US 20200249925A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0249925 A1l

WANG et al.

43) Pub. Date: Aug. 6, 2020

(54)

(71)

(72)

(73)

@

(22)

(63)

ON-DEMAND LOADING OF DYNAMIC
SCRIPTING LANGUAGE CODE FOR
REDUCED MEMORY USAGE

Applicant: Futurewei Technologies, Inc., Plano,
X (US)

Inventors: Haichuan WANG, Champaign, 1L,

(US); Handong YE, Union City, CA

(US); Peng WU, Rochester, NY (US)

Assignee: Futurewei Technologies, Inc., Plano,

X (US)

Appl. No.: 16/827,104

Filed: Mar. 23, 2020

Related U.S. Application Data

Continuation of application No. 15/652,809, filed on
Jul. 18, 2017, now abandoned, which is a continu-
ation of application No. 14/629,197, filed on Feb. 23,
2015, now Pat. No. 9,772,865.

(2 p.

12 Sourcecods

Publication Classification

(51) Int. CL
GOGF 8/41 (2006.01)
GOGF 8/51 (2006.01)
(52) US.CL
CPC oo GOGF 8/4434 (2013.01); GOGF 8/51
(2013.01); GOGF 8/427 (2013.01)
(57) ABSTRACT

A computer-implemented method and system for reducing
the amount of memory space required to store applications
written in dynamic scripting languages loads a program
module into memory and removes a category of program
code, such as debug information or function definitions,
from the program module. The method and system also
receives a request for debug information, or a function call
or query, and determines whether or not the corresponding
program code is in memory. If not, then the location in
storage is identified where the program module is stored, and
another copy containing the corresponding program code is
loaded into memory. The corresponding program code is
located and copied into the program module in memory, and
a response is provided to the request.

e
4)
4 Cotle lnader 28 Object
o,
)
On-domand loader § 22 Chemt

/ng““\

7N

3% interpretsr

N

3 Virtuasl machine

Aug. 6,2020 Sheet 1 of 5 US 2020/0249925 Al

Patent Application Publication

S

sungpew gniga 07

)

sy WY

N

wagy 77 IBPROG PUBLLBR-UD
S,
?--#M
wRian Fe7A SBPRQY DRV 7T
A
4 £
apoy anmes 2L
{ £,

Patent Application Publication Aug. 6,2020 Sheet 2 of 5 US 2020/0249925 A1

s ™ £ ™
2
< ©
oy o
Ao
(Vg
. A N\ W
i ™ . ~
& 2
Ty S S~ @ -
§ § :ﬁf e N
6 52 O
= z & T
Lo i . A
e ™
N B
££% o g
3
&
o
1%
Q. _
£
o0y
L9 .,

Patent Application Publication Aug. 6,2020 Sheet 3 of 5 US 2020/0249925 A1

Lovd placshaldey

B o Roondve dobug information request

N T —

e
i.‘}i} e

FE o Farse ohisol source oode

\anuwwwwwwwwwwwwwwwwwwwwwwww
b

Bl st Lompte obist b

§ 3
¥
MNNM““““““N“““\“““wmwwwwwmwwg

H& -1 idently requested debug information

R Capy shiect debug informatian

o

F—t Retipen regue

sed debug information

Aug. 6,2020 Sheet 4 of 5 US 2020/0249925 Al

Patent Application Publication

(&£ saull)
{13 uonauny

y Ol

{G-¢ sauy)
{}g uonounyg

{oz-Z1 saun)
(}q uonsuny

98

{DT-T sau)
{iv uossung

\, 4,,,,/ \\\

{oz-T saul)
doy aned

/f»—s»ma»aa»»»»»»s»u»»m»»»»m»»s*

B o e e e s s e

(-5 sy}
{}g uonoun4

Patent Application Publication

Aug. 6,2020 Sheet S of 5

| § .

131 p—

Farse function source sode

e »‘}
1; } €
RN

Rodaet function obisot

Load placeholder

Recelwe funclon request

US 2020/0249925 Al

S Ao oA AR R S A S SR ik R

dently roguested function sode

Load nctionrcode

By {:g R

3

Return requested function

FIG. 5

US 2020/0249925 Al

ON-DEMAND LOADING OF DYNAMIC
SCRIPTING LANGUAGE CODE FOR
REDUCED MEMORY USAGE

PRIORITY CLAIM

[0001] The application claims priority to U.S. patent appli-
cation Ser. No. 14/629,197, filed Feb. 23, 2015, entitled
“On-Demand Loading of Dynamic Scripting Language
Code for Reduced Memory Usage,” and to U.S. patent
application Ser. No. 15/652,809, filed Feb. 23, 2015, entitled
“On-Demand Loading of Dynamic Scripting Language
Code for Reduced Memory Usage”, which are incorporated
herein by reference in their entirety.

TECHNICAL FIELD

[0002] This description relates generally to compiling and
loading dynamic scripting language code, and more particu-
larly to reducing memory usage through on-demand com-
piling and loading of application source code in dynamic
scripting languages.

BACKGROUND

[0003] Dynamic scripting languages are widely used in
many industry and academic areas. For example, JavaScript
is widely considered the dominant computer programming
language for building client-side web applications; PHP
typically is the backbone used to build server-side web
applications; Python is widely used in building both high-
level and low-level applications; Lua has been widely
applied in the gaming industry and in embedded systems; R
and Matlab have become popular for particular uses.
[0004] In general, the performance of dynamic scripting
languages poses a concern. For example, applications writ-
ten in dynamic scripting languages typically run slower and
use more memory than applications based on static lan-
guages. Yet, in many scenarios memory usage is of critical
importance. In typical embedded systems, for example, if an
application requires more memory than is available the
application will crash.

[0005] The memory used by an application generally
includes a code section and a data section. In many appli-
cations, the code section can use up to half of the total
required memory. As a result, reducing the amount of
memory required for the code section can be an effective
way to reduce overall application memory usage.

[0006] Existing solutions to reduce the amount of memory
required for the code section include rewriting or restruc-
turing the application to remove unnecessary code. This is
made possible because applications typically include source
code for all possible features of the application, even though
some of the features generally will not be executed. Rewrit-
ing or restructuring the code can ensure only necessary code
is included in the application.

[0007] However, rewriting or restructuring the code is
relatively labor intensive, and thus, relatively expensive.
Moreover, the decision regarding the usefulness or necessity
of a section of code can be ambiguous based purely on static
information. A more certain determination often is only
possible using the information available at runtime.

[0008] Another reason dynamic scripting languages use
more memory space is that by default dynamic scripting
languages typically store all of the relevant debugging
information for an application in the compiled object code,

Aug. 6, 2020

or bytecode, in memory. In some cases, the debug informa-
tion occupies more than a third of the memory space used by
the programming code. Nevertheless, the debug information
typically is used only rarely, for example, when an error
occurs during application execution or when reflection func-
tions are invoked during execution.

[0009] Existing solutions to reduce the amount of memory
required for the code section also include removing debug
information by precompiling the application source code
into bytecode. For example, Lua source code can be pre-
compiled using the “-s” command extension to strip all
debugging information in the source code, although an
equivalent approach is not available in some dynamic script-
ing languages. However, use of such an approach does not
permit retrieval of the debug information at runtime. In
addition, when a runtime error occurs, the application is not
able to report useful information, such as the line number in
the code where the error occurred, variable names associated
with the error, and the like.

[0010] In some cases, stripping the debug information
from the code is not an acceptable solution, because certain
application features required at runtime are dependent on the
availability of the debugging information. Furthermore,
removing the debugging information increases the deploy-
ment complexity, because the additional precompile step
with the “-s” option is required to reach an intermediate
stage (that is, bytecode) before the application is loaded into
memory, whereas in general the dynamic scripting language
source script has been directly executed.

[0011] Additionally, dynamic scripting language codes
often are compressed using common data compression algo-
rithms. Even though the uncompressed version of precom-
piled bytecode may occupy less memory than the uncom-
pressed source code, after compression the precompiled
code can occupy more memory space than the original
text-format source code. Thus, in some applications-for
example, in embedded systems with limited flash memory-it
is desirable to store source code, rather than precompiled
bytecode, to further reduce the amount of required memory.

SUMMARY

[0012] According to one embodiment of the present inven-
tion, a system for reducing a memory space required to store
an application written in a dynamic scripting language
includes an input/output device that receives a request
corresponding to a segment of program code in a program
module in the dynamic scripting language. The system
further includes an on-demand loader that determines
whether or not the segment of program code is in memory
and identifies, in response to having determined the segment
of program code is not in memory, a location in storage
where at least a portion of the program module containing
the segment of program code is stored, locates the segment
of program code in a second copy of the portion of the
program module, and copies the segment of program code
into a first copy of the program module in memory. The
system also includes a code loader that loads the second
copy of the portion of the program module containing the
segment of program code from the storage into memory.

[0013] According to another embodiment of the present
invention, a method of reducing the memory space required
to store an application written in a dynamic scripting lan-
guage includes receiving a request corresponding to a seg-
ment of program code in the program module, determining

US 2020/0249925 Al

whether or not program code is in memory, and if not,
identifying a location in storage where at least a portion of
the program module containing the segment of program
code is stored. The method also includes loading a second
copy of the program module containing the segment of
program code from storage into memory, locating the seg-
ment of program code in the second copy of the portion of
the program module. The method further includes copying
the segment of program code into the first copy of the
program module in memory.

[0014] The details of one or more embodiments of the
invention are set forth in the accompanying drawings and
the description below. Other features, objects, and advan-
tages of the invention will be apparent from the description
and drawings, and from the claims.

DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 is a schematic view illustrating a dynamic-
scripting-language virtual machine that employs an on-
demand source-code loader in accordance with an embodi-
ment of the present invention.

[0016] FIG. 2 is a schematic view depicting a computing
system that can implement the dynamic-scripting-language
virtual machine of FIG. 1.

[0017] FIG. 3 is a flowchart representing a method of
on-demand dynamic-scripting language source-code debug
information loading in accordance with an embodiment of
the present invention.

[0018] FIG. 4 is an illustration of a redacted function
placeholder and a compiled dynamic scripting-language
application tree structure in accordance with an embodiment
of the present invention.

[0019] FIG. 5 is a flowchart representing a method of
on-demand dynamic-scripting language source-code func-
tion loading in accordance with an embodiment of the
present invention.

DETAILED DESCRIPTION

[0020] An embodiment of the present invention is shown
in FIG. 1, which illustrates an exemplary dynamic-scripting-
language virtual machine 10 that employs an on-demand
dynamic scripting-language source-code loading process in
order to reduce the memory space required to store an
application in dynamic-scripting-language source code 12.
The virtual machine 10 includes a code loader 14, an
on-demand loader 16, an interpreter 18, an object 20 and a
client 22.

[0021] The code loader 14 reads the original-text source
code 12, redacts each application object 20 by removing a
category of program code, and loads, or inserts, a redacted
source code placeholder for each object 20 into memory. For
example, in one embodiment the code loader 14 removes
debug information from each of the function objects in the
source code 12 during online compiling, and loads the
redacted source code for each object 20 into memory. In
another embodiment, the code loader 14 generates a func-
tion stub for each function in the original source code 12. For
example, the function stub records meta information, such as
the source code filename, the function proto, and the start
and end location (line and column numbers) of the function
in the source file.

[0022] Thus, the virtual machine 10 removes a category of
program code, such as debug information or function code,

Aug. 6, 2020

and stores the location where to find the original source
code, when the virtual machine 10 loads and compiles the
source code into bytecode in memory. In an alternative
embodiment, the redacted function code section data is
stored in secondary storage, such as a hard disk drive.
Because the source code placeholders occupy relatively less
memory space compared to the full source code, the memory
consumption of the dynamic-scripting language application
is reduced.

[0023] When the object 20 subsequently is called or
queried, or debug information is requested, the on-demand
loader 16 prompts the code loader 14 to reload the source
code 12 and create a compiled tree structure of the function
objects including the full function section code or debug
information. The on-demand loader 16 searches the tree
structure for the function object that corresponds to the
called or queried object or the requested information. The
code section or debug information is copied from the tree
structure to the object 20, which is returned to the requesting
or calling client 22.

[0024] In various embodiments of the invention, the vir-
tual machine 10 runtime environment generates the
requested debug information or code section on demand and
dynamically modifies the function stub to form a complete
function object according to the runtime behaviors. Thus,
only functions actually executed at run time are filled with
code section or debug information in memory. All other
functions in the source code are represented in memory by
a redacted placeholder, for example, a function stub or a
function object without debug information.

[0025] The on-demand dynamic-scripting-language
source-code loading systems described herein can offer
advantages such as reduced memory consumption. The
amount of memory required to store the bytecode is essen-
tially reduced by the quantity of debug information or code
removed, yet the detailed code sections or debug informa-
tion is made available when requested. There are no lan-
guage specific limitations, so this approach can be used with
any dynamic scripting language. All of the components of
the source code application can maintain the original fea-
tures. In this transparent, purely dynamic approach, no
additional precompilation step is required. The original
source code can be maintained in storage using any known
compression algorithm.

[0026] As illustrated in FIG. 2, an exemplary computing
device 30 that can implement the dynamic-scripting-lan-
guage virtual machine 10 of FIG. 1 includes a processor 32,
a memory 34, an input/output device (/O) 36 storage 38 and
a network interface 40. The various components of the
computing device 30 are coupled by a local data link 42,
which in various embodiments incorporates, for example, an
address bus, a data bus, a serial bus, a parallel bus, or any
combination of these.

[0027] The computing device 30 communicates informa-
tion to and requests input from the user or other devices by
way of the /O 36, which in various embodiments incorpo-
rates, for example, an interactive, menu-driven, visual dis-
play-based user interface, or graphical user interface (GUI),
a pointing device, such as a, with which the user may
interactively input information using direct manipulation of
the GUI. In some embodiments, direct manipulation
includes the use of an alphanumeric input device, such as a
keyboard, a pointing device, such as a mouse, a touchpad, a
trackball, a joystick or a stylus, to select from a variety of

US 2020/0249925 Al

windows, icons and selectable fields, including selectable
menus, drop-down menus, tabs, buttons, bullets, check-
boxes, text boxes, and the like. Nevertheless, various
embodiments of the invention may incorporate any number
of additional functional user interface schemes in place of
this interface scheme, with or without the use of an alpha-
numeric input device, a pointing device, buttons or keys, for
example, using direct voice input.

[0028] The computing device 30 can be coupled to a
communication network by way of the network interface 40,
which in various embodiments incorporates, for example,
any combination of devices, as well as any associated
software or firmware, configured to couple processor-based
systems, including modems, access points, network inter-
face cards, LAN or WAN interfaces, wireless or optical
interfaces and the like, along with any associated transmis-
sion protocols, as may be desired or required by the design.
[0029] For example, the source code 12 can, in some
embodiments, be contained in a remote storage communi-
catively interconnected to the computing system 30 by way
of a communication network. In various embodiments, the
communication network can include any viable combination
of devices and systems capable of linking computer-based
systems, such as the Internet; an intranet or extranet; a local
area network (LAN); a wide area network (WAN); a direct
cable connection; a private network; a public network; an
Ethernet-based system; a token ring; a value-added network;
a telephony-based system, including, for example, T1 or El
devices; an Asynchronous Transter Mode (ATM) network; a
wired system; a wireless system; an optical system; a
combination of any number of distributed processing net-
works or systems or the like.

[0030] The computing device 30 can be used, for example,
to implement the functions of the components of the
dynamic-scripting-language virtual machine of FIG. 1. In
various embodiments, the computing device 30 can include,
for example, a server, a controller, a router, a workstation, a
mainframe computer, personal computer (PC), a note pad, a
computing tablet, a personal digital assistant (PDA), a smart
phone, or the like. Programming code, such as source code,
object code or executable code, stored on a computer-
readable medium, such as the storage 38 or a peripheral
storage component coupled to the computing device 30, can
be loaded into the memory 34 and executed by the processor
32 in order to perform the functions of the dynamic script-
ing-language virtual machine 10.

[0031] Referring now to FIG. 3, an exemplary process
flow is illustrated that may be performed, for example, by
the dynamic-scripting-language virtual machine 10 of FIG.
1 to implement an embodiment of the method described in
this disclosure for on-demand dynamic scripting-language
source-code loading. Blocks shown with dashed lines in
FIG. 3 are optional items that may not be performed in all
implementations. The process begins at block 50, where an
object, such as a function, in the source code of an appli-
cation written in a dynamic-scripting language is parsed. For
example, in an embodiment, the object is parsed at run time
by a code loader module of a dynamic-scripting-language
virtual machine.

[0032] The object is redacted, in block 52, to remove all
debugging information from the code. For example, in an
embodiment, the debug information is removed when the
source code is compiled into bytecode. A placeholder is
loaded, or inserted, into the bytecode in memory, in block

Aug. 6, 2020

54. For example, in an embodiment, the placcholder
includes the source code file location, along with the source
code file line and column numbers that delineate the begin-
ning and end of the segment of source code corresponding
to the code redacted from the bytecode memory.

[0033] Inblock 56, a request for debug information in the
object is received from a runtime client, such as the error
handling component or the reflection component of the
virtual machine. The process checks, in block 58, to verify
whether or not the requested debug information is currently
in memory. For example, if the debug information from the
object has previously been requested during program execu-
tion, and a cleanup procedure, such as garbage collection,
has not been performed in the time that has intervened, then
the requested debug information may still be loaded in
memory. If so, the requested debug information is read from
memory and returned to the requesting client.

[0034] Otherwise, if the requested debug information is
not currently in memory, the corresponding source file
location is retrieved, in block 60. For example, in an
embodiment, the on-demand debug information loader reads
the source file location in the placeholder in memory. In
block 62, the object source code is re-parsed. For example,
in an embodiment, the on-demand loader module asks the
code loader module to reload the source code for the object,
including the debug information. In block 64, the object
source code is optionally recompiled, with the accompany-
ing debug information, into bytecode.

[0035] In some embodiments, the source code for the
entire application, or part of the application source code in
addition to that of the immediate function, such as the source
code of a calling function or a called function, is re-parsed
and optionally recompiled in block 62 and block 64. In
particular, parsing and compiling the source code for the
whole application is required with programming languages
that apply lexical scoping, for example, dynamic scripting
languages that use the “upvalue” concept. Otherwise, the
resulting compiled function may not include the correct
instructions and variables.

[0036] For example, in the Lua programming language,
the following function can be globally compiled or locally
compiled with respect to function B() with differing results:

function A()
local a;
function B ()
local b = a;
print (b);
end
end

Function B() is correctly translated by globally compiling
function A() before isolating function B(), as follows:

Jocal “b” ; 0
.upvalue “a”; 0
.const “print” 0

[1] getupval 0 0 ;a
[2] getglobal 1 0 ; print
[3] move 2 0

[4]call121

[5] return O 1

US 2020/0249925 Al

However, locally compiling function B() yields an incorrect
translation of function B() with different upvalue tables, as
well as with different instructions, as follows:

Jocal “b” ; 0
.const “a” ; 0
.const “print” ; 0

[1] getglobal 0 O ;a
[2] getglobal 1 1 ; print
[3] move 2 0

[4]call121

[5] return O 1

[0037] In block 66, the debug information relevant to the
request but not included in the bytecode in memory is
identified, and in block 68, the debug information is copied
into the bytecode in memory.

[0038] Referring to FIG. 4, for example, the source code
of a complete application written in a dynamic scripting
language is compiled into a tree structure 80, in accordance
with block 62 and block 64 of FIG. 3. A fake top 82
represents the entry into the application, and the bytecode
corresponding to each of the functions in the application
source code is represented in the tree: for example, Function
A() 84, corresponding to source code lines 1-1 0; Function
D() 86, corresponding to source code lines 12-20; Function
B() 88, corresponding to source code lines 3-5; and Func-
tion C() 90, corresponding to source code lines 7-9.

[0039] The tree structure 80 is searched by source loca-
tion, and the debug information corresponding to the rel-
evant function for which debug information was requested
in accordance with block 56 of FIG. 3 (depicted as Function
B() in FIG. 4) is identified in accordance with block 66 of
FIG. 3. The debug information from the counterpart function
object in the compiled tree is copied into the corresponding
Function B() 92 in the bytecode in memory 94, supple-
menting or replacing the placeholder that was included when
the bytecode was initially compiled.

[0040] Referring again to FIG. 3, the requested debug
information is returned to the client, in block 70, in support
of execution of the application. This completes the on-
demand dynamic scripting-language source-code debug
information loading process.

[0041] Referring to FIG. 5, an exemplary process flow is
illustrated that may be performed, for example, by the
dynamic-scripting-language virtual machine 10 of FIG. 1 to
implement another embodiment of the method described in
this disclosure for on-demand dynamic scripting-language
source-code loading. Blocks shown with dashed lines in
FIG. 3 are optional items that may not be performed in all
implementations. The process begins at block 100, where a
function object, in the source code of an application written
in a dynamic-scripting-language is parsed. For example, in
an embodiment, the function is parsed at run time by a code
loader module of a dynamic-scripting-language virtual
machine.

[0042] The object is redacted, in block 102, to remove the
function code section. For example, in an embodiment, the
function code is removed when the source code is compiled
into bytecode. A placeholder is loaded, or inserted, into the
bytecode in memory, in block 104. For example, in an
embodiment, the placeholder includes the source code file
location, along with the source code file line and column

Aug. 6, 2020

numbers that delineate the beginning and end of the segment
of source code corresponding to the code redacted from the
bytecode memory.

[0043] In block 106, a call or query request for the
function is received from a runtime client, such as the
execution component of the virtual machine. The process
checks, in block 108, to verify whether or not the requested
function code section is currently in memory. For example,
if the function has previously been requested during pro-
gram execution, and a cleanup procedure, such as garbage
collection, has not been performed in the time that has
intervened, then the requested function code may still be
loaded in memory. If so, the requested function code is read
from memory and returned to the requesting client, in block
120.

[0044] Otherwise, if the requested function code is not
currently in memory, the corresponding source file location
is retrieved, in block 110. For example, in an embodiment,
the on-demand code section loader reads the source file
location in the placeholder in memory. In block 112, the
function source code is re-parsed. For example, in an
embodiment, the ondemand loader module asks the code
loader module to reload the source code for the function
object. In block 114, the object source code is optionally
recompiled into bytecode.

[0045] As explained above with reference to FIGS. 3 and
4, in some embodiments the source code for the entire
application, or part of the application source code in addition
to that of the immediate function, such as the source code of
a calling function or a called function, is reparsed and
optionally recompiled in block 112 and block 114. In par-
ticular, parsing and compiling the source code for the whole
application is required with programming languages that
apply lexical scoping, for example, dynamic scripting lan-
guages that use the “upvalue” concept. Otherwise, the
resulting compiled function may not include the correct
instructions and variables, as described above.

[0046] Inblock 116, the code that is relevant to the request
but not included in the bytecode in memory is identified, and
in block 118, the complete function is copied into the
bytecode in memory. In an alternative embodiment, the
redacted code sections are stored in secondary storage, and
the function can be copied directly from the secondary
storage into the bytecode in memory. The requested function
is returned to the client, in block 120, in support of execution
of the application. This completes the on-demand dynamic-
scripting-language source-code function loading process.
[0047] In alternative embodiments, a cleanup process can
be performed after the requested function or debug infor-
mation has been returned. For example, a garbage collection
process can remove the section code or debug information
from the bytecode in memory to again reduce the memory
space required to store the bytecode.

[0048] Aspects of this disclosure are described herein with
reference to flowchart illustrations or block diagrams, in
which each block or any combination of blocks can be
implemented by computer program instructions. The
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to effectuate a
machine or article of manufacture, and when executed by the
processor the instructions create means for implementing the
functions, acts or events specified in each block or combi-
nation of blocks in the diagrams.

US 2020/0249925 Al

[0049] In this regard, each block in the flowchart or block
diagrams may correspond to a module, segment, or portion
of code that including one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functionality associated with any block may occur out of the
order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially con-
currently, or blocks may sometimes be executed in reverse
order.

[0050] A person of ordinary skill in the art will appreciate
that aspects of this disclosure may be embodied as a device,
system, method or computer program product. Accordingly,
aspects of this disclosure, generally referred to herein as
circuits, modules, components or systems, may be embodied
in hardware, in software (including firmware, resident soft-
ware, micro-code, etc.), or in any combination of software
and hardware, including computer program products
embodied in a computer-readable medium having computer-
readable program code embodied thereon.

[0051] In this respect, any combination of one or more
computer readable media may be utilized, including, but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device, or
any suitable combination of these. More specific examples
of computer readable storage media would include the
following nonexhaustive list: a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM), a Flash memory, a portable compact
disc read-only memory (CD-ROM), an optical storage
device, network-attached storage (NAS), a storage area
network (SAN), magnetic tape, or any suitable combination
of these. In the context of this disclosure, a computer
readable storage medium may include any tangible medium
that is capable of containing or storing program instructions
for use by or in connection with a data processing system,
apparatus, or device.

[0052] Computer program code for carrying out opera-
tions regarding aspects of this disclosure may be written in
any combination of one or more programming languages,
including object oriented programming languages such as
Java, Smalltalk, C++, or the like, as well as conventional
procedural programming languages, such as the “C,” FOR-
TRAN, COBOL, Pascal, or the like. The program code may
execute entirely on an individual personal computer, as a
stand-alone software package, partly on a client computer
and partly on a remote server computer, entirely on a remote
server or computer, or on a cluster of distributed computer
nodes. In general, a remote computer, server or cluster of
distributed computer nodes may be connected to an indi-
vidual (user) computer through any type of network, includ-
ing a local area network (LAN), a wide area network
(WAN), an Internet access point, or any combination of
these.

[0053] It will be understood that various modifications
may be made. For example, useful results still could be
achieved if steps of the disclosed techniques were performed
in a different order, and/or if components in the disclosed
systems were combined in a different manner and/or
replaced or supplemented by other components. Accord-
ingly, other implementations are within the scope of the
following claims.

Aug. 6, 2020

What is claimed is:

1. A method for on-demand loading of code, the method
comprising:

compiling, by one or more processors, a dynamic script-

ing language program source code into compiled byte-
code, with the compiling the dynamic scripting lan-
guage program source code including removing one or
more function portions of one or more functions, the
one or more removed function portions including
debug information;

receiving, by the one or more processors, a call or query

request for a removed function portion of the compiled
bytecode;

obtaining, by the one or more processors in response to

the call or query request, a replacement function source
code corresponding to the removed function portion,
the replacement function source code being in the
dynamic scripting language;

compiling, by the one or more processors, the replace-

ment function source code to generate a compiled
replacement bytecode for the removed function por-
tion; and

modifying, by the one or more processors, the compiled

bytecode using the compiled replacement bytecode.
2. The method of claim 1, wherein the one or more
removed function portions are removed from the dynamic
scripting language program source code.
3. The method of claim 1, wherein the one or more
removed function portions are removed from the compiled
bytecode.
4. The method of claim 1, further comprising the one or
more processors generating one or more placeholders cor-
responding to the one or more removed portions.
5. The method of claim 1, further comprising the one or
more processors generating one or more placeholders in the
compiled bytecode, the one or more placeholders corre-
sponding to the one or more removed portions.
6. The method of claim 1, further comprising the one or
more processors generating one or more placeholders cor-
responding to the one or more removed portions, with the
one or more placeholders used in the modifying step to
modify the compiled bytecode using the compiled replace-
ment bytecode.
7. The method of claim 1, further comprising the one or
more processors generating one or more placeholders cor-
responding to the one or more removed portions, the one or
more placeholders indicating where the replacement source
code is stored.
8. The method of claim 1, the compiling, by the one or
more processors, the replacement source code comprises:
creating, by the one or more processors, a compiled tree
structure of the function, the compiled tree structure
comprising the requested removed function portion;

searching, by the one or more processors, the compiled
tree structure to get the requested removed function
portion.

9. The method of claim 5, wherein the modified compiled
bytecode is executed within a virtual machine.

10. A device comprising:

a memory comprising instructions; and

one or more processors in communication with the

memory, the one or more processors execute the
instructions to:

compile a dynamic scripting language program source

code into compiled bytecode, with the compiling the

US 2020/0249925 Al

dynamic scripting language program source code
including removing one or more function portions of
one or more functions, the one or more removed
function portions including debug information;

receive a call or query request for a removed function
portion of the compiled bytecode;
obtain in response to the call or query request, a replace-
ment function source code corresponding to the
removed function portion, the replacement function
source code being in the dynamic scripting language;

compile the replacement function source code to generate
a compiled replacement bytecode for the removed
function portion; and

modify the compiled bytecode using the compiled

replacement bytecode.

11. The device of claim 10, wherein the one or more
removed function portions are removed from the dynamic
scripting language program source code.

12. The device of claim 10, wherein the one or more
removed function portions are removed from the compiled
bytecode.

13. The device of claim 10, further comprising the one or
more processors generating one or more placeholders cor-
responding to the one or more removed portions.

14. The device of claim 10, further comprising the one or
more processors generating one or more placeholders in the

Aug. 6, 2020

compiled bytecode, the one or more placeholders corre-
sponding to the one or more removed portions.
15. The device of claim 10, further comprising the one or
more processors generating one or more placeholders cor-
responding to the one or more removed portions, with the
one or more placeholders used in the modifying step to
modify the compiled bytecode using the compiled replace-
ment bytecode.
16. The device of claim 10, further comprising the one or
more processors generating one or more placeholders cor-
responding to the one or more removed portions, the one or
more placeholders indicating where the replacement source
code is stored.
17. The device of claim 10, wherein the compiling, by the
one or more processors, the replacement source code com-
prises:
creating, by the one or more processors, a compiled tree
structure of the function, the compiled tree structure
comprising the requested removed function portion;

searching, by the one or more processors, the compiled
tree structure to get the requested removed function
portion.

18. The device of claim 10, wherein the modified com-
piled bytecode is executed within a virtual machine.

#* #* #* #* #*

