surveillance systems for security, traffic monitoring,
autonomous driver assistance systems, virtual reality sys-
tems, real-time 3D model generation for sports broadcasts,
and many more. Typical instantiations of such systems
involve processing pipelines where each pipeline stage runs
some video algorithm and emits its output for a downstream
stage to process further. Often, resource constrained envi-
ronments deploy such processing in the cloud. A critical
aspect of the overall performance (both latency and through-
put) of such systems is the ability to efficiently store and
retrieve massive amounts of video data.

[0681] Video processing algorithms typically operate on
sub-sections of an image or video frame. Such “regions of
interest” (ROIs) within an image or video frame identify
important objects or features, and often are the source of
further analysis. However, extracting these regions from
storage is often time consuming. Because of the way tradi-
tional image formats are stored, it is necessary to read the
entire image first before the ROI can be read. Even when
storing the image in an array-based storage manager, the
sub-section may span multiple areas in the array, causing
more data than necessary to be read. Thus, access to regions
of interest within an image can often be time consuming.
[0682] As discussed above in connection with FIG. 22, in
some cases, images/video could be stored using an analytic
image format (e.g., implemented using an array-based stor-
age manager such as TileDB) that is designed to facilitate
visual data processing. Using an array data manager for the
analytic format is beneficial, as it provides fast access to
sub-sections within frames and images by creating logical
tiles over the image. These tiles are compressed individually
and written so that only the tiles that contain the relevant
information are read back. Additionally, in some embodi-
ments, the analytic image format may be implemented using
only LZ4 compression, which improves performance over
traditional formats that require more complex encoding and
decoding.

[0683] When implementing this analytic image format
using an array-based storage manager (e.g., TileDB), the
storage manager typically provides a mechanism to specify

US 2020/0250003 Al

tile layout via a configuration schema. However, the ability
to define tiles is fairly coarse grained, only allowing for
fixed-sized tiles that are not application-aware in any fash-
ion. Consequently, ROIs often span multiple tiles. Retriev-
ing such ROIs involves reading extra information into a
contiguous memory buffer before the extraneous regions can
be cropped out. Thus, while using the analytic image format
results in less data being read than traditional image formats
(e.g., which have to read the entire file), there still may be
some unnecessary data movement.

[0684] Accordingly, an analytic image format with vari-
able-sized tiles for different regions of interest (ROIs) is
presented in connection with FIGS. 74-81. For example,
when an image or video frame is stored in array-based
storage, it can be divided into variable-sized tiles, and these
tiles can be defined based on application-relevant regions of
interest within the image or frame. In this manner, the
regions of interest within images are the driving force
behind how the images are stored within an array-based
storage manager, which ultimately improves image access
speeds.

[0685] This improved analytic image format provides
various advantages. For example, image storage and
retrieval are primary bottlenecks in a burgeoning class of
important video processing systems, such as advanced
driver-assistance systems (ADAS), Internet-of-Things
(IoT), surveillance, virtual reality, real-time 3D video cre-
ation, and so forth. The described techniques and algorithms
can be used to create application-specified variable-sized tile
definitions for an analytic image format, which allows ROIs
to be stored in a manner such that the speed of access to
these regions will be improved. Given that ROIs are usually
much smaller than the entire image (e.g., in an American
football game, a player is often about a 100x100 pixel region
in a 38402160 pixel frame), tile boundaries that match ROI
boundaries also translate into a decrease in data movement,
as well as reduced post-processing once the file data has
been read in order to retrieve ROIs. Further, storage-system
level knowledge of important sub-sections of stored appli-
cation data opens up numerous avenues for creating plat-
form-level features for further improving access to such
data.

[0686] An array data manager such as TileDB can be used
as the underlying storage manager of the analytic image
format. TileDB, for example, is optimized for managing the
storage and retrieval of dense and sparse arrays. An array is
divided into tiles, each tile is compressed and written
sequentially to disk. TileDB currently supports identically
sized tiles (e.g., the height and width must respectively be
the same for all tiles). Thus, an array data manager must be
developed or otherwise extended to support varying sized
tiles within images/video frames. Moreover, region of inter-
est information (e.g., bounding boxes that indicate the
starting coordinates (X, y) and height and width) must be
provided by existing algorithms, such as algorithms that run
further upstream in the application’s video or image pro-
cessing pipeline. In this manner, the ROI information can be
used to define tile boundaries that are used by the array
storage manager (e.g., TileDB) to store the image/video
frame. For example, an array in TileDB is defined by a
schema; the schema holds information on the size of the
array and the size of the tiles. This schema definition can be
extended to indicate whether the tile size is fixed or variable,

Aug. 6, 2020

and in the case of variable size tiles, an indication of what
algorithm should be used may be further provided.

[0687] This disclosure describes multiple embodiments of
techniques that leverage variable-sized tiles to define a tile
layout that matches the application-specified ROI boundar-
ies, as described further below.

[0688] The first algorithm is illustrated by FIGS. 74-75. In
particular, the first algorithm is a recursive quadrant division
algorithm (shown in FIG. 74), wherein the image is recur-
sively divided into four tiles. Bounding box information is
used to determine which tiles contain regions of interest (the
logic is described in FIG. 75). The algorithm continues until
the regions of interest are fully contained within a set oftiles.
The final step in the algorithm is an optional merge step,
where tiles that are not bounding any region of interest are
merged together to form a smaller number of larger tiles.
The general form of this is simply the recursive division
algorithm; variations on it range from adding a parameter to
indicate the number of tiles to divide into (nine rather than
four, for example) to a more complex alternative such as
performing a binary division along each dimension.

[0689] FIGS. 76A-E illustrate a simple example of the
recursive division algorithm. First, a region of interest 7602
within an image 7600 is identified (as shown by the shaded
rectangle in FIG. 76A). The recursive quadrant algorithm
divides the image 7600 into four tiles (as shown in FIG.
76B), and then identifies the top two quadrants/tiles as
containing the region of interest. These two tiles are further
sub-divided into quadrants/tiles, leaving the bottom two
quadrants/tiles untouched (as shown by FIG. 76C). The tiles
containing the region of interest are recursively identified
and sub-divided in this manner until the region of interest
7602 is exclusively contained within entire tiles (as shown
by FIG. 76D). The last step then combines the tiles that do
not bound the region of interest 7602 into larger tiles (as
shown by FIG. 76E).

[0690] FIGS. 77A-F illustrate an example of the recursive
quadrant division algorithm with multiple regions of interest
that are spread across the image. In this example, the regions
of interest represent the players and the referee. Each
iteration of the algorithm is shown in a separate subfigure,
ending with the final subfigure (FIG. 77F), where every
region of interest is encapsulated by three to six tiles, while
the other tiles have been combined to form larger tiles.
[0691] The recursive division algorithm often requires a
further subdivision in order to get some of the region of
interest, as was necessary for the player in the top of FIGS.
77A-F. Moving from FIG. 77D to 77E requires dividing an
area that is mainly grass except for the player’s feet. In some
embodiments, the parameters of the recursive division algo-
rithm can be varied to allow for a different division rule
(such as dividing into nine rather than four), but this comes
at the cost of an increase in the number of tiles needed to
identify a region of interest.

[0692] The second algorithm is illustrated by FIGS. 78-79.
In particular, FIGS. 78A-B illustrates pseudocode for a
region-based tiling algorithm, while FIGS. 79A-B illustrates
pseudocode for identifying obstructions associated with tiles
constructed using the region-based tiling algorithm. For
example, the region-based tiling algorithm defines an initial
set of tiles as the regions of interest (as shown by the
pseudocode of FIGS. 78A-B). Additional tiles are then
determined by extending the tile width and height as far as
possible, where the goal is to determine if there are any

US 2020/0250003 Al

regions of interest (or other tiles) which obstruct the con-
struction of the current tile in either the x or y dimension (as
shown by the pseudocode of FIGS. 79A-B). Accordingly,
this algorithm addresses the shortcoming noted above with
respect to the first algorithm.

[0693] FIGS. 80A-C illustrate an example of the second
algorithm (e.g., the region-based tiling algorithm of FIGS.
78-79). The illustrated example of FIGS. 80A-C is based on
the same image used in the example of FIGS. 76 A-E. With
the region-based tiling algorithm, a region of interest 8002
is first identified within an image 8000 (as shown in FIG.
80A), and the region of interest is the first tile to be defined
(as shown in FIG. 80B). From there, a starting point is added
at (0,0), which is the top left corner of the image. There is
no obstructing tile in the x direction, so the tile extends the
entire width of the image. In the y direction, however, the
region of interest is obstructing the tile creation, creating the
bottom boundary of the tile. A starting point at the bottom
left corner of the tile is added (as shown in FIG. 80C), and
the algorithm continues. For simplicity, the illustrated
example exclusively uses rectangular tiles, but some
embodiments may be implemented using arbitrary polygon
tiles of varying shapes and sizes.

[0694] A primary benefit of the region-based tiling
approach is that the tiles can be more accurate with respect
to the region of interest, which results in fewer tiles. How-
ever, the recursive quadrant division algorithm may be more
appropriate when there are overlapping regions of interest,
as explained further below in connection with FIGS. 81A-C.

[0695] FIGS. 81A-C illustrate an example using an image
8100 with multiple overlapping regions of interest 8102a,5
(as initially shown in FIG. 81A). Using the region-based
tiling algorithm, it is not possible to identify the overlapping
pixel(s) 8104 as existing in both regions of interest 8102a,b
(as shown by FIG. 81B). In fact, one of the regions of
interest 81025 ends up as a polygon when trying to divide by
region. With the recursive division algorithm, however, it is
possible to request the overlapping tile 8104 for both regions
of interest 8102a,b (as shown in FIG. 81C).

[0696] Thus, the region-based tiling algorithm cannot
handle overlapping regions of interest, while the recursive
division algorithm allows overlapping pixel(s) to exist in
both regions of interest. Accordingly, depending on the
usage scenario, the respective embodiments described above
each have pros and cons. For maximum flexibility, a port-
folio of techniques for choosing the layout of variable-sized
tiles can be offered, thus enabling the applications to control
the storage of relevant sub-sections of data using the most
efficient approach.

[0697] Integrated Online and in-Store Customer Shopping
Experience
[0698] Despite the success and convenience of online

shopping, shoppers nowadays are still drawn to brick-and-
mortar retailers before making purchases (e.g., to view,
touch, and/or test a product). In fact, because of this, many
retailers whose presence began exclusively online have
since extended their footprint to include a physical presence.

[0699] The integrated approach makes it possible to offer
complementary benefits for improved customer engagement
(e.g., adding online/offline incentives based on prior offline/
online activities). However, connecting the online and
offline shopping experiences (e.g., website vs. physical
store) is not trivial.

Aug. 6, 2020

[0700] Reliable customer models are hard to construct and
update. Brick-and-mortar retail stores lack the mechanisms
to build customers’ profiles based on their activities in the
same way that online stores can. For instance, when a
customer is visiting an online store, the store captures every
click or mouse hover that a customer makes. In online stores,
clicks and other mouse events are important data points that
are used to model a customer. In contrast, in a brick-and-
mortar store, there are many actions taken by the customer
while visiting the store that are not accounted for in their
profile.

[0701] For example, most customer modeling techniques
in brick-and-mortar stores rely on completed transactions
(e.g., purchases and sometimes returns). That is, the store
only knows what the customer bought, but little or nothing
about other products that the customer may have been
interested in while visiting the store. Moreover, many solu-
tions are tailored towards either online shopping or offline
shopping, but not both, thus leaving those respective shop-
ping experiences disjointed. Further, as opposed to online
stores, many techniques in brick-and-mortar stores do not
capture the interest in a product shown by a (potential)
customer, for instance, by standing in front of the product’s
display for a few minutes. A byproduct of this limitation is
that the brick-and-mortar store cannot follow up on potential
customers’ interests.

[0702] Accordingly, this disclosure presents various
embodiments that address this limitation in brick-and-mor-
tar stores, and further bridge the gap between online and
in-store customer activity. These embodiments incorporate
various data points into the customer model that are gener-
ated from actions taken by the customer during a visit to the
store and/or that are inferred from visual data. These data
points are then used to improve customer modeling. An
improved customer model can produce better analytics,
resulting in, among other things, better recommendations to
the customer. In this manner, the described embodiments use
novel customer modeling to bridge the gap between the
online and offline shopping experiences.

[0703] FIGS. 82-83 illustrate examples associated with
improved retail customer models. In particular, FIG. 82
illustrates an example 8200 of an integrated customer model
based on both online and offline customer activity, while
FIG. 83 illustrates an example 8300 of linking the in-store
visual footprint and online activity of a customer. Intelligent
brick-and-mortar stores are being developed in which a
massive amount of visual data, from cameras installed inside
the store, is available. In these intelligent stores, the cus-
tomer is usually tracked while moving in the store and
charged based on algorithms that infer the acquisition of a
product, sometimes based on the analysis of data captured
by sensors, such as cameras. In the example of FIG. 82, the
traditional customer model is extended to include customer
behavior that is inferred from visual data captured in brick-
and-mortar stores, which is combined with other purchases
and activities of the customer (either online or in-store) to
construct an improved customer model (FIG. 82, 8223).
[0704] This approach provides a device-free and seamless
shopping experience by integrating online and offline iden-
tities. As illustrated in FIGS. 82-83, this goal is accom-
plished by linking a customer’s digital presence with their
visual footprint captured by the cameras in a brick-and-
mortar store (FIG. 82, 8213). Valuable activities (e.g., per-
ceived interest in a product while visiting the store, clicks on

US 2020/0250003 Al

the website, and so forth) are linked to bridge both the
brick-and-mortar and online activities (FIG. 82, 8207-8210,
8215-8218) of the customer. The integrated customer model
can then be fed to machine learning algorithms (FIG. 82,
8221) to, among other things, provide better recommenda-
tions of products and services (FIG. 82, 8206, 8219-8222,
8224).

[0705] In some cases, a user may be required to opt-in to
the linking of these identities, as linking may otherwise
present a privacy violation (e.g., based on an associated
privacy policy or PLA). Furthermore, a seamless or other-
wise desirable in-store user experience may be achieved
(without violating user privacy policies) by assigning the
online/offline identities to a set of groups/categories
designed to improve user experience. For example, a
“VEGAN” category could be defined such that products
fitting the category are featured and/or marketed to in-store
identities based on an offline experience that may have
associated the VEGAN category with the offline identity.
Membership in the category may be achieved cryptographi-
cally using an EPID cryptographic group key wherein the
offline/instore/online experience first registers the group key
and where an SGX or other TEE is used to share the group
key across offline/instore/online identities. Consequently, if
an offline identity experience results in membership in the
VEGAN group, the TEE will share the group key with an
in-store identity such that the in-store identity may choose to
authenticate as the VEGAN group participant only—opting
instead to withhold any unique identity. Consequently, the
in-store experience may be augmented by knowledge of
membership in the VEGAN group (but nothing else as that
could represent an undesirable privacy violating user expe-
rience).

[0706] This approach provides numerous advantages. In
particular, it serves as a foundation for effectively interweav-
ing online and offline shopping experiences in the retail
sector. For example, the described solution facilitates a
seamless transition between online shopping and offline
shopping. By having a mapping between an online profile
and an in-store visual footprint (FIG. 82, 8213), the
described solution can use a customer’s activities, either
online or in-store, to ensure that both the customer’s perso-
nas and activities, online and in-store, are incorporated in the
customer model (FIG. 82, 8210, 8218). These novel tech-
niques for customer modeling can further be added to other
retail solutions that incorporate visual data analysis, thus
rendering such retail applications even more appealing.

[0707] Further, this solution is device free, as it does not
require any device to be carried by the customer. The
customer creates an account online (FIG. 82, 8203) that is
mapped to its presence offline (FIG. 82, 8213). The first time
the customer enters a physical store, the customer logs in at
a kiosk and is gently and quickly scanned to capture a visual
footprint (FIG. 82, 8214), and once the initial visual foot-
print is available, it is updated and tracked during each
posterior visit (FIG. 82, 8213), without the need to subject
the customer to another full scan. The estimated time for a
full scan is less than a minute. Once complete, the customer

Aug. 6, 2020

no longer has to log onto their online account while in the
store, as long as the visual footprint is still considered to be
valid.

[0708]
with their customers, both online and in brick-and-mortar
stores, are likely to fail. Accordingly, using additional non-
traditional data points from visual data (FIG. 82, 8216) (as
described further below), the described solution infers cus-
tomer behavior (FI1G. 82, 8215) and captures interesting data
points from relevant customer activities in-store.

[0709] FIG. 84 illustrates an example 8400 of using online
and in-store customer activities to construct a more robust

Businesses that do not maximize the interaction

customer model. As shown in FIG. 84, data points from both
online and in-store activities are combined into a more
complete customer model. For example, relevant activities,
a,, are indexed using the time when the activity was
recorded. Customer activities can be classified as online
activities, O, or in-store activities, . There is an implicit
mapping that can be taken into account by an analytics
component. For instance, pages or sections visited online
can be mapped to areas visited in the physical store. The
resulting integrated customer model produces better results
from analytics (FIG. 82, 8221) that can be used to improve
the interactions between the business and the customer (e.g.,
by providing better product recommendations (FIG. 82,
8206, 8219, 8220, 8224)).

[0710] The described solution pays particular attention to
the interaction that the customer has with products while
visiting the store, particularly for products that the customer
does not end up buying (FIG. 82, 8215-8217, 8219). In a
similar manner as online stores, brick-and-mortar stores can
use this data to better identify customer needs (FIG. 82,
8221) and follow-up using traditional channels (e.g., mail,
email (FIG. 82, 8222, 8224)) and/or non-traditional channels
(e.g., personalized visual signage (FIG. 82, 8219)).

[0711] FIG. 85 illustrates an example 8500 with a com-
parison of the activities of multiple users or customers
85024,b. In particular, a realistic comparison of the behavior
of two users is conducted based on both their online activi-
ties and in-store activities (FIG. 82, 8221). As shown in FIG.
85, user 1 has a more balanced distribution between online
and in-store activities than user 2. Using the integrated
customer model and non-traditional data points obtained
from visual data, a business has access to more comprehen-
sive customer profiles, which allows it to gain a better
understanding of the desires and needs of its customers.
Further, the described solution also enables a business to
map online activity to in-store activity. As mentioned above,
the webpages visited by the user can be mapped to physical
areas in a store. Hence, the business has a better understand-
ing of' the potential behaviors and desires of their users when
visiting the store.

[0712] An example of the different types of customer
activity involved in the described solution (both online and
in-store) is illustrated in TABLE 2.

US 2020/0250003 Al

57

TABLE 2

Customer activity

ACTIVITY
TYPE ONLINE ACTIVITY (O,) IN-STORE ACTIVITY (1)
Online The customer registers in the
registration system for the first time (FIG. 82,

8205). The customer can proceed

to use the online front-end (FIG.

82, 8201) of the system to

purchase or browse products.
Initial The first time that the customer visits
capture of the brick-and-mortar store (FIG. 82,
visual 8211, 8212), she has to login to her
footprint in online account at a kiosk located at the
brick-and- entrance of the store (FIG. 82, 8212).

mortar store

Other online

Traditional data points, e.g.,

Once logged in, a configuration of
cameras captures the customer visual
footprint that is used for future visits
(FIG. 82, 8214). Using this visual
footprint, the store can infer customer
activity data points from each in-store
visit (FIG. 82, 8213, 8215, 8216).
Non-traditional data points are also

Aug. 6, 2020

or in-store mouse events, text entered by the collected by inferring customer’s
activities customer while visiting the online preferences inferred from her behavior
store, including product searches, as captured in visual data (FIG. 82,
are collected and used to improve 8215-8218).
the customer model (FIG. 82,
8207-8210).
[0713] As shown in TABLE 2, a customer initially regis-

ters in the system online. Once the customer is registered,
every relevant activity is collected and used to improve the
customer model. In addition to data points obtained from
online activities, several non-traditional data points are also
added to the customer model. These data points are obtained
from the analysis of visual data (FIG. 82, 8215).

[0714] As an example, the amount of time a customer
spends in certain area(s) of a store can be tracked as
additional data points. In particular, a customer is continu-
ously tracked using vision sensors (e.g., cameras) when
visiting a store. Areas where the customer tends to spend a
significant amount of time are important data points for
future marketing of products. These data points are obtained
from analyzing temporal information about areas visited by
the customer while in the store. Similar to what occurs in
online stores, if the customer is spending significant time in
a particular area, that behavior is registered as a data point
used in the generation of the improved customer model. The
store then can follow up as appropriate (e.g., via mail/email
about promotions), thus improving the relationship with the
customer.

[0715] As another example, head pose estimation, cus-
tomer posture detection, and product position tracking can
be used to derive additional data points. For example, FIG.
86 illustrates an example 8600 of using head pose to infer
customer data points. In particular, based on customer head
pose estimation 8603 combined with product position track-
ing, it can be inferred that a customer 8602 is observing a
particular product 8604. If the observation exceeds a tem-
poral threshold, a data point is generated and used to
improve the customer model. For example, while inside a
store, a customer may gaze in the direction of a product. This
behavior is timed, and if a threshold is exceeded, a data point
is generated for this event. In this manner, if the customer
has been observing a particular article, the store can subse-

quently follow up with the customer to provide additional
information about the product. This solution fills the vacuum
that is missing in traditional customer modeling. Using a
combination of temporal thresholding and analysis of visual
data, additional data points are added to the customer model,
allowing the store to reach out and follow-up with the
customer with offers and other information. By improving
customer modeling, the store is expected to increase sales.
[0716] As another example, products that a customer
interacts with (e.g., by touching with their hands) can be
tracked as additional data points. In some embodiments, for
example, these data points can be generated by triangulating
the position of a customer’s hands as captured by multiple
cameras, in conjunction with a mapping of the products on
display. For instance, if a customer’s hand is close or has
touched the shelf where some products are located (e.g.,
laundry detergents), and a temporal threshold has been
exceeded, a data point is generated in connection with the
customer’s apparent interest in a particular product/brand.
[0717] Using these additional data points from in-store
visual data, a better model of the customer can be con-
structed. For instance, in addition to knowing that customer
X has bought products <k, 1, m>, it can also be determined
that the customer has shown interest in products <n, o>,
either in-store or online. This approach provides valuable
information to a store. The improved customer models can
be used in conjunction with recommendation systems to
follow up with offers to customers. This will result in
increased sales for brick-and-mortar stores, along with
improved customer relationships.

[0718] The following are examples of the types of cus-
tomer activities that can be tracked and leveraged by this
solution:

[0719] (1) traditional activities that are used to build
online customer profiles: timestamp of visit, products
clicked on and other mouse events, searches, and so
forth;

US 2020/0250003 Al

[0720] (2) traditional activities that are used to build a
profile of the customer in-store: purchases, returns, and
so forth;

[0721] (3) additional activities inferred from in-store
visual data: products observed for a time above a
threshold t,, Areas visited for a time above a threshold
t,, products touched by the customer, and so forth.

In this manner, an improved customer model can be built
using all of the above categories of data points, as opposed
to just the first or second categories.

[0722] FIG. 87 illustrates an example datatlow 8700 for
creating an improved customer model using both traditional
and visual data. For example, traditional in-store data points
(e.g., product purchases) and online data points (FIG. 82,
8207-8210, 8217) are used in conjunction with data points
for inferred customer behavior derived from visual data
captured in-store (FIG. 82, 8215, 8216). By combining
traditional data points with visual data points, a better
customer model is generated.

[0723] FIG. 88 illustrates the architecture of an example
application 8800 that leverages integrated online and in-
store customer profiles. In particular, a better customer
profile is generated by combining data points obtained from
three sources: customer behavior in-store inferred from
visual data (FIG. 82, 8215), customer’s online activity (FIG.
82, 8210) and in-store purchase information (FIG. 82, 8217).
Using the improved customer model and inventory infor-
mation, the store can then proceed to recommend products
to the customer, which results in a more meaningful rela-
tionship with the customer based on the improved customer
model. The weight assigned to each data point generated
from a customer action is weighed differently depending on
the type of business. Traditional machine learning algo-
rithms can be used to find the best assignment of weights to
each type of data point.

[0724] While customers are typically comfortable with
sharing personal information with retailers online, having
their visual footprint tracked and stored when visiting brick-
and-mortar businesses may raise potential privacy concerns.
Accordingly, this solution can be combined with other
embodiments described throughout this disclosure—or oth-
erwise available—that relate to privacy protection for visual
computing systems. For example, this solution can be com-
bined with solutions that focus on protecting the identity of
people captured by cameras. Cameras are ubiquitous in retail
stores, and with the development of better and more afford-
able devices, the number of cameras deployed in the real-
world is only expected to grow. This solution leverages that
trend to help retailers create better models of their custom-
ers, and it can be adapted to provide the appropriate level of
privacy depending on the context.

[0725] The flowcharts and block diagrams in the FIG-
URES illustrate the architecture, functionality, and operation
of possible implementations of systems, methods and com-
puter program products according to various aspects of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in

58

Aug. 6, 2020

the reverse order or alternative orders, depending upon the
functionality involved. It will also be noted that each block
of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts, or combinations of special purpose hardware and
computer instructions.

[0726] The foregoing disclosure outlines features of sev-
eral embodiments so that those skilled in the art may better
understand various aspects of the present disclosure. Those
skilled in the art should appreciate that they may readily use
the present disclosure as a basis for designing or modifying
other processes and structures for carrying out the same
purposes and/or achieving the same advantages of the
embodiments introduced herein. Those skilled in the art
should also realize that such equivalent constructions do not
depart from the spirit and scope of the present disclosure,
and that they may make various changes, substitutions, and
alterations herein without departing from the spirit and
scope of the present disclosure.

[0727] All or part of any hardware element disclosed
herein may readily be provided in a system-on-a-chip (SoC),
including a central processing unit (CPU) package. An SoC
represents an integrated circuit (IC) that integrates compo-
nents of a computer or other electronic system into a single
chip. The SoC may contain digital, analog, mixed-signal,
and radio frequency functions, all of which may be provided
on a single chip substrate. Other embodiments may include
a multi-chip-module (MCM), with a plurality of chips
located within a single electronic package and configured to
interact closely with each other through the electronic pack-
age. In various other embodiments, the computing function-
alities disclosed herein may be implemented in one or more
silicon cores in Application Specific Integrated Circuits
(ASICs), Field Programmable Gate Arrays (FPGAs), and
other semiconductor chips.

[0728] As used throughout this specification, the term
“processor” or “microprocessor” should be understood to
include not only a traditional microprocessor (such as
Intel’s® industry-leading x86 and x64 architectures), but also
graphics processors, matrix processors, and any ASIC,
FPGA, microcontroller, digital signal processor (DSP), pro-
grammable logic device, programmable logic array (PLA),
microcode, instruction set, emulated or virtual machine
processor, or any similar “Turing-complete” device, combi-
nation of devices, or logic elements (hardware or software)
that permit the execution of instructions.

[0729] Note also that in certain embodiments, some of the
components may be omitted or consolidated. In a general
sense, the arrangements depicted in the figures should be
understood as logical divisions, whereas a physical archi-
tecture may include various permutations, combinations,
and/or hybrids of these elements. It is imperative to note that
countless possible design configurations can be used to
achieve the operational objectives outlined herein. Accord-
ingly, the associated infrastructure has a myriad of substitute
arrangements, design choices, device possibilities, hardware
configurations, software implementations, and equipment
options.

[0730] In a general sense, any suitably-configured proces-
sor can execute instructions associated with data or micro-
code to achieve the operations detailed herein. Any proces-
sor disclosed herein could transform an element or an article

US 2020/0250003 Al

(for example, data) from one state or thing to another state
or thing. In another example, some activities outlined herein
may be implemented with fixed logic or programmable logic
(for example, software and/or computer instructions
executed by a processor) and the elements identified herein
could be some type of a programmable processor, program-
mable digital logic (for example, a field programmable gate
array (FPGA), an erasable programmable read only memory
(EPROM), an electrically erasable programmable read only
memory (EEPROM)), an ASIC that includes digital logic,
software, code, electronic instructions, flash memory, opti-
cal disks, CD-ROMs, DVD ROMSs, magnetic or optical
cards, other types of machine-readable mediums suitable for
storing electronic instructions, or any suitable combination
thereof.

[0731] In operation, a storage may store information in
any suitable type of tangible, non-transitory storage medium
(for example, random access memory (RAM), read only
memory (ROM), field programmable gate array (FPGA),
erasable programmable read only memory (EPROM), elec-
trically erasable programmable ROM (EEPROM), or micro-
code), software, hardware (for example, processor instruc-
tions or microcode), or in any other suitable component,
device, element, or object where appropriate and based on
particular needs. Furthermore, the information being
tracked, sent, received, or stored in a processor could be
provided in any database, register, table, cache, queue,
control list, or storage structure, based on particular needs
and implementations, all of which could be referenced in
any suitable timeframe. Any of the memory or storage
elements disclosed herein should be construed as being
encompassed within the broad terms ‘memory’ and ‘stor-
age’, as appropriate. A non-transitory storage medium herein
is expressly intended to include any non-transitory special-
purpose or programmable hardware configured to provide
the disclosed operations, or to cause a processor to perform
the disclosed operations. A non-transitory storage medium
also expressly includes a processor having stored thereon
hardware-coded instructions, and optionally microcode
instructions or sequences encoded in hardware, firmware, or
software.

[0732] Computer program logic implementing all or part
of the functionality described herein is embodied in various
forms, including, but in no way limited to, hardware descrip-
tion language, a source code form, a computer executable
form, machine instructions or microcode, programmable
hardware, and various intermediate forms (for example,
forms generated by an HDL processor, assembler, compiler,
linker, or locator). In an example, source code includes a
series of computer program instructions implemented in
various programming languages, such as an object code, an
assembly language, or a high-level language such as
OpenCL, FORTRAN, C, C++, JAVA, or HTML for use with
various operating systems or operating environments, or in
hardware description languages such as Spice, Verilog, and
VHDL. The source code may define and use various data
structures and communication messages. The source code
may be in a computer executable form (e.g., via an inter-
preter), or the source code may be converted (e.g., via a
translator, assembler, or compiler) into a computer execut-
able form, or converted to an intermediate form such as byte
code. Where appropriate, any of the foregoing may be used

Aug. 6, 2020

to build or describe appropriate discrete or integrated cir-
cuits, whether sequential, combinatorial, state machines, or
otherwise.

[0733] Inone example, any number of electrical circuits of
the FIGURES may be implemented on a board of an
associated electronic device. The board can be a general
circuit board that can hold various components of the
internal electronic system of the electronic device and,
further, provide connectors for other peripherals. More spe-
cifically, the board can provide the electrical connections by
which the other components of the system can communicate
electrically. Any suitable processor and memory can be
suitably coupled to the board based on particular configu-
ration needs, processing demands, and computing designs.
Other components such as external storage, additional sen-
sors, controllers for audio/video display, and peripheral
devices may be attached to the board as plug-in cards, via
cables, or integrated into the board itself. In another
example, the electrical circuits of the FIGURES may be
implemented as stand-alone modules (e.g., a device with
associated components and circuitry configured to perform
a specific application or function) or implemented as plug-in
modules into application specific hardware of electronic
devices.

[0734] Note that with the numerous examples provided
herein, interaction may be described in terms of two, three,
four, or more electrical components. However, this has been
done for purposes of clarity and example only. It should be
appreciated that the system can be consolidated or recon-
figured in any suitable manner. Along similar design alter-
natives, any of the illustrated components, modules, and
elements of the FIGURES may be combined in various
possible configurations, all of which are within the broad
scope of this specification. In certain cases, it may be easier
to describe one or more of the functionalities of a given set
of flows by only referencing a limited number of electrical
elements. It should be appreciated that the electrical circuits
of the FIGURES and its teachings are readily scalable and
can accommodate a large number of components, as well as
more complicated/sophisticated arrangements and configu-
rations. Accordingly, the examples provided should not limit
the scope or inhibit the broad teachings of the electrical
circuits as potentially applied to a myriad of other architec-
tures.

[0735] Numerous other changes, substitutions, variations,
alterations, and modifications may be ascertained to one
skilled in the art and it is intended that the present disclosure
encompass all such changes, substitutions, variations, altera-
tions, and modifications as falling within the scope of the
appended claims.

[0736] Example Implementations

[0737] The following examples pertain to embodiments
described throughout this disclosure.

[0738] One or more embodiments may include an appa-
ratus, comprising: a processor to: identify a workload com-
prising a plurality of tasks; generate a workload graph based
on the workload, wherein the workload graph comprises
information associated with the plurality of tasks; identify a
device connectivity graph, wherein the device connectivity
graph comprises device connectivity information associated
with a plurality of processing devices; identify a privacy
policy associated with the workload; identify privacy level
information associated with the plurality of processing
devices; identify a privacy constraint based on the privacy

US 2020/0250003 Al

policy and the privacy level information; and determine a
workload schedule, wherein the workload schedule com-
prises a mapping of the workload onto the plurality of
processing devices, and wherein the workload schedule is
determined based on the privacy constraint, the workload
graph, and the device connectivity graph; and a communi-
cation interface to send the workload schedule to the plu-
rality of processing devices.

[0739] In one example embodiment of an apparatus, the
processor to determine the workload schedule is further to
solve an integer linear programming model based on the
privacy constraint.

[0740] In one example embodiment of an apparatus, the
plurality of tasks is associated with processing sensor data
from one or more sensors.

[0741] In one example embodiment of an apparatus, the
one or more sensors comprise one or more of: a camera; an
infrared sensor; or a laser-based sensor.

[0742] In one example embodiment of an apparatus, the
sensor data comprises visual data.

[0743] In one example embodiment of an apparatus, the
workload graph further comprises information associated
with a plurality of task dependencies among the plurality of
tasks.

[0744] In one example embodiment of an apparatus, the
privacy policy comprises a plurality of privacy requirements
associated with the plurality of task dependencies.

[0745] In one example embodiment of an apparatus, the
device connectivity information comprises information
associated with a plurality of device connectivity links
among the plurality of processing devices.

[0746] In one example embodiment of an apparatus, the
privacy level information comprises a plurality of privacy
levels associated with the plurality of device connectivity
links.

[0747] One or more embodiments may include a system,
comprising: a plurality of sensors to capture sensor data
associated with an environment; a plurality of processing
devices, wherein the plurality of processing devices com-
prises a plurality of edge processing devices and a plurality
of cloud processing devices, and wherein the plurality of
processing devices is to: identify a workload, wherein the
workload comprises a plurality of tasks associated with
processing the sensor data captured by the plurality of
sensors; generate a workload graph based on the workload,
wherein the workload graph comprises information associ-
ated with the plurality of tasks; identify a device connec-
tivity graph, wherein the device connectivity graph com-
prises device connectivity information associated with the
plurality of processing devices; identify a privacy policy
associated with the workload; identify privacy level infor-
mation associated with the plurality of processing devices;
identify a privacy constraint based on the privacy policy and
the privacy level information; determine a workload sched-
ule, wherein the workload schedule comprises a mapping of
the workload onto the plurality of processing devices, and
wherein the workload schedule is determined based on the
privacy constraint, the workload graph, and the device
connectivity graph; and distribute the workload schedule to
the plurality of processing devices.

[0748] In one example embodiment of a system, the
plurality of processing devices to determine the workload
schedule is further to solve an integer linear programming
model based on the privacy constraint.

Aug. 6, 2020

[0749] In one example embodiment of a system, the
plurality of sensors comprises one or more of: a camera; an
infrared sensor; or a laser-based sensor.

[0750] In one example embodiment of a system, the
workload graph further comprises information associated
with a plurality of task dependencies among the plurality of
tasks.

[0751] In one example embodiment of a system, the
privacy policy comprises a plurality of privacy requirements
associated with the plurality of task dependencies.

[0752] In one example embodiment of a system, the
device connectivity information comprises information
associated with a plurality of device connectivity links
among the plurality of processing devices.

[0753] In one example embodiment of a system, the
privacy level information comprises a plurality of privacy
levels associated with the plurality of device connectivity
links.

[0754] One or more embodiments may include at least one
machine accessible storage medium having instructions
stored thereon, wherein the instructions, when executed on
a machine, cause the machine to: identify a workload
comprising a plurality of tasks; generate a workload graph
based on the workload, wherein the workload graph com-
prises information associated with the plurality of tasks;
identify a device connectivity graph, wherein the device
connectivity graph comprises device connectivity informa-
tion associated with a plurality of processing devices; iden-
tify a privacy policy associated with the workload; identify
privacy level information associated with the plurality of
processing devices; identify a privacy constraint based on
the privacy policy and the privacy level information; deter-
mine a workload schedule, wherein the workload schedule
comprises a mapping of the workload onto the plurality of
processing devices, and wherein the workload schedule is
determined based on the privacy constraint, the workload
graph, and the device connectivity graph; and distribute the
workload schedule to the plurality of processing devices.
[0755] In one example embodiment of a storage medium,
the instructions that cause the machine to determine the
workload schedule further cause the machine to solve an
integer linear programming model based on the privacy
constraint.

[0756] In one example embodiment of a storage medium,
the plurality of tasks is associated with processing sensor
data from one or more sensors.

[0757] In one example embodiment of a storage medium:
the workload graph further comprises information associ-
ated with a plurality of task dependencies among the plu-
rality of tasks; and the privacy policy comprises a plurality
of privacy requirements associated with the plurality of task
dependencies.

[0758] In one example embodiment of a storage medium:
the device connectivity information comprises information
associated with a plurality of device connectivity links
among the plurality of processing devices; and the privacy
level information comprises a plurality of privacy levels
associated with the plurality of device connectivity links.
[0759] One or more embodiments may include a method,
comprising: identifying a workload, wherein the workload
comprises a plurality of tasks associated with processing
sensor data from one or more sensors; generating a workload
graph based on the workload, wherein the workload graph
comprises information associated with the plurality of tasks;

US 2020/0250003 Al

identifying a device connectivity graph, wherein the device
connectivity graph comprises device connectivity informa-
tion associated with a plurality of processing devices; iden-
tifying a privacy policy associated with the workload; iden-
tifying privacy level information associated with the
plurality of processing devices; identifying a privacy con-
straint based on the privacy policy and the privacy level
information; determining a workload schedule, wherein the
workload schedule comprises a mapping of the workload
onto the plurality of processing devices, and wherein the
workload schedule is determined based on the privacy
constraint, the workload graph, and the device connectivity
graph; and distributing the workload schedule to the plural-
ity of processing devices.

[0760] In one example embodiment of a method, deter-
mining the workload schedule comprises solving an integer
linear programming model based on the privacy constraint.
[0761] In one example embodiment of a method: the
workload graph further comprises information associated
with a plurality of task dependencies among the plurality of
tasks; and the privacy policy comprises a plurality of privacy
requirements associated with the plurality of task dependen-
cies.

[0762] In one example embodiment of a method: the
device connectivity information comprises information
associated with a plurality of device connectivity links
among the plurality of processing devices; and the privacy
level information comprises a plurality of privacy levels
associated with the plurality of device connectivity links.
[0763] One or more embodiments may include an appa-
ratus, comprising: a top-view sensing device to capture
sensor data associated with an environment below the top-
view sensing device; and a processor to: obtain the sensor
data captured by the top-view sensing device; generate,
based on the sensor data, a visual representation of the
environment below the top-view sensing device; determine
that the visual representation comprises a representation of
a person; identify one or more features associated with the
representation of the person; and identify demographic
information associated with the person based on the one or
more features.

[0764] In one example embodiment of an apparatus, the
top-view sensing device comprises a plurality of sensors.
[0765] In one example embodiment of an apparatus, the
plurality of sensors comprises one or more of: a camera; an
infrared sensor; or a laser-based sensor.

[0766] In one example embodiment of an apparatus, the
representation of the person comprises a top-view represen-
tation of the person.

[0767] In one example embodiment of an apparatus, the
demographic information comprises one or more of: age;
gender; or race.

[0768] In one example embodiment of an apparatus, the
one or more features comprise one or more anthropometric
features associated with the person.

[0769] In one example embodiment of an apparatus, the
processor to identify the one or more features associated
with the representation of the person is further to perform
feature extraction on the representation of the person.
[0770] In one example embodiment of an apparatus, the
processor to perform feature extraction on the representation
of the person is further to perform a discrete cosine trans-
form to extract a feature associated with the representation
of the person.

Aug. 6, 2020

[0771] In one example embodiment of an apparatus, the
processor to perform feature extraction on the representation
of the person is further to perform a principal component
analysis to extract a feature associated with the representa-
tion of the person.

[0772] In one example embodiment of an apparatus, the
processor to identify the demographic information associ-
ated with the person based on the one or more features is
further to classify the one or more features using a machine
learning model.

[0773] In one example embodiment of an apparatus, the
processor is further to perform pre-processing on the sensor
data.

[0774] In one example embodiment of an apparatus, the
processor to perform pre-processing on the sensor data is
further to perform one or more of: a data transformation; or
noise reduction.

[0775] One or more embodiments may include a system,
comprising: a top-view sensing device, wherein the top-
view sensing device comprises a plurality of sensors to
capture sensor data associated with an environment below
the top-view sensing device; and an edge processing device
to: obtain the sensor data captured by the top-view sensing
device; generate, based on the sensor data, a visual repre-
sentation of the environment below the top-view sensing
device; determine that the visual representation comprises a
representation of a person; identify one or more anthropo-
metric features associated with the representation of the
person; and identify demographic information associated
with the person based on the one or more anthropometric
features.

[0776] In one example embodiment of a system, the
plurality of sensors comprises one or more of: a camera; an
infrared sensor; or a laser-based sensor.

[0777] In one example embodiment of a system, the edge
processing device to identify the demographic information
associated with the person based on the one or more anthro-
pometric features is further to classify the one or more
anthropometric features using a machine learning model.
[0778] In one example embodiment of a system, the edge
processing device comprises an edge gateway.

[0779] In one example embodiment of a system: the
system further comprises a cloud processing device to
perform analytics based on the demographic information;
and the edge processing device comprises a communication
interface to transmit the demographic information to the
cloud processing device.

[0780] Inone example embodiment of a system, the cloud
processing device to perform analytics based on the demo-
graphic information is further to generate: a heat map; or a
people profile.

[0781] One or more embodiments may include at least one
machine accessible storage medium having instructions
stored thereon, wherein the instructions, when executed on
a machine, cause the machine to: obtain sensor data captured
by a top-view sensing device, wherein the sensor data
comprises information associated with an environment
below the top-view sensing device; generate, based on the
sensor data, a visual representation of the environment
below the top-view sensing device; determine that the visual
representation comprises a representation of a person; iden-
tify one or more anthropometric features associated with the
representation of the person; and identify demographic

US 2020/0250003 Al

information associated with the person based on the one or
more anthropometric features.

[0782] In one example embodiment of a storage medium,
the top-view sensing device comprises one or more of: a
camera; an infrared sensor; or a laser-based sensor.

[0783] In one example embodiment of a storage medium,
the instructions that cause the machine to identify the one or
more anthropometric features associated with the represen-
tation of the person further cause the machine to perform
feature extraction on the representation of the person.
[0784] In one example embodiment of a storage medium,
the instructions that cause the machine to identify the
demographic information associated with the person based
on the one or more anthropometric features further cause the
machine to classify the one or more anthropometric features
using a machine learning model.

[0785] One or more embodiments may include a method,
comprising: obtaining sensor data captured by a top-view
sensing device, wherein the sensor data comprises informa-
tion associated with an environment below the top-view
sensing device; generating, based on the sensor data, a visual
representation of the environment below the top-view sens-
ing device; determining that the visual representation com-
prises a representation of a person; identifying one or more
anthropometric features associated with the representation
of the person; and identifying demographic information
associated with the person based on the one or more anthro-
pometric features.

[0786] In one example embodiment of a method, identi-
fying the one or more anthropometric features associated
with the representation of the person comprises performing
feature extraction on the representation of the person.
[0787] In one example embodiment of a method, identi-
fying the demographic information associated with the per-
son based on the one or more anthropometric features
comprises classifying the one or more anthropometric fea-
tures using a machine learning model.

[0788] One or more embodiments may include a system,
comprising: means for obtaining sensor data captured by a
top-view sensing device, wherein the sensor data comprises
information associated with an environment below the top-
view sensing device; means for generating, based on the
sensor data, a visual representation of the environment
below the top-view sensing device; means for determining
that the visual representation comprises a representation of
a person; means for identifying one or more anthropometric
features associated with the representation of the person; and
means for identifying demographic information associated
with the person based on the one or more anthropometric
features.

[0789] One or more embodiments may include an appa-
ratus, comprising: a communication interface to communi-
cate with a plurality of cameras; and a processor to: obtain
metadata associated with an initial state of an object,
wherein the object is captured by a first camera of the
plurality of cameras in a first video stream at a first point in
time, and wherein the metadata is obtained based on the first
video stream; predict, based on the metadata, a future state
of the object at a second point in time; identify a second
camera for capturing the object at the second point in time,
wherein the second camera is identified from the plurality of
cameras based on: the future state of the object; and a
plurality of camera views of the plurality of cameras; and
configure the second camera to capture the object in a

Aug. 6, 2020

second video stream at the second point in time, wherein the
second camera is configured to capture the object based on
the future state of the object.

[0790] In one example embodiment of an apparatus, the
metadata associated with the initial state of the object
comprises an indication of: a current location of the object;
and a current direction of travel of the object.

[0791] In one example embodiment of an apparatus, the
metadata associated with the initial state of the object
comprises an indication of one or more current behavioral
characteristics of the object.

[0792] In one example embodiment of an apparatus, the
metadata associated with the initial state of the object
comprises an indication of one or more physical character-
istics of the object.

[0793] In one example embodiment of an apparatus, the
processor to predict, based on the metadata, the future state
of the object at the second point in time is further to apply
a machine learning model to the metadata, wherein the
machine learning model is trained to predict the future state
of the object based on the initial state of the object.

[0794] In one example embodiment of an apparatus, the
processor is further to: determine an actual state of the object
at the second point in time, wherein the actual state of the
object is determined based on one or more video streams
captured by the plurality of cameras at the second point in
time; and optimize the machine learning model to learn a
correlation between the actual state of the object and the
metadata associated with the initial state of the object.
[0795] In one example embodiment of an apparatus, the
processor to configure the second camera to capture the
object in the second video stream at the second point in time
is further to adjust one or more settings of the second camera
to capture the object based on the future state of the object.
[0796] In one example embodiment of an apparatus: the
future state of the object comprises an indication of a future
location of the object at the second point in time; and the
processor to identify the second camera for capturing the
object at the second point in time is further to determine that
the future location of the object is within a camera view of
the second camera.

[0797] In one example embodiment of an apparatus, the
processor is further to: access the second video stream
captured by the second camera at the second point in time;
detect the object in the second video stream based on the
metadata associated with the initial state of the object; and
track the object in the first video stream and the second video
stream.

[0798] In one example embodiment of an apparatus, the
processor is further to: access the first video stream captured
by the first camera; determine that the object cannot be
identified based on the first video stream; determine, based
on the future state of the object, that the object can be
identified based on the second video stream that is to be
captured by the second camera at the second point in time;
access the second video stream captured by the second
camera at the second point in time; and identify the object
based on the second video stream.

[0799] In one example embodiment of an apparatus: the
object is a person; and the processor to identify the object
based on the second video stream is further to identify the
person using facial recognition.

[0800] In one example embodiment of an apparatus: the
object is a car; and the processor to identify the object based

US 2020/0250003 Al

on the second video stream is further to: identify a license
plate number of the car; or identify one or more physical
characteristics of the car.

[0801] One or more embodiments may include a system,
comprising: a plurality of cameras to capture a plurality of
video streams; and one or more processing devices to:
access a first video stream captured by a first camera of the
plurality of cameras at a first point in time; detect an object
in the first video stream; generate metadata associated with
an initial state of the object, wherein the metadata is gen-
erated based on the first video stream; predict, based on the
metadata, a future state of the object at a second point in
time; identify a second camera for capturing the object at the
second point in time, wherein the second camera is identified
from the plurality of cameras based on: the future state of the
object; and a plurality of camera views of the plurality of
cameras; and configure the second camera to capture the
object in a second video stream at the second point in time,
wherein the second camera is configured to capture the
object based on the future state of the object.

[0802] In one example embodiment of a system: the first
camera comprises a depth sensor to determine a depth of the
object relative to the first camera; and the one or more
processing devices to generate metadata associated with the
initial state of the object are further to: determine a current
location of the object based on the depth of the object
relative to the first camera; and determine a current direction
of travel of the object.

[0803] Inoneexample embodiment of a system, the one or
more processing devices to predict, based on the metadata,
the future state of the object at the second point in time are
further to apply a machine learning model to the metadata,
wherein the machine learning model is trained to predict the
future state of the object based on the initial state of the
object.

[0804] Inone example embodiment of a system, the one or
more processing devices are further to: determine an actual
state of the object at the second point in time, wherein the
actual state of the object is determined based on one or more
video streams captured by the plurality of cameras at the
second point in time; and optimize the machine learning
model to learn a correlation between the actual state of the
object and the metadata associated with the initial state of
the object.

[0805] Inone example embodiment of a system: the future
state of the object comprises an indication of a future
location of the object at the second point in time; and the one
or more processing devices to identify the second camera for
capturing the object at the second point in time are further
to determine that the future location of the object is within
a camera view of the second camera.

[0806] Inoneexample embodiment of a system, the one or
more processing devices are further to: access the second
video stream captured by the second camera at the second
point in time; detect the object in the second video stream
based on the metadata associated with the initial state of the
object; and track the object in the first video stream and the
second video stream.

[0807] Inoneexample embodiment of a system, the one or
more processing devices are further to: determine that the
object cannot be identified based on the first video stream;
determine, based on the future state of the object, that the
object can be identified based on the second video stream
that is to be captured by the second camera at the second

Aug. 6, 2020

point in time; access the second video stream captured by the
second camera at the second point in time; and identify the
object based on the second video stream.

[0808] One or more embodiments may include at least one
machine accessible storage medium having instructions
stored thereon, wherein the instructions, when executed on
a machine, cause the machine to: obtain metadata associated
with an initial state of an object, wherein the object is
captured by a first camera of a plurality of cameras in a first
video stream at a first point in time, and wherein the
metadata is obtained based on the first video stream; predict,
based on the metadata, a future state of the object at a second
point in time; identify a second camera for capturing the
object at the second point in time, wherein the second
camera is identified from the plurality of cameras based on:
the future state of the object; and a plurality of camera views
of' the plurality of cameras; and configure the second camera
to capture the object in a second video stream at the second
point in time, wherein the second camera is configured to
capture the object based on the future state of the object.
[0809] In one example embodiment of a storage medium,
the instructions that cause the machine to predict, based on
the metadata, the future state of the object at the second point
in time further cause the machine to apply a machine
learning model to the metadata, wherein the machine learn-
ing model is trained to predict the future state of the object
based on the initial state of the object.

[0810] In one example embodiment of a storage medium,
the instructions further cause the machine to: determine an
actual state of the object at the second point in time, wherein
the actual state of the object is determined based on one or
more video streams captured by the plurality of cameras at
the second point in time; and optimize the machine learning
model to learn a correlation between the actual state of the
object and the metadata associated with the initial state of
the object.

[0811] In one example embodiment of a storage medium,
the instructions further cause the machine to: access the
second video stream captured by the second camera at the
second point in time; detect the object in the second video
stream based on the metadata associated with the initial state
of the object; and track the object in the first video stream
and the second video stream.

[0812] In one example embodiment of a storage medium,
the instructions further cause the machine to: determine that
the object cannot be identified based on the first video
stream; determine, based on the future state of the object,
that the object can be identified based on the second video
stream that is to be captured by the second camera at the
second point in time; access the second video stream cap-
tured by the second camera at the second point in time; and
identify the object based on the second video stream.
[0813] One or more embodiments may include a method,
comprising: obtaining metadata associated with an initial
state of an object, wherein the object is captured by a first
camera of a plurality of cameras in a first video stream at a
first point in time, and wherein the metadata is obtained
based on the first video stream; predicting, based on the
metadata, a future state of the object at a second point in
time; identifying a second camera for capturing the object at
the second point in time, wherein the second camera is
identified from the plurality of cameras based on: the future
state of the object; and a plurality of camera views of the
plurality of cameras; and configuring the second camera to

US 2020/0250003 Al

capture the object in a second video stream at the second
point in time, wherein the second camera is configured to
capture the object based on the future state of the object.
[0814] In one example embodiment of a method, predict-
ing, based on the metadata, the future state of the object at
the second point in time further comprises applying a
machine learning model to the metadata, wherein the
machine learning model is trained to predict the future state
of the object based on the initial state of the object.
[0815] One or more embodiments may include a system,
comprising: means for obtaining metadata associated with
an initial state of an object, wherein the object is captured by
a first camera of a plurality of cameras in a first video stream
at a first point in time, and wherein the metadata is obtained
based on the first video stream; means for predicting, based
on the metadata, a future state of the object at a second point
in time; means for identifying a second camera for capturing
the object at the second point in time, wherein the second
camera is identified from the plurality of cameras based on:
the future state of the object; and a plurality of camera views
of the plurality of cameras; and means for configuring the
second camera to capture the object in a second video stream
at the second point in time, wherein the second camera is
configured to capture the object based on the future state of
the object.

[0816] One or more embodiments may include an appa-
ratus, comprising: a memory to store sensor data captured by
one or more sensors associated with a first device; and a
processor comprising circuitry to: access the sensor data
captured by the one or more sensors associated with the first
device; determine that an incident occurred within a vicinity
of the first device; identify a first collection of sensor data
associated with the incident, wherein the first collection of
sensor data is identified from the sensor data captured by the
one or more sensors; preserve, on the memory, the first
collection of sensor data associated with the incident; and
notify one or more second devices of the incident, wherein
the one or more second devices are located within the
vicinity of the first device.

[0817] In one example embodiment of an apparatus, the
circuitry to determine that the incident occurred within the
vicinity of the first device is further to: analyze the sensor
data captured by the one or more sensors; identify an
anomaly associated with the sensor data; and detect the
incident based on the anomaly associated with the sensor
data.

[0818] In one example embodiment of an apparatus, the
circuitry is further to: receive a notification associated with
the incident over an information-centric network, wherein
the notification comprises a request for data associated with
the incident, and wherein the request for data comprises an
indication of a plurality of attributes associated with the
incident; and determine whether the sensor data captured by
the one or more sensors corresponds to the plurality of
attributes associated with the incident.

[0819] In one example embodiment of an apparatus, the
plurality of attributes associated with the incident comprises
a time and a location of the incident.

[0820] In one example embodiment of an apparatus, the
circuitry is further to generate an identifier for the incident,
wherein the identifier is generated based on one or more
attributes associated with the incident.

[0821] In one example embodiment of an apparatus, the
circuitry to notify the one or more second devices of the

Aug. 6, 2020

incident is further to: broadcast a notification associated with
the incident over an information-centric network, wherein
the notification comprises a request for data associated with
the incident, and wherein the notification is received by the
one or more second devices.

[0822] In one example embodiment of an apparatus, the
circuitry is further to: receive one or more second collections
of sensor data associated with the incident, wherein the one
or more second collections of sensor data are received from
the one or more second devices; and generate a consolidated
collection of sensor data associated with the incident,
wherein the consolidated collection of sensor data is gener-
ated from the first collection of sensor data and the one or
more second collections of sensor data.

[0823] In one example embodiment of an apparatus, the
circuitry is further to send the consolidated collection of
sensor data to an entity associated with the incident.
[0824] In one example embodiment of an apparatus, the
circuitry is further to generate a reconstructed representation
of'the incident based on the consolidated collection of sensor
data.

[0825] In one example embodiment of an apparatus, the
incident comprises an automobile accident, and wherein the
first device is associated with: a vehicle involved in the
automobile accident; or roadside infrastructure located near
the automobile accident.

[0826] In one example embodiment of an apparatus, the
first device is associated with a surveillance system, and
wherein the one or more sensors comprise one or more
cameras.

[0827] One or more embodiments may include a system,
comprising: a plurality of sensors to capture sensor data
associated with an operating environment of a first device;
a communication interface to communicate with one or
more second devices; and a processor to: determine that an
incident occurred within a vicinity of the first device;
identify a first collection of sensor data associated with the
incident, wherein the first collection of sensor data is iden-
tified from the sensor data captured by the plurality of
sensors; preserve the first collection of sensor data associ-
ated with the incident; and notify the one or more second
devices of the incident, wherein the one or more second
devices are located within the vicinity of the first device.
[0828] In one example embodiment of a system, the
processor to determine that the incident occurred within the
vicinity of the first device is further to detect the incident
based on an analysis of the sensor data captured by the
plurality of sensors.

[0829] In one example embodiment of a system, the
processor is further to: receive a notification associated with
the incident over an information-centric network, wherein
the notification comprises a request for data associated with
the incident, and wherein the request for data comprises an
indication of a plurality of attributes associated with the
incident; and determine whether the sensor data captured by
the plurality of sensors corresponds to the plurality of
attributes associated with the incident.

[0830] In one example embodiment of a system, the
processor to notify the one or more second devices of the
incident is further to: broadcast a notification associated with
the incident over an information-centric network, wherein
the notification comprises a request for data associated with
the incident, and wherein the notification is received by the
one or more second devices.

US 2020/0250003 Al

[0831] In one example embodiment of a system, the
processor is further to: receive one or more second collec-
tions of sensor data associated with the incident, wherein the
one or more second collections of sensor data are received
from the one or more second devices; and generate a
consolidated collection of sensor data associated with the
incident, wherein the consolidated collection of sensor data
is generated from the first collection of sensor data and the
one or more second collections of sensor data.

[0832] In one example embodiment of a system, the
processor is further to send the consolidated collection of
sensor data to an entity associated with the incident.
[0833] In one example embodiment of a system, the
processor is further to generate a reconstructed representa-
tion of the incident based on the consolidated collection of
sensor data.

[0834] One or more embodiments may include at least one
machine accessible storage medium having instructions
stored thereon, wherein the instructions, when executed on
a machine, cause the machine to: access sensor data captured
by one or more sensors associated with a first device; detect
an incident that occurs within a vicinity of the first device,
wherein the incident is detected based on an analysis of the
sensor data; identify a first collection of sensor data asso-
ciated with the incident, wherein the first collection of sensor
data is identified from the sensor data captured by the one or
more sensors; preserve the first collection of sensor data
associated with the incident; and notify one or more second
devices of the incident, wherein the one or more second
devices are located within the vicinity of the first device.
[0835] In one example embodiment of a storage medium,
the instructions further cause the machine to: receive a
notification associated with the incident over an informa-
tion-centric network, wherein the notification comprises a
request for data associated with the incident, and wherein the
request for data comprises an indication of a plurality of
attributes associated with the incident; and determine
whether the sensor data captured by the one or more sensors
corresponds to the plurality of attributes associated with the
incident.

[0836] In one example embodiment of a storage medium,
the instructions further cause the machine to: broadcast a
notification associated with the incident over an informa-
tion-centric network, wherein the notification comprises a
request for data associated with the incident, and wherein the
notification is received by the one or more second devices;
receive one or more second collections of sensor data
associated with the incident, wherein the one or more second
collections of sensor data are received from the one or more
second devices; generate a consolidated collection of sensor
data associated with the incident, wherein the consolidated
collection of sensor data is generated from the first collec-
tion of sensor data and the one or more second collections
of sensor data; and send the consolidated collection of
sensor data to an entity associated with the incident.
[0837] In one example embodiment of a storage medium,
the instructions further cause the machine to generate a
reconstructed representation of the incident based on the
consolidated collection of sensor data.

[0838] One or more embodiments may include a method,
comprising: accessing sensor data captured by one or more
sensors associated with a first device; detecting an incident
that occurs within a vicinity of the first device, wherein the
incident is detected based on an analysis of the sensor data;

Aug. 6, 2020

identifying a first collection of sensor data associated with
the incident, wherein the first collection of sensor data is
identified from the sensor data captured by the one or more
sensors; preserving the first collection of sensor data asso-
ciated with the incident; and notifying one or more second
devices of the incident, wherein the one or more second
devices are located within the vicinity of the first device.

[0839] In one example embodiment of a method, the
method further comprises: receiving a notification associ-
ated with the incident over an information-centric network,
wherein the notification comprises a request for data asso-
ciated with the incident, and wherein the request for data
comprises an indication of a plurality of attributes associated
with the incident; and determining whether the sensor data
captured by the one or more sensors corresponds to the
plurality of attributes associated with the incident.

[0840] In one example embodiment of a method, the
method further comprises: broadcasting a notification asso-
ciated with the incident over an information-centric net-
work, wherein the notification comprises a request for data
associated with the incident, and wherein the notification is
received by the one or more second devices; receiving one
or more second collections of sensor data associated with the
incident, wherein the one or more second collections of
sensor data are received from the one or more second
devices; generating a consolidated collection of sensor data
associated with the incident, wherein the consolidated col-
lection of sensor data is generated from the first collection of
sensor data and the one or more second collections of sensor
data; and sending the consolidated collection of sensor data
to an entity associated with the incident.

[0841] One or more embodiments may include an appa-
ratus, comprising: a communication interface to communi-
cate with a plurality of devices over a network; and a
processor to: receive compressed data from a first device of
the plurality of devices, wherein the compressed data is
associated with visual data captured by one or more sensors;
perform a current stage of processing on the compressed
data using a current convolutional neural network (CNN),
wherein the current stage of processing corresponds to one
of a plurality of processing stages associated with the visual
data, and wherein the current CNN corresponds to one of a
plurality of convolutional neural networks (CNNs) associ-
ated with the plurality of processing stages; obtain an output
associated with the current stage of processing, wherein the
output is obtained from the current CNN; determine, based
on the output associated with the current stage of processing,
whether processing associated with the visual data is com-
plete; and upon a determination that the processing associ-
ated with the visual data is complete, output a result asso-
ciated with the visual data.

[0842] In one example embodiment of an apparatus, the
processor is further to, upon a determination that the pro-
cessing associated with the visual data is not complete,
transmit the compressed data to a second device of the
plurality of devices, wherein the second device is to perform
a subsequent processing stage of the plurality of processing
stages.

[0843] In one example embodiment of an apparatus, the
plurality of CNNs comprise: a first convolutional neural
network (CNN) trained to process one or more first types of
compressed features; a second convolutional neural network
(CNN) trained to process one or more second types of

US 2020/0250003 Al

compressed features; and a third convolutional neural net-
work (CNN) trained to process uncompressed visual data.
[0844] In one example embodiment of an apparatus, the
current CNN is one of the first CNN, the second CNN, and
the third CNN.

[0845] In one example embodiment of an apparatus, the
one or more first types of compressed features comprises
one or more of the following types of compressed features:
motion vectors; prediction residuals; transform coefficients;
quantization parameters; or macroblock coding modes.
[0846] In one example embodiment of an apparatus, the
one or more second types of compressed features are dif-
ferent than the one or more first types of compressed
features.

[0847] In one example embodiment of an apparatus, the
one or more second types of compressed features and the
one or more first types of compressed features are generated
by different sources.

[0848] In one example embodiment of an apparatus, each
convolutional neural network (CNN) of the plurality of
CNNss is associated with a particular processing stage of the
plurality of processing stages.

[0849] In one example embodiment of an apparatus, each
processing stage of the plurality of processing stages is
performed by a particular device of the plurality of devices.
[0850] In one example embodiment of an apparatus, the
result associated with the visual data comprises a processing
decision.

[0851] One or more embodiments may include at least one
machine accessible storage medium having instructions
stored thereon, wherein the instructions, when executed on
a machine, cause the machine to: receive compressed data
from a first device of a plurality of devices, wherein the
compressed data is associated with visual data captured by
one or more sensors; perform a current stage of processing
on the compressed data using a current convolutional neural
network (CNN), wherein the current stage of processing
corresponds to one of a plurality of processing stages
associated with the visual data, and wherein the current
CNN corresponds to one of a plurality of convolutional
neural networks (CNNs) associated with the plurality of
processing stages; obtain an output associated with the
current stage of processing, wherein the output is obtained
from the current CNN; determine, based on the output
associated with the current stage of processing, whether
processing associated with the visual data is complete; upon
a determination that the processing associated with the
visual data is complete, output a result associated with the
visual data; and upon a determination that the processing
associated with the visual data is not complete, transmit the
compressed data to a second device of the plurality of
devices.

[0852] In one example embodiment of a storage medium,
the second device is to perform a subsequent processing
stage of the plurality of processing stages.

[0853] In one example embodiment of a storage medium:
the plurality of CNNs comprise: a first convolutional neural
network (CNN) trained to process one or more first types of
compressed features; a second convolutional neural network
(CNN) trained to process one or more second types of
compressed features, wherein the one or more second types
of compressed features are different from the one or more
first types of compressed features; and a third convolutional
neural network (CNN) trained to process uncompressed

Aug. 6, 2020

visual data; and the current CNN is one of the first CNN, the
second CNN, and the third CNN.

[0854] In one example embodiment of a storage medium,
the one or more first types of compressed features comprises
one or more of the following types of compressed features:
motion vectors; prediction residuals; transform coefficients;
quantization parameters; or macroblock coding modes.
[0855] In one example embodiment of a storage medium,
each convolutional neural network (CNN) of the plurality of
CNNs s is associated with a particular processing stage of the
plurality of processing stages.

[0856] One or more embodiments may include a method,
comprising: receiving compressed data from a first device of
a plurality of devices, wherein the compressed data is
associated with visual data captured by one or more sensors;
performing a current stage of processing on the compressed
data using a current convolutional neural network (CNN),
wherein the current stage of processing corresponds to one
of a plurality of processing stages associated with the visual
data, and wherein the current CNN corresponds to one of a
plurality of convolutional neural networks (CNNs) associ-
ated with the plurality of processing stages; obtaining an
output associated with the current stage of processing,
wherein the output is obtained from the current CNN;
determining, based on the output associated with the current
stage of processing, whether processing associated with the
visual data is complete; upon a determination that the
processing associated with the visual data is complete,
outputting a result associated with the visual data; and upon
a determination that the processing associated with the
visual data is not complete, transmitting the compressed data
to a second device of the plurality of devices.

[0857] In one example embodiment of a method, the
second device is to perform a subsequent processing stage of
the plurality of processing stages.

[0858] In one example embodiment of a method: the
plurality of CNNs comprise: a first convolutional neural
network (CNN) trained to process one or more first types of
compressed features; a second convolutional neural network
(CNN) trained to process one or more second types of
compressed features, wherein the one or more second types
of compressed features are different from the one or more
first types of compressed features; and a third convolutional
neural network (CNN) trained to process uncompressed
visual data; and the current CNN is one of the first CNN, the
second CNN, and the third CNN.

[0859] In one example embodiment of a method, the one
or more first types of compressed features comprises one or
more of the following types of compressed features: motion
vectors; prediction residuals; transform coefficients; quanti-
zation parameters; or macroblock coding modes.

[0860] One or more embodiments may include a system,
comprising: one or more sensors to capture visual data; and
a plurality of processing devices to: obtain compressed data
corresponding to the visual data captured by the one or more
sensors; extract a first set of compressed features from the
compressed data; process the first set of compressed features
using a first convolutional neural network (CNN), wherein
the first CNN is trained to process one or more first types of
compressed features; extract a second set of compressed
features from the compressed data; process the second set of
compressed features using a second convolutional neural
network (CNN), wherein the second CNN is trained to
process one or more second types of compressed features

US 2020/0250003 Al

different from the one or more first types of compressed
features; extract the visual data from the compressed data,
wherein the visual data is extracted by decompressing the
compressed data; and process the visual data using a third
convolutional neural network (CNN), wherein the third
CNN is trained to process raw visual data.

[0861] Inoneexample embodiment of a system, the one or
more first types of compressed features comprises one or
more of the following types of compressed features: motion
vectors; prediction residuals; transform coefficients; quanti-
zation parameters; or macroblock coding modes.

[0862] In one example embodiment of a system, the
plurality of processing devices comprises: one or more first
processing devices to process the first set of compressed
features using the first CNN; one or more second processing
devices to process the second set of compressed features
using the second CNN; and one or more third processing
devices to process the visual data using the third CNN.
[0863] Inoneexample embodiment of a system, the one or
more first processing devices comprises one or more edge
processing devices.

[0864] Inone example embodiment of a system, the one or
more second processing devices comprises one or more fog
processing devices.

[0865] Inone example embodiment of a system, the one or
more third processing devices comprises one or more cloud
processing devices.

[0866] Inoneexample embodiment of a system, the one or
more sensors comprise one or more vision sensors, wherein
the one or more vision sensors comprise at least one camera.
[0867] One or more embodiments may include an appa-
ratus, comprising: a memory to store visual data associated
with a visual representation captured by one or more sen-
sors; and a processor to: obtain the visual data associated
with the visual representation captured by the one or more
sensors, wherein the visual data comprises uncompressed
visual data or compressed visual data; process the visual
data using a convolutional neural network (CNN), wherein
the CNN comprises a plurality of layers, wherein the plu-
rality of layers comprises a plurality of filters, and wherein
the plurality of filters comprises: one or more pixel-domain
filters to perform processing associated with uncompressed
data; and one or more compressed-domain filters to perform
processing associated with compressed data; and classify the
visual data based on an output of the CNN.

[0868] In one example embodiment of an apparatus, the
apparatus further comprises a communication interface to
receive the visual data from one or more devices over a
network, wherein the one or more devices are associated
with the one or more sensors.

[0869] In one example embodiment of an apparatus: the
CNN is trained to rely on processing associated with the one
or more pixel-domain filters when the visual data is uncom-
pressed; and the CNN is trained to rely on processing
associated with the one or more compressed-domain filters
when the visual data is compressed.

[0870] In one example embodiment of an apparatus, the
one or more compressed-domain filters are further to per-
form processing associated with noncontiguous elements of
the visual data, wherein there is a correlation among the
noncontiguous elements when the visual data is compressed.
[0871] In one example embodiment of an apparatus, the
one or more compressed-domain filters comprise one or
more butterfly filters.

Aug. 6, 2020

[0872] In one example embodiment of an apparatus, each
butterfly filter is to perform a partial inverse transform
associated with the visual data.

[0873] In one example embodiment of an apparatus, each
butterfly filter is to compute a sum and a difference for a
plurality of pairs of elements within the visual data.
[0874] In one example embodiment of an apparatus, each
pair of elements is positioned at locations within the visual
data that are a particular distance apart.

[0875] In one example embodiment of an apparatus, the
one or more butterfly filters comprise: a horizontal butterfly
filter, wherein the plurality of pairs of elements processed by
the horizontal butterfly filter are positioned at different
horizontal locations within the visual data; and a vertical
butterfly filter, wherein the plurality of pairs of elements
processed by the vertical butterfly filter are positioned at
different vertical locations within the visual data.

[0876] In one example embodiment of an apparatus: the
one or more compressed-domain filters comprise one or
more three-dimensional (3D) convolution filters to perform
processing associated with three-dimensional (3D) visual
data; the 3D visual data is generated based on a three-
dimensional (3D) transformation of the visual data; and the
3D transformation rearranges the visual data into three
dimensions such that there is a correlation among one or
more adjacent elements within a particular dimension when
the visual data used for the 3D transformation is com-
pressed.

[0877] In one example embodiment of an apparatus, the
processor is further to: generate the 3D visual data, wherein
the 3D visual data is generated by performing the 3D
transformation on the visual data; and provide the 3D visual
data as input to the one or more 3D convolution filters.
[0878] In one example embodiment of an apparatus, the
processor to generate the 3D visual data is further to:
partition the visual data into a plurality of blocks, wherein
each block comprises a plurality of elements; arrange the
plurality of blocks along a first dimension and a second
dimension of the 3D visual data; and arrange the plurality of
elements associated with each block along a third dimension
of the 3D visual data.

[0879] In one example embodiment of an apparatus, the
plurality of elements associated with each block comprises
a plurality of transform coefficients when the visual data is
compressed.

[0880] In one example embodiment of an apparatus, the
plurality of transform coefficients comprises a plurality of
discrete cosine transform (DCT) coefficients.

[0881] One or more embodiments may include a system,
comprising: one or more sensors to capture a visual repre-
sentation of an environment; and one or more processing
devices to: obtain visual data associated with the visual
representation captured by the one or more sensors, wherein
the visual data comprises uncompressed visual data or
compressed visual data; process the visual data using a
convolutional neural network (CNN), wherein the CNN
comprises a plurality of layers, the plurality of layers com-
prises a plurality of filters, and the plurality of filters
comprises one or more pixel-domain filters and one or more
compressed-domain filters, wherein: the one or more pixel-
domain filters are for performing processing associated with
uncompressed data; the one or more compressed-domain
filters are for performing processing associated with com-
pressed data; and the CNN is trained to rely on processing

US 2020/0250003 Al

associated with the one or more pixel-domain filters when
the visual data is uncompressed, and the CNN is trained to
rely on processing associated with the one or more com-
pressed-domain filters when the visual data is compressed;
and classify the visual data based on an output of the CNN.

[0882] Inoneexample embodiment of a system, the one or
more compressed-domain filters are further to perform pro-
cessing associated with noncontiguous elements of the
visual data, wherein there is a correlation among the non-
contiguous elements when the visual data is compressed.

[0883] Inoneexample embodiment of a system, the one or
more compressed-domain filters comprise one or more but-
terfly filters, wherein each butterfly filter is to perform a
partial inverse transform associated with the visual data.

[0884] In one example embodiment of a system, each
butterfly filter is further to compute a sum and a difference
for a plurality of pairs of elements within the visual data,
wherein each pair of elements is positioned at locations
within the visual data that are a particular distance apart.

[0885] Inone example embodiment of a system: the one or
more compressed-domain filters comprise one or more
three-dimensional (3D) convolution filters to perform pro-
cessing associated with three-dimensional (3D) visual data,
wherein the 3D visual data is generated based on a three-
dimensional (3D) transformation of the visual data, wherein
the 3D transformation rearranges the visual data into three
dimensions such that there is a correlation among one or
more adjacent elements within a particular dimension when
the visual data used for the 3D transformation is com-
pressed; and the one or more processing devices are further
to: generate the 3D visual data, wherein the 3D visual data
is generated by performing the 3D transformation on the
visual data; and provide the 3D visual data as input to the
one or more 3D convolution filters.

[0886] Inoneexample embodiment of a system, the one or
more processing devices to generate the 3D visual data are
further to: partition the visual data into a plurality of blocks,
wherein each block comprises a plurality of elements, and
wherein the plurality of elements comprises a plurality of
discrete cosine transform (DCT) coeflicients when the visual
data is compressed; arrange the plurality of blocks along a
first dimension and a second dimension of the 3D visual
data; and arrange the plurality of elements associated with
each block along a third dimension of the 3D visual data.

[0887] One or more embodiments may include at least one
machine accessible storage medium having instructions
stored thereon, wherein the instructions, when executed on
a machine, cause the machine to: obtain visual data associ-
ated with a visual representation captured by one or more
sensors, wherein the visual data comprises uncompressed
visual data or compressed visual data; process the visual
data using a convolutional neural network (CNN), wherein
the CNN comprises a plurality of layers, the plurality of
layers comprises a plurality of filters, and the plurality of
filters comprises one or more pixel-domain filters and one or
more compressed-domain filters, wherein: the one or more
pixel-domain filters are for performing processing associ-
ated with uncompressed data; the one or more compressed-
domain filters are for performing processing associated with
compressed data; and the CNN is trained to rely on pro-
cessing associated with the one or more pixel-domain filters
when the visual data is uncompressed, and the CNN is
trained to rely on processing associated with the one or more

Aug. 6, 2020

compressed-domain filters when the visual data is com-
pressed; and classify the visual data based on an output of
the CNN.

[0888] In one example embodiment of a storage medium,
the one or more compressed-domain filters comprise one or
more butterfly filters to perform one or more partial inverse
transforms associated with the visual data.

[0889] In one example embodiment of a storage medium,
the one or more compressed-domain filters comprise one or
more three-dimensional (3D) convolution filters to perform
processing associated with three-dimensional (3D) visual
data, wherein the 3D visual data is generated based on a
three-dimensional (3D) transformation of the visual data,
wherein the 3D transformation rearranges the visual data
into three dimensions such that there is a correlation among
one or more adjacent elements within a particular dimension
when the visual data used for the 3D transformation is
compressed.

[0890] One or more embodiments may include a method,
comprising: obtaining visual data associated with a visual
representation captured by one or more sensors, wherein the
visual data comprises uncompressed visual data or com-
pressed visual data; processing the visual data using a
convolutional neural network (CNN), wherein the CNN
comprises a plurality of layers, the plurality of layers com-
prises a plurality of filters, and the plurality of filters
comprises one or more pixel-domain filters and one or more
compressed-domain filters, wherein: the one or more pixel-
domain filters are for performing processing associated with
uncompressed data; the one or more compressed-domain
filters are for performing processing associated with com-
pressed data; and the CNN is trained to rely on processing
associated with the one or more pixel-domain filters when
the visual data is uncompressed, and the CNN is trained to
rely on processing associated with the one or more com-
pressed-domain filters when the visual data is compressed;
and classifying the visual data based on an output of the
CNN.

[0891] In one example embodiment of a method, the one
or more compressed-domain filters comprise: one or more
butterfly filters to perform one or more partial inverse
transforms associated with the visual data; or one or more
three-dimensional (3D) convolution filters to perform pro-
cessing associated with three-dimensional (3D) visual data,
wherein the 3D visual data is generated based on a three-
dimensional (3D) transformation of the visual data, wherein
the 3D transformation is to rearrange the visual data into
three dimensions such that there is a correlation among one
or more adjacent elements within a particular dimension
when the visual data used for the 3D transformation is
compressed.

[0892] One or more embodiments may include an appa-
ratus, comprising: a storage device to store a plurality of
compressed images, wherein the plurality of compressed
images comprises one or more compressed master images
and one or more compressed slave images, wherein the one
or more compressed slave images are compressed with
reference to the one or more compressed master images; and
a processor to: identify an uncompressed image; access
context information associated with a plurality of images,
wherein the plurality of images comprises the uncompressed
image and the one or more compressed master images;
determine, based at least in part on the context information,
whether the uncompressed image is associated with a cor-

US 2020/0250003 Al

responding master image from the one or more compressed
master images; upon a determination that the uncompressed
image is associated with the corresponding master image,
compress the uncompressed image into a corresponding
compressed image with reference to the corresponding mas-
ter image; upon a determination that the uncompressed
image is not associated with the corresponding master
image, compress the uncompressed image into the corre-
sponding compressed image without reference to the one or
more compressed master images; and store the correspond-
ing compressed image on the storage device.

[0893] In one example embodiment of an apparatus, the
processor to determine, based at least in part on the context
information, whether the uncompressed image is associated
with the corresponding master image from the one or more
compressed master images is further to: identify a correla-
tion between the context information associated with each of
the uncompressed image and the corresponding master
image; identify a correlation between a plurality of image
features associated with each of the uncompressed image
and the corresponding master image; and determine, based
at least in part on based on the correlation between the
context information and the correlation between the plurality
of'image features, that the uncompressed image is associated
with the corresponding master image.

[0894] In one example embodiment of an apparatus, the
context information comprises the following for at least one
image of the plurality of images: a time; and a location.
[0895] In one example embodiment of an apparatus, the
context information further comprises the following for the
at least one image of the plurality of images: image pixel
data; or extracted image feature data.

[0896] In one example embodiment of an apparatus, the
context information further comprises a mobile device ori-
entation for the at least one image of the plurality of images.
[0897] In one example embodiment of an apparatus, the
processor to identify the correlation between the context
information associated with each of the uncompressed
image and the corresponding master image is further to:
determine, based on the context information, that the
uncompressed image and the corresponding master image
were captured at a similar time and in a similar location.
[0898] In one example embodiment of an apparatus, the
processor is further to: upon compressing the uncompressed
image into the corresponding compressed image with ref-
erence to the corresponding master image, designate the
corresponding compressed image with a slave image desig-
nation; and upon compressing the uncompressed image into
the corresponding compressed image without reference to
the one or more compressed master images, designate the
corresponding compressed image with a master image des-
ignation.

[0899] In one example embodiment of an apparatus, the
processor is further to: determine that the uncompressed
image is not associated with the corresponding master image
from the one or more compressed master images; compress
the uncompressed image into the corresponding compressed
image without reference to the one or more compressed
master images; and designate the corresponding compressed
image with the master image designation.

[0900] In one example embodiment of an apparatus, the
processor is further to: identify a second uncompressed
image; determine that the second uncompressed image is
associated with the corresponding compressed image with

Aug. 6, 2020

the master image designation; and compress the second
uncompressed image with reference to the corresponding
compressed image with the master image designation.
[0901] In one example embodiment of an apparatus: the
processor to compress the uncompressed image into the
corresponding compressed image with reference to the cor-
responding master image is further to compress the uncom-
pressed image using inter-frame encoding; and the processor
to compress the uncompressed image into the corresponding
compressed image without reference to the one or more
compressed master images is further to compress the
uncompressed image using intra-frame encoding.

[0902] In one example embodiment of an apparatus, the
processor to compress the uncompressed image using inter-
frame encoding is further to compress the uncompressed
image using a video codec.

[0903] In one example embodiment of an apparatus, the
apparatus further comprises a communication interface to
receive the uncompressed image and the context information
associated with the uncompressed image from a mobile
device.

[0904] In one example embodiment of an apparatus, the
apparatus is a mobile device, and the mobile device com-
prises: the storage device; the processor; and a camera to
capture the uncompressed image.

[0905] In one example embodiment of an apparatus, the
mobile device further comprises one or more sensors to
capture the context information associated with the uncom-
pressed image, wherein the one or more sensors comprise at
least one of: a GPS receiver; a gyroscope; or an accelerom-
eter.

[0906] One or more embodiments may include a system,
comprising: a storage device to store a plurality of com-
pressed images, wherein the plurality of compressed images
comprises one or more compressed master images and one
or more compressed slave images, wherein the one or more
compressed slave images are compressed with reference to
the one or more compressed master images; a communica-
tions interface to receive an uncompressed image from a
mobile device; and a processor to: identify the uncom-
pressed image received from the mobile device; access
context information associated with a plurality of images,
wherein the plurality of images comprises the uncompressed
image and the one or more compressed master images;
determine, based at least in part on the context information,
whether the uncompressed image is associated with a cor-
responding master image from the one or more compressed
master images; upon a determination that the uncompressed
image is associated with the corresponding master image,
compress the uncompressed image into a corresponding
compressed image with reference to the corresponding mas-
ter image; upon a determination that the uncompressed
image is not associated with the corresponding master
image, compress the uncompressed image into the corre-
sponding compressed image without reference to the one or
more compressed master images; and store the correspond-
ing compressed image on the storage device.

[0907] In one example embodiment of a system, the
processor to determine, based at least in part on the context
information, whether the uncompressed image is associated
with the corresponding master image from the one or more
compressed master images is further to: identify a correla-
tion between the context information associated with each of
the uncompressed image and the corresponding master

US 2020/0250003 Al

image; identify a correlation between a plurality of image
features associated with each of the uncompressed image
and the corresponding master image; and determine, based
at least in part on based on the correlation between the
context information and the correlation between the plurality
of'image features, that the uncompressed image is associated
with the corresponding master image.

[0908] In one example embodiment of a system, the
processor to identify the correlation between the context
information associated with each of the uncompressed
image and the corresponding master image is further to:
determine, based on the context information, that the
uncompressed image and the corresponding master image
were captured at a similar time and in a similar location.
[0909] In one example embodiment of a system, the
processor is further to: upon compressing the uncompressed
image into the corresponding compressed image with ref-
erence to the corresponding master image, designate the
corresponding compressed image with a slave image desig-
nation; and upon compressing the uncompressed image into
the corresponding compressed image without reference to
the one or more compressed master images, designate the
corresponding compressed image with a master image des-
ignation.

[0910] In one example embodiment of a system, the
processor is further to: determine that the uncompressed
image is not associated with the corresponding master image
from the one or more compressed master images; compress
the uncompressed image into the corresponding compressed
image without reference to the one or more compressed
master images; designate the corresponding compressed
image with the master image designation; identify a second
uncompressed image received from the mobile device;
determine that the second uncompressed image is associated
with the corresponding compressed image with the master
image designation; and compress the second uncompressed
image with reference to the corresponding compressed
image with the master image designation.

[0911] In one example embodiment of a system: the
processor to compress the uncompressed image into the
corresponding compressed image with reference to the cor-
responding master image is further to compress the uncom-
pressed image using inter-frame encoding; and the processor
to compress the uncompressed image into the corresponding
compressed image without reference to the one or more
compressed master images is further to compress the
uncompressed image using intra-frame encoding.

[0912] In one example embodiment of a system, the
processor to compress the uncompressed image using inter-
frame encoding is further to compress the uncompressed
image using a video codec.

[0913] One or more embodiments may include at least one
machine accessible storage medium having instructions
stored thereon, wherein the instructions, when executed on
a machine, cause the machine to: identify an uncompressed
image captured by a mobile device; access context infor-
mation associated with a plurality of images, wherein the
plurality of images comprises the uncompressed image and
a plurality of compressed images, wherein the plurality of
compressed images comprises one or more compressed
master images and one or more compressed slave images,
wherein the one or more compressed slave images are
compressed with reference to the one or more compressed
master images; determine, based at least in part on the

Aug. 6, 2020

context information, whether the uncompressed image is
associated with a corresponding master image from the one
or more compressed master images; upon a determination
that the uncompressed image is associated with the corre-
sponding master image, compress the uncompressed image
into a corresponding compressed image with reference to the
corresponding master image using inter-frame encoding;
upon a determination that the uncompressed image is not
associated with the corresponding master image, compress
the uncompressed image into the corresponding compressed
image without reference to the one or more compressed
master images using intra-frame encoding; and store the
corresponding compressed image on a storage device.

[0914] In one example embodiment of a storage medium,
the instructions that cause the machine to determine, based
at least in part on the context information, whether the
uncompressed image is associated with the corresponding
master image from the one or more compressed master
images further cause the machine to: identify a correlation
between the context information associated with each of the
uncompressed image and the corresponding master image;
identify a correlation between a plurality of image features
associated with each of the uncompressed image and the
corresponding master image; and determine, based at least
in part on based on the correlation between the context
information and the correlation between the plurality of
image features, that the uncompressed image is associated
with the corresponding master image.

[0915] In one example embodiment of a storage medium,
the instructions further cause the machine to: determine that
the uncompressed image is not associated with the corre-
sponding master image from the one or more compressed
master images; compress the uncompressed image into the
corresponding compressed image without reference to the
one or more compressed master images using inter-frame
encoding; designate the corresponding compressed image
with a master image designation; identify a second uncom-
pressed image captured by the mobile device; determine that
the second uncompressed image is associated with the
corresponding compressed image with the master image
designation; and compress the second uncompressed image
with reference to the corresponding compressed image with
the master image designation.

[0916] One or more embodiments may include a method,
comprising: identifying an uncompressed image captured by
a mobile device; accessing context information associated
with a plurality of images, wherein the plurality of images
comprises the uncompressed image and a plurality of com-
pressed images, wherein the plurality of compressed images
comprises one or more compressed master images and one
or more compressed slave images, wherein the one or more
compressed slave images are compressed with reference to
the one or more compressed master images; determining,
based at least in part on the context information, whether the
uncompressed image is associated with a corresponding
master image from the one or more compressed master
images; upon a determination that the uncompressed image
is associated with the corresponding master image, com-
pressing the uncompressed image into a corresponding
compressed image with reference to the corresponding mas-
ter image using inter-frame encoding; upon a determination
that the uncompressed image is not associated with the
corresponding master image, compressing the uncom-
pressed image into the corresponding compressed image

US 2020/0250003 Al

without reference to the one or more compressed master
images using intra-frame encoding; and storing the corre-
sponding compressed image on a storage device.

[0917] In one example embodiment of a method, the
method further comprises: determining that the uncom-
pressed image is not associated with the corresponding
master image from the one or more compressed master
images; compressing the uncompressed image into the cor-
responding compressed image without reference to the one
or more compressed master images using inter-frame encod-
ing; designating the corresponding compressed image with
a master image designation; identifying a second uncom-
pressed image captured by the mobile device; determining
that the second uncompressed image is associated with the
corresponding compressed image with the master image
designation; and compressing the second uncompressed
image with reference to the corresponding compressed
image with the master image designation.

[0918] One or more embodiment may include an appara-
tus, comprising: a communication interface to communicate
with one or more devices; a memory to store a device
identity blockchain; and a processor to: receive a device
identity transaction from a first device, wherein the device
identity transaction comprises a device identity; compute a
hash of the device identity; determine, based on the hash,
whether the device identity is registered in the device
identity blockchain; and upon a determination that the
device identity is not registered in the device identity
blockchain, add the device identity transaction to the device
identity blockchain.

[0919] In one example embodiment of an apparatus, the
processor is further to, upon a determination that the device
identity is registered in the device identity blockchain,
transmit an error to the first device, wherein the error
indicates that the device identity is already registered.
[0920] In one example embodiment of an apparatus, the
processor to determine, based on the hash, whether the
device identity is registered in the device identity blockchain
is further to: search a hash tree associated with the device
identity blockchain to determine whether the device identity
blockchain contains an existing transaction associated with
the hash.

[0921] In one example embodiment of an apparatus, the
processor to add the device identity transaction to the device
identity blockchain is further to: add the device identity
transaction to a current block associated with the device
identity blockchain; and write the current block to the device
identity blockchain.

[0922] In one example embodiment of an apparatus, the
processor is further to: receive an identity lookup request
from a first network, wherein the identity lookup request is
associated with an attempt to onboard the first device onto
the first network, and wherein the identity lookup request
comprises the device identity; search the device identity
blockchain to identify the device identity transaction asso-
ciated with the device identity; and transmit the device
identity transaction to the first network, wherein the first
network is to verify, based on the device identity transaction,
that the device identity is registered to the first device.
[0923] In one example embodiment of an apparatus, the
processor is further to: receive a second identity lookup
request from a second network, wherein the second identity
lookup request is associated with an attempt to onboard the
first device onto the second network, and wherein the second

Aug. 6, 2020

identity lookup request comprises the device identity; search
the device identity blockchain to identify the device identity
transaction associated with the device identity; and transmit
the device identity transaction to the second network,
wherein the second network is to verify, based on the device
identity transaction, that the device identity is registered to
the first device.

[0924] In one example embodiment of an apparatus, the
first device comprises an Internet-of-Things (IoT) device
that is capable of participating in multiple Internet-of-Things
(IoT) networks.

[0925] In one example embodiment of an apparatus, the
processor is further to: receive a second device identity
transaction from a second device, wherein the second device
identity transaction comprises the device identity; compute
a second hash of the device identity; determine, based on the
second hash, that the device identity is registered in the
device identity blockchain; and transmit an error to the
second device, wherein the error indicates that the device
identity is already registered.

[0926] In one example embodiment of an apparatus: the
memory is further to store an algorithm blockchain; and the
processor is further to: receive an algorithm registration
transaction from a first network, wherein the algorithm
registration transaction comprises an algorithm identifier
and a representation of an algorithm; perform one or more
tests to validate the algorithm; and add the algorithm reg-
istration transaction to the algorithm blockchain.

[0927] In one example embodiment of an apparatus, the
processor is further to notify a second network that the
algorithm is available.

[0928] In one example embodiment of an apparatus, the
processor is further to: receive an algorithm lookup request
from a second network, wherein the algorithm lookup
request comprises the algorithm identifier; search the algo-
rithm blockchain to identify the algorithm registration trans-
action associated with the algorithm identifier; and transmit
the algorithm registration transaction to the second network,
wherein the second network is to determine, based on the
algorithm registration transaction, whether to use the algo-
rithm.

[0929] In one example embodiment of an apparatus, the
processor to perform the one or more tests to validate the
algorithm is further to: analyze the representation of the
algorithm to identify one or more behavioral properties; or
execute the representation of the algorithm in a sandbox.
[0930] One or more embodiment may include a system,
comprising: a plurality of devices capable of communicating
over a plurality of networks; and one or more blockchain
devices to: receive a device identity transaction from a first
device of the plurality of devices, wherein the device iden-
tity transaction comprises a device identity; compute a hash
of'the device identity; determine, based on the hash, whether
the device identity is registered in a device identity block-
chain; and upon a determination that the device identity is
not registered in the device identity blockchain, add the
device identity transaction to the device identity blockchain.
[0931] Inone example embodiment of a system, the one or
more blockchain devices to determine, based on the hash,
whether the device identity is registered in the device
identity blockchain are further to: search a hash tree asso-
ciated with the device identity blockchain to determine
whether the device identity blockchain contains an existing
transaction associated with the hash.

US 2020/0250003 Al

[0932] Inone example embodiment of a system, the one or
more blockchain devices are further to: receive an identity
lookup request from a first network of the plurality of
networks, wherein the identity lookup request is associated
with an attempt to onboard the first device onto the first
network, and wherein the identity lookup request comprises
the device identity; search the device identity blockchain to
identify the device identity transaction associated with the
device identity; and transmit the device identity transaction
to the first network, wherein the first network is to verify,
based on the device identity transaction, that the device
identity is registered to the first device.

[0933] Inoneexample embodiment of a system, the one or
more blockchain devices are further to: receive a second
identity lookup request from a second network of the
plurality of networks, wherein the second identity lookup
request is associated with an attempt to onboard the first
device onto the second network, and wherein the second
identity lookup request comprises the device identity; search
the device identity blockchain to identify the device identity
transaction associated with the device identity; and transmit
the device identity transaction to the second network,
wherein the second network is to verify, based on the device
identity transaction, that the device identity is registered to
the first device.

[0934] In one example embodiment of a system, the first
device comprises an Internet-of-Things (IoT) device that is
capable of participating in multiple Internet-of-Things (IoT)
networks.

[0935] Inone example embodiment of a system, the one or
more blockchain devices are further to: receive a second
device identity transaction from a second device of the
plurality of devices, wherein the second device identity
transaction comprises the device identity; compute a second
hash of the device identity; determine, based on the second
hash, that the device identity is registered in the device
identity blockchain; and transmit an error to the second
device, wherein the error indicates that the device identity is
already registered.

[0936] In one example embodiment of a system: the
memory is further to store an algorithm blockchain; and the
one or more blockchain devices are further to: receive an
algorithm registration transaction from a first network of the
plurality of networks, wherein the algorithm registration
transaction comprises an algorithm identifier and a repre-
sentation of an algorithm; perform one or more tests to
validate the algorithm; and add the algorithm registration
transaction to the algorithm blockchain.

[0937] Inone example embodiment of a system, the one or
more blockchain devices are further to: receive an algorithm
lookup request from a second network of the plurality of
networks, wherein the algorithm lookup request comprises
the algorithm identifier; search the algorithm blockchain to
identify the algorithm registration transaction associated
with the algorithm identifier; and transmit the algorithm
registration transaction to the second network, wherein the
second network is to determine, based on the algorithm
registration transaction, whether to use the algorithm.
[0938] One or more embodiment may include at least one
machine accessible storage medium having instructions
stored thereon, wherein the instructions, when executed on
a machine, cause the machine to: receive a device identity
transaction from a first device, wherein the device identity
transaction comprises a device identity; compute a hash of

Aug. 6, 2020

the device identity; determine, based on the hash, whether
the device identity is registered in a device identity block-
chain; and upon a determination that the device identity is
not registered in the device identity blockchain, add the
device identity transaction to the device identity blockchain.
[0939] In one example embodiment of a storage medium,
the instructions further cause the machine to: receive a
second device identity transaction from a second device,
wherein the second device identity transaction comprises the
device identity; compute a second hash of the device iden-
tity; determine, based on the second hash, that the device
identity is registered in the device identity blockchain; and
transmit an error to the second device, wherein the error
indicates that the device identity is already registered.
[0940] In one example embodiment of a storage medium,
the instructions further cause the machine to: receive an
algorithm registration transaction from a first network,
wherein the algorithm registration transaction comprises an
algorithm identifier and a representation of an algorithm;
perform one or more tests to validate the algorithm; and add
the algorithm registration transaction to an algorithm block-
chain.

[0941] One or more embodiment may include a method,
comprising: receiving a device identity transaction from a
first device, wherein the device identity transaction com-
prises a device identity; computing a hash of the device
identity; determining, based on the hash, whether the device
identity is registered in a device identity blockchain; and
upon a determination that the device identity is not regis-
tered in the device identity blockchain, adding the device
identity transaction to the device identity blockchain.
[0942] In one example embodiment of a method, the
method further comprises: receiving an algorithm registra-
tion transaction from a first network, wherein the algorithm
registration transaction comprises an algorithm identifier
and a representation of an algorithm; performing one or
more tests to validate the algorithm; and adding the algo-
rithm registration transaction to an algorithm blockchain.

1.-8. (canceled)

9. A processing device for scheduling workloads of a
visual computing application on a distributed computing
infrastructure, comprising:

interface circuitry to communicate over a network; and

processing circuitry to:

receive, via the interface circuitry, a request to perform
a workload for the visual computing application,
wherein the workload is to be scheduled across a set
of compute resources on a plurality of devices within
the distributed computing infrastructure;

receive, via the interface circuitry, resource telemetry
data indicating an available resource capacity for the
set of compute resources;

identify a collection of vision capability implementa-
tions available for performing the workload, wherein
the vision capability implementations are for per-
forming one or more vision capabilities of the work-
load on a plurality of resource types corresponding to
the set of compute resources;

determine, based on the resource telemetry data and the
collection of vision capability implementations, a
workload schedule for the workload, wherein the
workload schedule comprises a mapping of the

US 2020/0250003 Al

workload onto the set of compute resources on the
plurality of devices within the distributed computing
infrastructure; and

send, via the interface circuitry, the workload schedule
to the plurality of devices, wherein the workload is
to be performed by the set of compute resources on
the plurality of devices based on the workload sched-
ule.

10. The processing device of claim 9, wherein the pro-
cessing circuitry to identify the collection of vision capa-
bility implementations available for performing the work-
load is further to:

receive, via the interface circuitry, vision capability data
from a vision capability repository, wherein the vision
capability repository stores a plurality of vision capa-
bility implementations for a plurality of vision capa-
bilities, and wherein the vision capability data indicates
the collection of vision capability implementations that
are available for performing the workload.

11. The processing device of claim 9, wherein the one or

more vision capabilities of the workload comprise:

a facial recognition capability;

an object detection capability; or

a gesture recognition capability.

12. The processing device of claim 9, wherein:

the one or more vision capabilities of the workload
comprise a first vision capability and a second vision
capability; and

the collection of vision capability implementations com-
prises:

a first set of vision capability implementations for
performing the first vision capability on the plurality
of resource types; and

a second set of vision capability implementations for
performing the second vision capability on the plu-
rality of resource types.

13. The processing device of claim 12, wherein the first
set of vision capability implementations comprises:

a first set of software implementations of the first vision
capability for a first resource type from the plurality of
resource types; and

a second set of software implementations of the first
vision capability for a second resource type from the
plurality of resource types.

14. The processing device of claim 9, wherein the plu-
rality of resource types comprises central processing units,
graphics processing units, and special-purpose accelerators.

15. The processing device of claim 14, wherein the
special-purpose accelerators comprise hardware video cod-
ers and neural network processors.

16. The processing device of claim 14, wherein the
special-purpose accelerators comprise field-programmable
gate array (FPGA) accelerators and application-specific
integrated circuit (ASIC) accelerators.

17. At least one non-transitory machine-readable storage
medium having instructions stored thereon, wherein the
instructions, when deployed and executed on processing
circuitry, cause the processing circuitry to:

receive, via interface circuitry, a request to perform a
workload for a visual computing application, wherein
the workload is to be scheduled across a set of compute
resources on a plurality of devices within a distributed
computing infrastructure;

Aug. 6, 2020

receive, via the interface circuitry, resource telemetry data
indicating an available resource capacity for the set of
compute resources;

identify a collection of vision capability implementations
available for performing the workload, wherein the
vision capability implementations are for performing
one or more vision capabilities of the workload on a
plurality of resource types corresponding to the set of
compute resources;

determine, based on the resource telemetry data and the
collection of vision capability implementations, a
workload schedule for the workload, wherein the work-
load schedule comprises a mapping of the workload
onto the set of compute resources on the plurality of
devices within the distributed computing infrastructure;
and

send, via the interface circuitry, the workload schedule to
the plurality of devices, wherein the workload is to be
performed by the set of compute resources on the
plurality of devices based on the workload schedule.

18. The storage medium of claim 17, wherein the instruc-
tions that cause the processing circuitry to identify the
collection of vision capability implementations available for
performing the workload further cause the processing cir-
cuitry to:

receive, via the interface circuitry, vision capability data
from a vision capability repository, wherein the vision
capability repository stores a plurality of vision capa-
bility implementations for a plurality of vision capa-
bilities, and wherein the vision capability data indicates
the collection of vision capability implementations that
are available for performing the workload.

19. The storage medium of claim 17, wherein the one or

more vision capabilities of the workload comprise:

a facial recognition capability;

an object detection capability; or

a gesture recognition capability.

20. The storage medium of claim 17, wherein:

the one or more vision capabilities of the workload
comprise a first vision capability and a second vision
capability; and

the collection of vision capability implementations com-
prises:

a first set of vision capability implementations for
performing the first vision capability on the plurality
of resource types; and

a second set of vision capability implementations for
performing the second vision capability on the plu-
rality of resource types.

21. The storage medium of claim 20, wherein the first set
of vision capability implementations comprises:

a first set of software implementations of the first vision
capability for a first resource type from the plurality of
resource types; and

a second set of software implementations of the first
vision capability for a second resource type from the
plurality of resource types.

22. The storage medium of claim 17, wherein the plurality
of resource types comprises central processing units, graph-
ics processing units, and special-purpose accelerators.

23. The storage medium of claim 22, wherein the special-
purpose accelerators comprise hardware video coders and
neural network processors.

US 2020/0250003 Al
74

24. A method for scheduling workloads of a visual com-
puting application on a distributed computing infrastructure,
comprising:

receiving, via interface circuitry, a request to perform a

workload for the visual computing application, wherein
the workload is to be scheduled across a set of compute
resources on a plurality of devices within the distrib-
uted computing infrastructure;

receiving, via the interface circuitry, resource telemetry

data indicating an available resource capacity for the
set of compute resources;

identifying a collection of vision capability implementa-

tions available for performing the workload, wherein
the vision capability implementations are for perform-
ing one or more vision capabilities of the workload on
a plurality of resource types corresponding to the set of
compute resources;

determining, based on the resource telemetry data and the

collection of vision capability implementations, a
workload schedule for the workload, wherein the work-
load schedule comprises a mapping of the workload
onto the set of compute resources on the plurality of
devices within the distributed computing infrastructure;
and

sending, via the interface circuitry, the workload schedule

to the plurality of devices, wherein the workload is to
be performed by the set of compute resources on the
plurality of devices based on the workload schedule.

25. The method of claim 24, wherein identifying the
collection of vision capability implementations available for
performing the workload comprises:

receiving, via the interface circuitry, vision capability data

from a vision capability repository, wherein the vision

Aug. 6, 2020

capability repository stores a plurality of vision capa-

bility implementations for a plurality of vision capa-

bilities, and wherein the vision capability data indicates
the collection of vision capability implementations that
are available for performing the workload.

26. The method of claim 24, wherein the one or more

vision capabilities of the workload comprise:

a facial recognition capability;

an object detection capability; or

a gesture recognition capability.

27. The method of claim 24, wherein:

the one or more vision capabilities of the workload
comprise a first vision capability and a second vision
capability; and

the collection of vision capability implementations com-
prises:

a first set of vision capability implementations for
performing the first vision capability on the plurality
of resource types; and

a second set of vision capability implementations for
performing the second vision capability on the plu-
rality of resource types.

28. The method of claim 27, wherein the first set of vision

capability implementations comprises:

a first set of software implementations of the first vision
capability for a first resource type from the plurality of
resource types; and

a second set of software implementations of the first
vision capability for a second resource type from the
plurality of resource types.

#* #* #* #* #*

