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(DPA) attacks. Plaintext (e.g., configuration data for a pro-
grammable device) may be encrypted in an encryption
system using a cryptographic algorithm. Ciphertext may be
decrypted in a decryption system using the cryptographic
algorithm. The encryption and/or decryption systems may
obfuscate the plaintext, the ciphertext, and/or the substitu-
tion tables used by the cryptographic algorithm. The encryp-
tion and/or decryption systems may also generate crypto-
graphic key schedules by using different keys for
encrypting/decrypting different blocks and/or by expanding
round keys between encryption/decryption blocks. These
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DIFFERENTIAL POWER ANALYSIS
RESISTANT ENCRYPTION AND
DECRYPTION FUNCTIONS

FIELD OF THE INVENTION

[0001] This invention relates to methods and systems for
securing the programming data of a programmable device—
e.g., a field-programmable gate array (FPGA) or other
programmable logic device (PLD)—against power analysis
attacks, and to a programmable device so secured.

BACKGROUND OF THE INVENTION

[0002] Programmable devices are well known. In one
class of known PLDs, each device has a large number of
logic gates, and a user programs the device to assume a
particular configuration of those logic gates, typically by
receiving configuration data from a configuration device.
Configuration data has become increasingly complex in
modern PLDs. As such, proprietary configuration data for
various commonly-used functions (frequently referred to as
“intellectual property cores”) have been sold either by
device manufacturers or third parties, freeing the original
customer from having to program those functions on its
own. If a party provides such proprietary configuration data,
it may want to protect this data from being read, as well as
any internal data that may reveal the configuration data.
[0003] Commonly-assigned U.S. Pat. Nos. 5,768,372, and
5,915,017, each of which is hereby incorporated by refer-
ence herein in its respective entirety, describe the encryption
of the configuration data and its decryption upon loading
into the programmable device, including provision of an
indicator to signal to the decryption circuit which of several
possible encryption/decryption schemes was used to encrypt
the configuration data and therefore should be used to
decrypt the configuration data. Commonly-assigned U.S.
Pat. No. 7,479,798, which is hereby incorporated by refer-
ence herein in its entirety, describes a disabling element that
can be used to selectively disable a reading of a data from
a device.

[0004] Cryptographic algorithms may provide one or
more classes of encryption/decryption schemes for securing
the configuration data. However, these cryptographic algo-
rithms may be vulnerable to specific kinds of attacks. One
type of attack on an encryption/decryption cryptographic
system in a device is known as a power analysis attack. This
approach involves observing the power consumption of the
device while it is executing a cryptographic algorithm. An
attacker can combine the data derived from observing the
power consumption of the device with the knowledge of the
specific operations that are executed during the crypto-
graphic algorithm, and thereby deduce information about
keys and other secret data of the cryptographic algorithm.
[0005] One type of power analysis attack is known as a
Differential Power Analysis (“DPA”) (see, for example,
“Introduction to Differential Power Analysis and Related
Attacks”, by Paul Kocher et al., of Cryptography Research,
San Francisco, Calif., copyright 1998, reprinted at web site:
www.cryptography.com). DPA involves observing the
power consumption of a device while it executes crypto-
graphic operations for a large number of varying inputs. By
collecting and statistically correlating data from these mul-
tiple observations, an attacker can derive secret information
for the cryptographic operations carried out by the device.
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[0006] Different elements of a cryptographic algorithm
may be particularly vulnerable to DPA attacks. For example,
key scheduling routines, used for generating multiple sub-
keys for multiple cryptographic rounds from a secret cipher
key may be especially vulnerable in this regard, given that
these routines manipulate the cipher key in a known way. In
addition, substitution tables (also referred to as substitution
boxes or “S-boxs”), which are common in cryptographic
algorithms and often implemented as look up tables, may
also be vulnerable to DPA attacks. Also, the initial round of
encryption or final round of decryption of some crypto-
graphic algorithms may be particularly vulnerable to DPA
attacks, because they may only involve key manipulation
without modification of plaintext or ciphertext.

SUMMARY OF THE INVENTION

[0007] The present invention relates to systems and meth-
ods for protecting a programmable device against Differen-
tial Power Analysis attacks.

[0008] Therefore, in accordance with embodiments of the
present invention, an encryption or decryption system may
generate cryptographic key schedules by using different
cipher keys for each block. In some implementations, a first
cipher key may be derived as a function of a second cipher
key and of one of a previous block of plaintext, a previous
block of ciphertext, or an output of a linear feedback shift
register (LFSR) associated with the previous block of plain-
text. In some implementations, the encryption or decryption
system may expand (i.e., evolve) round keys between
encryption and/or decryption blocks. A key expansion block
may generate from a cipher key a first sequence of round
keys for decrypting a first block of ciphertext such that each
round key is generated based on at least one preceding round
key in the first sequence. The key expansion block may
generate from at least one of the round keys of the first
sequence a second sequence of round keys for decrypting a
second block of ciphertext. In some implementations, the
initial round key for decrypting a second block of plaintext
is set to the final round key used for decrypting a first block
of ciphertext. The sequence of decryption round keys may
be inverted to generate a sequence of encryption round keys.
[0009] In some embodiments, the encryption or decryp-
tion cryptographic system that implements the crypto-
graphic algorithm, e.g., on a programmable device, is con-
figurable to use obfuscated substitution S-boxes. S-boxes
may be obfuscated by interleaving data to be encrypted (or
decrypted) with random data. In some implementations, the
random data may be true random (e.g., generated by a True
Random Number Generator). In some implementations, the
random data may be pseudo-random (e.g., generated by a
linear feedback shift register). In some implementations, the
random data may be related to another cryptographic opera-
tion for an unrelated block of data.

[0010] In some embodiments, plaintext may be obfus-
cated, e.g., through whitening using an LFSR. Blocks of
plaintext may be obfuscated before encryption using chained
encryption blocks. In some implementations, a block of
obfuscated plaintext may be further obfuscated with a block
of ciphertext output from the encryption of a preceding
block of plaintext. In some implementations, blocks of
ciphertext may be further obfuscated with blocks of obfus-
cated plaintext.

[0011] In some embodiments, blocks of ciphertext may be
obfuscated with blocks of obfuscated plaintext before
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decryption using chained decryption blocks. Blocks of
decrypted data may be combined with blocks of ciphertext
to generate blocks of obfuscated plaintext. In some imple-
mentations, blocks of obfuscated plaintext may be processed
with an LFSR to output corresponding blocks of plaintext.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Further features of the invention, its nature and
various advantages will be apparent upon consideration of
the following detailed description, taken in conjunction with
the accompanying drawings, in which like reference char-
acters refer to like parts throughout, and in which:

[0013] FIG. 1 is an exemplary block diagram of a pro-
grammable device in which embodiments of the present
invention may be implemented;

[0014] FIG. 2A is an exemplary block diagram of a
whitening system for obfuscating blocks of plaintext accord-
ing to an embodiment of the present invention;

[0015] FIG. 2B is an exemplary block diagram of an
unwhitening system for unwhitening blocks of obfuscated
plaintext according to an embodiment of the present inven-
tion;

[0016] FIG. 3A is an exemplary block diagram for an
encryption system implementing AES with continuously
evolving cryptographic keys according to some embodi-
ments;

[0017] FIG. 3B is an exemplary block diagram represent-
ing the continuous evolution of cryptographic keys in a
decryption system according to some embodiments;

[0018] FIG. 3C is an exemplary block diagram represent-
ing the continuous evolution of cryptographic keys in an
encryption system according to some embodiments;

[0019] FIG. 4 is an exemplary block diagram of a system
for obfuscating a cryptographic substitution box according
to some embodiments;

[0020] FIG. 5A is an exemplary block diagram of an
encryption system for encrypting data according to some
embodiments;

[0021] FIG. 5B is an exemplary block diagram of a
decryption system for decrypting data according to some
embodiments;

[0022] FIG. 6 is an exemplary block diagram of an illus-
trative decryption system for decrypting data employing a
programmable logic device according to some embodi-
ments;

[0023] FIG. 7A is an exemplary block diagram of an
encryption system for encrypting data according to some
embodiments;

[0024] FIG. 7B is an exemplary block diagram of a
decryption system for decrypting data according to some
embodiments;

[0025] FIG. 8 is an exemplary block diagram of an illus-
trative decryption system for decrypting data employing a
programmable logic device according to some embodi-
ments;

[0026] FIG. 9 shows an exemplary flowchart of a process
for encrypting data according to some embodiments; and

[0027] FIG. 10 shows an exemplary flowchart of a process
for decrypting data according to some embodiments.
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DETAILED DESCRIPTION OF THE
INVENTION

[0028] FIG. 1 shows an exemplary block diagram of a
programmable logic device 100 as an example of a pro-
grammable device in which embodiments of the present
invention may be implemented. The external memory 120
contains configuration data, typically containing proprietary
designs, that is used to configure the functionality of the
logic device 100. The configuration of logic device 100 may
occur upon powering up the device, rebooting, or at some
other re-programming time. For example, upon powering
up, the configuration data will be sent from the external
memory 120 to the logic device 100. The configuration data
may be encrypted in order to prevent copying when the data
is in transit, e.g., using an encryption system (not shown).
[0029] The encrypted data is sent to the logic device 100
where it is decrypted by a decoder 102. The decrypted data
is then stored in configuration data memory 104. The
configuration data is used to configure the functionality of
logic blocks 106. After configuration, the logic blocks may
start operating on input data. When in operation, the logic
blocks may store internal data, e.g., in data registers, RAM,
or other suitable storage. This internal data may reflect
specific aspects of the configuration data. Additionally, in
non-programmable devices, the internal data may reflect
proprietary aspects of the circuit design which may be
desired to be kept secret.

[0030] In some embodiments, the configuration data
(which will be referred to herein as plaintext) may be
encrypted using an encryption cryptographic system that
implements a cryptographic algorithm. The decoder 102
may then decrypt the encrypted data (i.e., ciphertext) using
a corresponding decryption cryptographic system that
implements the cryptographic algorithm.

[0031] One common cryptographic algorithm is a sym-
metric key block cipher algorithm adopted by the Depart-
ment of Commerce, National Institute of Standards and
Technology (NIST) as its Advanced Encryption Standard
(AES). (See detailed specification in “Federal Information
Processing Standards Publication 197 (FIPS 197), of Nov.
26, 2001.) The AES algorithm uses cryptographic keys of
128, 192 and 256 bits to encrypt and decrypt data in blocks
of 128 bits. The algorithm iterates a number of nearly
identical rounds depending on key length and block size.
AFES128 uses 10 rounds, AES192 uses 12 rounds and
AES256 uses 14 rounds to complete an encryption or
decryption operation.

[0032] Although the remainder of this specification will
mainly discuss the AES embodiment, it should be under-
stood that embodiments of the invention described herein
are applicable to other key lengths and block sizes as well as
to other cryptographic algorithms and modes of operation.
As such, discussing the embodiments with respect to AES
cryptographic algorithm is exemplary and not intended to
limit the scope of the present invention.

[0033] In some embodiments, plaintext (e.g., configura-
tion data received in a configuration device for configuring
programmable logic device 100 of FIG. 1) may be processed
prior to encryption with a cryptographic algorithm. This may
increase the security of the cryptographic algorithm. For
instance, blocks of plaintext may be obfuscated prior to
encrypting these blocks with AES. FIG. 2A shows an
exemplary block diagram of whitening system 200 that
could be used to carry out plaintext obfuscation according to
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an embodiment of the present invention. Whitening system
200 may include a linear feedback shift register (LFSR) 204
coupled to combining circuitry 208.

[0034] In some implementations, combining circuitry 208
may be implemented as an exclusive-OR gate. In some
implementations, combining circuitry 208 may include mul-
tiplicative and/or inversion elements. Although the remain-
der of the patent specification will refer to the exclusive-OR
gate implementation of combining circuitry 208, it should be
understood that the invention described herein is applicable
to other combining functions as well. As such, discussing the
embodiments with respect to the exclusive-OR is exemplary
and not intended to limit the scope of the present invention.

[0035] Plaintext data P (e.g., configuration data) may be
partitioned into N blocks of M bits each, e.g., P;, P,, P, . .
., and P,. For example, according to AES, P may be
partitioned into blocks of M=128 bits. Each block of plain-
text P, (i=1, . . ., N) may be fed into input 202 of combining
circuitry 208.

[0036] Combining circuitry 208 is coupled to LFSR 204.
In some embodiments, LFSR 204 may be implemented as an
M-cell shift register. During each cycle of data transfer, an
input bit, e.g., a bit from combining circuitry 208, may be
fed into a first cell of LFSR 204, and each bit in LFSR 204
may shift down one cell. The bit in the last cell of LFSR 204
may be shifted out at output 206 as an output bit. The bits
output at output 206 will be referred to as output bitstream
L. These bits may be fed back to the LFSR through feedback
lines 211, 212, and/or 213, such that they are combined with
one or more of bits in predetermined cells of the LFSR
(called taps). This feedback causes the bits output by LFSR
204 at output 206 to cycle through a set of unique values that
may appear random, i.e., a set of pseudo-random values.

[0037] In some embodiments, the arrangement of taps for
feedback in the LFSR (i.e., the bits in the LFSR cells that
influence the output as described above) can be expressed as
a feedback polynomial, where the powers of the terms
represent the tapped bits. In an illustrative implementation,
LFSR 204 may be implemented as a 128-bit register with a
characteristic feedback polynomial POLY=X"**+X"?+X %+
X33+1. According to this implementation, bits in cells 99,
62, and 33 may be combined to produce the output bit in the
next stage. The output of the LFSR may be viewed as a
division by the characteristic polynomial POLY.

[0038] Because the operation of an LFSR is deterministic,
the initial value with which the LFSR is initialized deter-
mines the operation of the register and may be viewed as a
random seed that initializes the LFSR pseudo-random gen-
eration. In the embodiment illustrated in FIG. 2A, and
referring to the i” value contained in the LFSR as R,, a first
block Ry=FE~!,,(0) may be used to initialize LFSR 204.
Because a secret key K, is used to generate R, the random
seed that initializes the LFSR pseudo-random generation is
still unknown to the attacker.

[0039] Blocks of plaintext P, (i=1, . . . , N) may be input
into the initialized LFSR through combining circuitry 208.
Combining circuitry 208 may combine the output of the
LFSR with the block of plaintext P, to generate a block of
obfuscated plaintext P', at output 210. For example, the
block of plaintext P, may be XORed with the output of the
LFSR to generate the block of obfuscated plaintext P';. Such
an operation is referred to as whitening the block of plaintext
P..

i
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[0040] Overall, the operation of whitening system 200 of
FIG. 2A may be expressed as follows:

@yl - HLN):(EAKO(O)HPM ... |[Py)DIV POLY,

where POLY represents the feedback polynomial of LFSR
204, P|| . . . ||P, represents a concatenation (e.g., using the
concatenation symbol II) of the blocks of plaintext P, input
at 202, E™',(0) represents the value used to initialize LFSR
204, and L] ... ||L, represents a concatenation of the blocks
of output bits in output bitstream L. Output bitstream L and
plaintext P may be combined to generate obfuscated or
whitened plaintext P' as follows:

@l - PW=E@ - IPXORE - - - L)
[0041] The operation of LFSR 204 may be described using
the following incremental equations:
Ly=0, (EQ. 1a)
Ro=E~ £0(0), (EQ. 1b)
L~R,_,|0)DIV POLY, (EQ. 1¢)
R~(R;_,|P;MOD POLY, (EQ. 1d)
where i=1, . .., N.
[0042] The first two equations (EQS. la and 1b) corre-

spond to initializing the LFSR by setting the initial value
contained in the LFSR R, and the first block of output bits
L,. As explained above, R, may be set to a block of mask
values generated from decrypting a vector of predetermine
values (e.g., all zeros) using cipher key K. In this way, even
if the vector of predetermined values is predictable, the
value obtained by decrypting the vector of predetermined
values using cipher key K, is still unknown to the attacker.
In some implementations, [, may be set to a vector of all
zeros. It should be understood that these initialization values
of R, and L, are merely exemplary and that R, and L., may
be initialized to any other suitable value.

[0043] The latter two equations (EQS. 1c and 1d) describe
the operation of the LFSR, and in particular, how the output
bitstream [, and the LFSR state R, are updated. As explained
above, the operation of the LFSR may be viewed as per-
forming division of the value contained in the LFSR R;_; by
the feedback polynomial POLY to generate output bitstream
block L,. As blocks of plaintext P, are input into the LFSR
204, the value contained in the LFSR R, may be expressed
as the result of concatenating the previous LFSR block (or
state) R,_, with a current block of plaintext P, and taking the
modulo polynomial POLY to generate the current LFSR
state R,.

[0044] FIG. 2B is an exemplary block diagram of an
unwhitening system for unwhitening blocks of obfuscated
plaintext according to an embodiment of the present inven-
tion. This system may be viewed as the counterpart of FIG.
2A and comprises LFSR 254 and combining circuitry 258.
Blocks of obfuscated plaintext P' are input into the LFSR
254 and combining circuitry 258. Combining circuitry 258
combines obfuscated plaintext P' and the output bitstream L
to generate unwhitened plaintext P.

[0045] Blocks of obfuscated plaintext P',, ..., P',,may be
input into LFSR 254 and combining circuitry 258. LFSR
254 may operate similarly to LFSR 204 of FIG. 2A above.
The operation of unwhitening system 250 of FIG. 2B may
be expressed as follows:
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Ry=E ™" gol0),
L=(R,_,]0)DIV POLY,
R~=(R,_,|IP,MOD POLY, and
P~LXORP",

where i=1, . . ., N. The first three equations are similar to
EQS. 1b, 1c, and 1d above, and describe the initialization
and operation of LFSR 258. The last equation describes the
operation of combining circuitry 258 to generate unwhitened
plaintext P from XORing output bitstream block L, and
obfuscated plaintext block P',.

[0046] Whitening (or unwhitening) the plaintext, as illus-
trated in FIGS. 2A and 2B above, may increase security
against DPA by masking the first round of AES encryption
(or the last round of the AES block decryption). Given that
these rounds are particularly vulnerable to DPA attacks, and
given that they operate on the key without modification of
plaintext or ciphertext, the plaintext obfuscation discussed
above may increase the security of the device against DPA
attacks.

[0047] In some embodiments, blocks of plaintext, P,, or
blocks of obfuscated plaintext, P';, e.g., as output by whit-
ening system 200 of FIG. 2A, may be input to an AES
encryption system. FIG. 3A is an exemplary block diagram
of an encryption system 300 for encrypting plaintext (obfus-
cated or not) using AES with a cipher key K. This cipher key
K 306 may be uploaded into the engine system and/or stored
in the engine system. Encryption system 300 may include a
block 302 for receiving and/or storing plaintext, a block 380
for receiving and/or storing corresponding ciphertext, and an
encryption block 304 that implements encryption function
Ex(). Encryption block 304 may receive a block of plaintext
(P, or P',) and generate a corresponding block of ciphertext
based on cipher key K.

[0048] A block of plaintext P, or obfuscated plaintext P',
may be input into block 302. An initial key mix operation
330 may be performed in which the plaintext block is
XORed with an initial round key 310. In normal AES, this
initial key is generated from a first portion of the cipher key
K. This initial key mix operation provides the starting data
for the first round 340. In some embodiments, instead of
generating the first round key R’, from the cipher key K (e.g.,
by expanding the initial key 310 R, that is based on the first
portion of the cipher key K), a round key for one block may
be used to generate a round key of another block. This will
be described in more detail below.

[0049] During the first round 340, the following opera-
tions occur: (a) a data block is transformed using S-box
substitution 342, row shifting 344, and column mixing 346,
(b) round key 312 is generated in key expansion block 308,
and (c) the transformed data block and round key 312 are
added together using an XOR operation in the AddRound-
Key 348 operation to provide the starting data block for the
next round. Similar operations are repeated for each 1 round
350 of AES (i.e., for each of the 14 rounds for AES256) with
the exception that the column mixing operation is omitted in
the final round 360. The details of the S-box substitution,
row shifting, and column mixing operations for the rounds
are described in the above-mentioned NIST document.
[0050] A sequence of round keys for each encryption
round (or key schedule) is generated from the initial cipher
key K using a key expansion routine, e.g., implemented by
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block 308. In AES, the length of the round keys is the same
as the block size (128 bits=4 words) regardless of the length
(128, 192, or 256 bits) of the original cipher key. The words
of the cipher key are used as is for generating the first round
keys, then each successive round key word is a function of
one or more of the preceding round key words. This gen-
erating of each successive round key word based on at least
one of the preceding round key words will be referred to
herein as the evolution of round keys. In AES256, encryp-
tion and decryption for a particular block evolve the round
keys in reverse order. If the fourteen decryption round keys
for block 1 are R!, through R’,,, then the encryption round
keys for block 1 will be R' , through R*,.

[0051] According to some embodiments, the cipher key
used for encrypting subsequent blocks of plaintext or obfus-
cated plaintext is different with every block. This is different
from normal AES where the same key schedule based on the
same cipher key K is used for every block and the initial
round key (i.e., round key 310) used in the first round of AES
for every block is filled from the first words of the cipher key
K. In some embodiments, encrypting a first block of plain-
text P, (or P';) may use the same sequence of 14 round keys
(or key schedule) as normal AES based on the original
cipher key K. However, encrypting a second block of
plaintext P, (or P',) may use a different key schedule. For
example, a sequence of round keys for encrypting P, may be
based on expanding an initial round key that is different from
the one used for P,.

[0052] In some embodiments, every block may be
encrypted using a different key such that the keys for
encrypting subsequent blocks of plaintext are related. In
some implementations, the round keys for encrypting dif-
ferent blocks of plaintext may continue to evolve between
blocks. For example, the key used for encrypting a block of
plaintext or obfuscated plaintext may be derived based on a
function of the previous plaintext, the previous ciphertext,
the previous key used to encrypt the previous plaintext or
decrypt the previous ciphertext, and/or the previous LFSR
value used to whiten the previous plaintext or unwhiten the
previous ciphertext.

[0053] FIG. 3B is an exemplary block diagram represent-
ing the continuous evolution of cryptographic keys in a
decryption system according to some embodiments. In the
example illustrated in FIG. 3B, each row may correspond to
one cryptographic round and each column may correspond
to one block of ciphertext. In the particular example of FIG.
3B, 14 decryption rounds and three blocks are illustrated.
Each box depicts a decryption round key R”, that may be
used to decrypt block n during round 1. The decryption keys
of'each column form a sequence of keys associated with one
block of ciphertext. As explained above in connection with
key expansion block 308 of FIG. 3A, a decryption round key
R”,,; may be derived from a decryption round key of a
previous round, e.g., R”,, The relationship between the
decryption round keys associated with one block may be
expressed using a function f( ) where 1 refers to the
decryption round. This function f( ) may describe the
intra-block round key evolution used from decryption round
key R™ to decryption round key R”,,,. For AES128, the
round key for block n and round 1+1 can be derived as a
function f( ) of the previous round key (i.e., R”,, ,=f(R")
because f)( ) is the same, regardless of round 1). For AES256,
the even and odd rounds have different functions because the
even and odd round keys are a function of the upper and



US 2020/0244434 Al

lower 128 bits of the cipher key K. Other types of block
ciphers may have different functions for each round.
[0054] According to some embodiments of the present
disclosure, the decryption round key for a block n may
depend on the value of a decryption round key for a previous
block n-1. For example, the first round decryption key for
block n may be derived from the last round decryption key
used for block n-1. An intra-block function f,( ) may be
defined to extend the inter-block function f( ) described
above and describe the evolution of decryption round keys
between blocks, i.e., such that R™*!, =f,(R")). For example,
and as shown by the arrow from the first to the second
column labeled f,,( ), the decryption round key R?, may be
obtained from the decryption round key of the previous
block, R',,, by applying inter-block function f,,( ) (i.e.,
R? =f,(R'},)). This means that the key evolution of decryp-
tion round keys may continue between blocks. In standard
AES256, f,,() is not strictly defined (as the key is evolved,
i.e., expanded, only 13 times to get 14 round keys, and the
key of the first round key for the second block is regenerated
from cipher key K, i.e., similarly to the first round key for
the first block). In some embodiments that employ intra-
block key evolution with an AES engine, f, ,( ) may be
defined to be equal to the decryption key evolution function
of the last even round, i.e., f,,().

[0055] The relationship between the decryption round
keys illustrated in FIG. 3B may also define the relationship
between encryption round keys R”,,, . . ., R”, used for
encryption. FIG. 3C is an exemplary block diagram repre-
senting the continuous evolution of cryptographic keys in an
encryption system with 14 encryption rounds and three
blocks. Letting f',( ) correspond to the inverse of the
decryption key evolution function f)( ) described above (both
within and between blocks, i.e., inter and intra-block), the
evolution of encryption round keys within each block n may
be defined as R”~"'*,(R",,,). The evolution of encryption
round keys between blocks n+1 and n may be defined by
R” ="' (R"*'). This evolution of encryption round keys
may be viewed as the inverse of the evolution of the
decryption keys of FIG. 3B.

[0056] In some embodiments, it may not be practical to
evolve the encryption keys from the last block to the first
block in order to starting encrypting the first block. For
example, it may not be practical to start from R>, to
compute R'; by sequentially applying ', ), per the order
illustrated in FIG. 3. Instead of computing the encryption
round keys backwards from the last block to the first block,
the 14 encryption round keys R”,,, . . ., R”, may be obtained
by first expanding the 14 decryption round keys R”, . . .,
R”,,. In other words, each sequence of encryption round
keys associated with block n (i.e., R” 4, ..., R"}) may be
computed by generating the corresponding sequence of
decryption round keys (i.e., R”,, ..., R”,, as described in
FIG. 3B above), and then inverting the order of the gener-
ated sequence of decryption round keys.

[0057] As discussed above, key schedule routines are
specifically vulnerable to DPA attacks. According to one
approach, an attacker may generate two large sets of cipher-
text blocks and monitor the power consumption of a device
while the device decrypts both sets of ciphertexts. Statistical
analysis of the difference in power consumption between
both sets may help derive information about the cipher key.
The techniques described above of letting the round keys
continue to evolve between block encryptions may increase
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the security of the device against these types of attacks
because the keys used to decrypt the ciphertexts may vary
with each block.

[0058] In some embodiments, the intra-block key evolu-
tion approach described in FIGS. 3A-3C above may be
applied to cipher block modes of operation e.g. Counter
Mode (CTR) or Cipher-Block-Chaining mode (CBC). In
some embodiments, the evolving key approach may be
combined with any other DPA resistant methods and systems
such as the ones described herein.

[0059] In some embodiments, the security of the device
against DPA may further be enhanced by obfuscating the
substitution blocks used in a cryptographic algorithm, e.g.,
the S-box used in the S-box substitution operation 342 of
FIG. 3A. FIG. 4 is an exemplary block diagram of system
400 for obfuscating a cryptographic substitution box accord-
ing to an embodiment of the present invention. System 400
includes S-box 206, which may be implemented in hardware
or software on an encryption device, e.g., on a PLD or an
encryption system in configuration device. An S-box is a
typical component of symmetric key cryptographic algo-
rithms that is used to obscure the relationship between the
key and the data to be encrypted or decrypted. The S-box
may be implemented as a table lookup that is indexed by a
combination of key bits and plaintext. For example, each
byte of input text 202 may be replaced with another byte 208
according to the look up table and using the cipher key K.
[0060] S-boxes may be vulnerable to DPA attacks. An
attacker may control the plaintext values and make guesses
at the key bits. Based on these guesses, computations are
performed on the monitored power consumption to form a
set of DPA data. The DPA data is analyzed to determine with
of the key bit guesses was likely correct. These types of
attacks may be mitigated by obfuscating S-boxes used, for
example, during AES.

[0061] In some embodiments, S-box 206 may be obfus-
cated by interleaving input data 202 with random data 204.
This random data may not be part of the plaintext or
ciphertext. In some implementations, random data 204 may
be true random, e.g., generated by a true random number
generator (TRNG) implemented in an FPGA. In some
implementations, random data 204 may be pseudo-random,
e.g., generated with an LFSR similar to LFSR 204 from FIG.
2. In some implementations, random data 204 may be
generated from a separate cryptographic method operating
on an unrelated block of data.

[0062] Inaddition to or instead of the techniques described
above for obfuscating plaintext, continuously evolving cryp-
tographic round keys, and/or obfuscating substitution tables,
security of a device may be enhanced by obfuscating cipher-
text as illustrated in FIGS. 5-8 below.

[0063] FIG. 5A shows an exemplary block diagram of
encryption system 500 for encrypting data according to
some embodiments. Encryption system 500 may include
encryption blocks 506, 516, 526, and 536. These encryption
blocks may be implemented as encryption block 300 of FIG.
3A, using normal AES or AES modified to use continuously
evolving keys. System 500 may also include combining
circuitries 502, 512, 522, 532, 504, 514, 524, 534, 508, 518,
528, and 538. Each one of these combining circuitries may
be implemented similarly to combining circuitry 208 of FI1G.
2A. It should be noted that the number of encryption blocks
and the number of combining circuitries are exemplary and
not intended to limit the scope of the present invention.
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[0064] Blocks of plaintext P,, P,, P;, and P, are whitened
using whitening bistream blocks L;, L,, L5, and L. These
whitening bistream blocks may be generated using an LFSR
as described in FIG. 2A above. The plaintext blocks and
whitening bistream blocks are combined using combining
circuitries 502, 512, 522, and 532 to output blocks of
obfuscated plaintext P';, P',, P';, and P',. The first block of
plaintext P, may be set to an initialization vector (IV). An IV
is a fixed-size seed input to a cryptographic mode that is
typically random or pseudorandom. For block ciphers, the
use of an IV randomizes the encryption and hence produces
distinct ciphertexts even if the same plaintext (P,, P5, .. .)
is encrypted multiple times.

[0065] The blocks of obfuscated plaintext P';, P',, P'5, and
P', are further obfuscated by combining them, respectively,
with blocks of ciphertext C,, C,, C,, and C; using combin-
ing circuitries 504, 514, 524, and 534. In some embodi-
ments, ciphertext block C, may be initialized to zero, or to
any other suitable value. Ciphertext blocks C,, C,, and C;
are output from encryption blocks 506, 516, and 526,
respectively, as will be discussed below. The blocks result-
ing from combining the blocks of obfuscated plaintext and
the blocks of ciphertext are referred to as blocks of further
obfuscated plaintext H,, H,, H;, and H,.

[0066] Blocks H,, H,, H;, and H, are encrypted using
encryption blocks 506, 516, 526, and 536 to generate
ciphertext blocks C,, C,, C;, and C,. In some embodiments,
encryption blocks 506, 516, 526, and 536 may use different
cipher keys K, K,, K;, and K,,. For example, the keys K,
K,, K5, and K, may be obtained using the evolving key
approach described in FIGS. 3A-C above. In some embodi-
ments, encryption blocks 506, 516, 526, and 536 may use the
same cipher key, e.g., as defined in normal AES
(K =K>=K=Ky).

[0067] The first obfuscated block H, is fed into the first
encryption block 506 to generate a block of ciphertext
C,=E,(H,), i.e., the result of encrypting H, with cipher key
K, . Combining circuitry 508 combines the output of the first
encryption block 506 with a block of mask values H,=E~
1z0(0) to generate a first block of obfuscated ciphertext C',.
This block of mask values may be generated by decrypting
a vector of all zeros using cipher key K,,. This first block of
obfuscated ciphertext C'; may thus be expressed as C; XOR
H,.
[0068] The block of ciphertext C, is combined with the
second block of obfuscated plaintext P', using combining
circuitry 514. The output of combining circuitry 514, H,, is
fed into the second encryption block 516. Second encryption
block 516 encrypts H, to generate a second block of cipher-
text C,=E,(H,). Combining circuitry 518 combines the
first block of further obfuscated plaintext H, with the second
block of ciphertext C, to generate a second block of obfus-
cated ciphertext C',. The operation of combining circuitry
518 may be viewed as whitening the block of ciphertext C,
with the prior block of further obfuscated plaintext H; to
output the block of obfuscated ciphertext C',.

[0069] Similar operations may be repeated to generate a
third block and fourth block of ciphertext C; and C, and a
third block and fourth block of obfuscated ciphertext C'; and
C,.

[0070] In general, the blocks of obfuscated plaintext,
further obfuscated plaintext, ciphertext, and obfuscated
ciphertext that are output by encryption system 500 may be
expressed using the following equations:
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Ly0, (EQ. 1a)
Ro=E ™' 1(0), (EQ. 1b)
L~(R,_,|0)DIV POLY, (EQ. 1¢)
R~(R;_,|P,)MOD POLY, (EQ. 1d)
Ho=E'x0(0), (EQ. 22)
Co=0, (EQ. 2b)
P=1IV, (EQ. 2¢)
P'=LXORP, (EQ. 3a)
H;=P'XORC;_j, (EQ. 3b)
C=Eg(H,), (EQ. 3¢)
C'=CXORH,_,, (EQ. 3d)

where i=1, . . ., N. The first set of equations, EQS. 1a, 1b,

lc, and 1d, is the same as the incremental LFSR equations
of FIG. 2A and corresponds to the generation of bitstream
blocks L, L,, L5, and L,,. The second set of equations, EQS.
2a, 2b, and 2c, corresponds to initialization values for the
inputs of combining circuitries 504, 508, and 502, respec-
tively. The third set of equations, EQS. 3a, 3b, 3¢, and 3d,
represents the relation between blocks of plaintext P,, blocks
of obfuscated plaintext P',, blocks of further obfuscated
plaintext H,, blocks of ciphertext C,, and blocks of obfus-
cated ciphertext C',, as described above. It should be noted
that the initialization values are merely illustrative, and that
any suitable value may be used to initialize L,, R,, H,, C,
and P,.

[0071] The blocks of obfuscated ciphertext output by
encryption system 500 may be decrypted using decryption
system 550 illustrated in FIG. 5B. Decryption system 550
may include decryption blocks 554, 564, 574, and 584, and
combining circuitries 552, 562, 572, 582, 556, 566, 576,
586, 558, 568, 578, and 588. These combining circuitries
may be implemented similarly to combining circuitry 208 of
FIG. 2A. It should be noted that the number of decryption
blocks and the number of combining circuitries are exem-
plary and not intended to limit the scope of the present
invention.

[0072] Blocks of obfuscated ciphertext C',, C',, C';, and
C', are fed into decryption system 550. These blocks of
obfuscated ciphertext may for example have been output
from encryption system 500 of FIG. 5A. Combining cir-
cuitry 552 may combine a first block of obfuscated cipher-
text C'1 with a block of mask values H,=E ™" ;,(0). In some
implementations, the block of mask values may be gener-
ated similarly to FIG. 5A, i.e., by decrypting a vector of all
zeros using cipher key K,. Combining circuitry 552 may
output a ciphertext block C,=C'; XOR H,, which is fed into
the first decryption block 554. First decryption block 554
decrypts ciphertext block C, with cipher key K, to produce
a first block of further obfuscated plaintext H;.

[0073] The first block of further obfuscated plaintext H,
may be combined with a block of ciphertext C, using
combining circuitry 556. The output of the combining
circuitry 556 corresponds to obfuscated plaintext block P';.
This block of obfuscated plaintext P'; may be unwhitened
with bistream block L, to generate a block of plaintext P, .
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The bistream block [, may be generated by an LFSR such
as the one depicted in FIG. 2B.

[0074] The block of further obfuscated plaintext H, is
combined with obfuscated ciphertext block C', using com-
bining circuitry 562 to generate a block of ciphertext C,.
This block of ciphertext C, is decrypted using decryption
block 564 to generate H,. Block H, is combined with
ciphertext block C, to generate obfuscated plaintext block
P',. This block of obfuscated plaintext P', may be unwhit-
ened similarly to P'; in order to generate plaintext block P,.
[0075] Similar operations may be repeated to generate a
third and fourth block of obfuscated plaintext P'; and P',, and
a third and fourth block of plaintext P; and P,,. The operation
of decryption system 550 may be summarized using the
following equations:

Ro=E ™! 0(0), (EQ. 4a)
L~(R,_,|0)DIV POLY, (EQ. 4b)
R~(R,_{||P;)MOD POLY, (EQ. 4¢)
Hy=E ™' 10(0), (EQ. 523)
Cy=0, (EQ. 5b)
C~C'XORH,_j, (EQ. 63)
H=E"'%(C), (EQ. 6b)
P'=HXORC, ,, (EQ. 6¢)
P,=LXORP", (EQ. 6d)
where i=1, . . ., N. The first set of equations, EQS. 4a, 4b,

and 4c, is the same as the incremental LFSR equations of
FIG. 2B and corresponds to the generation of bitstream
blocks L, L,, L5, and L. The second set of equations, EQS.
Sa and 5b, corresponds to initialization values for the inputs
of combining circuitries 552 and 556, respectively. The third
set of equations, EQS. 6a, 6b, 6¢, and 6d, represents the
relation between blocks of obfuscated ciphertext C';, blocks
of ciphertext C,, blocks of further obfuscated plaintext H;,
blocks of obfuscated plaintext P',, and blocks of plaintext P,,
as described above. These equations are the reverse of the
encryption equations 3a, 3b, 3¢, and 3d above. It should be
noted that the initialization values are merely illustrative,
and that any suitable value may be used to initialize R, H,
and C,.

[0076] Although the encryption and decryption blocks and
operations illustrated in FIGS. 5A and 5B above use cipher
keys with different indices K, K,, K, and K, it should be
understood that these cipher keys may be the same or
different. In some implementations, these keys may be set to
one value K, e.g., for normal AES (K,=K,=K;=K,). In some
implementations, these keys may be different and may be
generated using the evolving key approach described in
FIGS. 3A-C above.

[0077] An illustrative implementation of the decryption
system of FIG. 5B is shown in FIG. 6. Decryption system
600 of FIG. 6 may include M-bit shift registers 604 and 618,
M-bit linear feedback shift register (LFSR) 640, decryption
engine 614, registers 608 and 609, and combining circuitries
610, 616, and 644. LFSR 640 may be implemented similarly
to LFSR 204 of FIG. 2B. Combining circuitries 610, 616,
and 644 may be implemented similarly to combining cir-
cuitry 208 of FIG. 2A.
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[0078] Input shift register 604 may receive blocks of
obfuscated ciphertext C'; (i=1, .. ., N). These blocks may be
output, for example, from encryption system 500 of FIG.
5A. In some embodiments, the blocks of obfuscated cipher-
text may be received sequentially by shift register 604, such
that, as input shift register 604 is receiving C',, ,, input shift
register 604 is outputting C', ,, register 608 is outputting C',,
and register 609 is outputting C',_,. This arrangement is
merely illustrative, and any number of registers 608 or 609
or configurations of input shift register 604 may be used as
appropriate.

[0079] Combining circuitry 610 may receive a first block
of obfuscated ciphertext C',,, from shift register 604 and
combine it with an output of decryption engine 614 to
generate a corresponding block of ciphertext C,,,. The
output of combining circuitry 610 is coupled to the decryp-
tion engine 614. Decryption engine 614 may decrypt the first
block of ciphertext C,,, to output a first block of further
obfuscated plaintext H,, e.g., as specified in EQ. 6a above.
The block of further obfuscated plaintext H, may be fed back
to combining circuitry 610 to generate the corresponding
block of ciphertext C,, |, e.g., as specified in EQ. 6b above.
[0080] The output of combining circuitry 610 may also be
coupled to serially connected registers 608 and 609, for
storing the previous two generated ciphertext blocks C, and
C,,,, respectively. Combining circuitry 616 may combine
the block of ciphertext output by register 609 (e.g., C,_))
with the block of further obfuscated plaintext H, to output a
block of obfuscated plaintext P',, as specified in EQ. 6¢
above.

[0081] The block of obfuscated plaintext P', (i=1, .. . , N)
may be input into shift register 618, which is coupled to
combing circuitry 644 and LFSR 640. Combining circuitry
644 and LFSR 640 are arranged similarly to system 250 of
FIG. 2B above, and are configurable to unwhiten the block
of obfuscated plaintext P, to generate a block of plaintext P,,
e.g., as described in EQ. 6d above.

[0082] In some embodiments, the feedback line 620 from
the output of decryption engine 614 to the input of combin-
ing circuitry 610 may be selectively disabled. By disabling
this feedback line, decryption engine 614 may implement
decryption algorithm using normal CBC mode (i.e., without
whitening obfuscated ciphertext blocks with prior plaintext
blocks H,.)

[0083] The techniques of obfuscating plaintext and cipher-
text described above may help make a device more secure
against DPA. First, by masking both the input and output of
the AES engine, DPA attacks may be prevented on the first
and last round of a single block decryption, which are
typically the most vulnerable rounds. Second, the attacker
may be prevented from injecting multiple known ciphertext
blocks with varying different bits, because all subsequent
ciphertext blocks would be cryptographically corrupted. For
example, an attacker may toggle bits of only one ciphertext
block, C';, in a known fashion, and analyze the power
profiles of the device while the device decrypts a large
number of ciphertexts differing in this one ciphertext block
C',. Using the techniques for whitening or obfuscating
ciphertext blocks described above, changing one ciphertext
block would propagate across all following ciphertext
blocks, which would make this type of attack substantially
more difficult.

[0084] In some embodiments, decryption engine 614 may
decrypt each block C, using the same cipher key K. In some
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embodiments, decryption engine 614 may implement con-
tinuously evolving key as described in FIGS. 3A-C above.
For example, decryption engine 614 may expand cipher key
K from one block to the next. For instance, the first round
key in decrypting ciphertext block C, may be initialized to
the value of the final round key used in decrypting ciphertext
block C,.

[0085] In some embodiments, AES decryption engine 614
may implement the S-box obfuscation described in FIG. 4
above. In some implementations, decryption engine 614
may implement the AES algorithm using 4 S-boxes that are
obfuscated as described in FIG. 4 above, e.g., using true
random or pseudo-random data.

[0086] FIGS. 7A, 7B, and 8 are variants of the encryption
and decryption systems illustrated in FIGS. 5A, 5B, and 6,
respectively.

[0087] FIG. 7A is an exemplary block diagram of an
encryption system 700 for encrypting data according to
some embodiments. System 700 may operate similar to
system 500 of FIG. 5A, except that ciphertext blocks C, are
obfuscated with blocks of obfuscated plaintext P',_,, instead
of with blocks of further obfuscated plaintext H,_, as is the
case in system 500. For example, combining circuitry 718 is
coupled to an output of combining circuitry 702 through line
710. In contrast, in FIG. 5A, combining circuitry 518 is
coupled to an output of combining circuitry 504 through line
510.

[0088] The operation of system 700 may be described
using equations similar to system 500, with EQS. 2a and 34
modified as follows:

Plo=E""go(0), (EQ. 2a)

C"=CXOR P';_,. (EQ. 3d)

The value P'y of EQ. 2a' corresponds to the initialization
value for the input of combining circuitry 708. It should be
noted that this initialization value is merely illustrative, and
that any suitable value may be used to initialize P',. The
obfuscation of ciphertext blocks using previous obfuscated
plaintext blocks is shown in EQ. 3d'.

[0089] FIG. 7B is an exemplary block diagram of a
decryption system 750 for decrypting data according to
some embodiments. System 750 may operate similar to
system 550 of FIG. 5B, except that obfuscated ciphertext
blocks C'; are unwhitened with blocks of obfuscated plain-
text P',_|, instead of with blocks of further obfuscated
plaintext H, , as is the case in system 550. For example,
combining circuitry 762 is coupled to an output of combin-
ing circuitry 756 through line 760. In contrast, in FIG. 5B,
combining circuitry 562 is coupled to an output of decryp-
tion block 554 through line 560.

[0090] The operation of system 750 may be described
using equations similar to system 550, with EQS. 5a and 6a
modified as follows:

Plo=E " kol0), (EQ. 5a)

C=C'XORP', |, (EQ. 62)

The value P'y of EQ. 5a' corresponds to the 2a' corresponds
to the initialization value for the input of combining circuitry
756. It should be noted that this initialization value is merely
illustrative, and that any suitable value may be used to
initialize P';. The unwhitening of obfuscated ciphertext
blocks using previous obfuscated plaintext blocks is shown
in EQ. 6a'.
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[0091] An illustrative implementation of the decryption
system of FIG. 7B is shown in FIG. 8. System 800 of FIG.
8 may operate similar to system 600 of FIG. 6, except that
feedback line 820 connects an output of combining circuitry
818 to combining circuitry 810. In contrast, in FIG. 6,
feedback line 620 connects the output of the decryption
engine to combining circuitry 610. This modification reflects
EQ. 6a' above, such that blocks of obfuscated ciphertext are
unwhitened using previous blocks of obfuscated plaintext
P',, rather than previous blocks of further obfuscated plain-
text H,.

[0092] FIG. 9 shows an exemplary flowchart of process
900 for encrypting data in accordance with some embodi-
ments. Process 900 may be executed, for example, in a
system for encrypting configuration data that may be exter-
nal or internal to a programmable device.

[0093] At 902, plaintext is received, for example, configu-
ration data for configuring PLLD 100 of FIG. 1 is received at
the encryption system.

[0094] At 904, it is determined whether plaintext obfus-
cation is enabled. For example, a bit register in the configu-
ration device may be set to enable or disable this feature. In
some embodiments, plaintext obfuscation may always be
enabled. If plaintext obfuscation is enabled, then plaintext is
whitened at step 906, for example, as described in FIG. 2A
above. Step 908 may then be performed. Alternatively, if
plaintext obfuscation is disabled, then 908 may be immedi-
ately performed.

[0095] At 908, it is determined whether continuous key
evolution is enabled. For example, a bit register in the
configuration device may be set to enable or disable allow-
ing the key to continue to evolve in between blocks. This
may be useful for users who want to implement AES strictly
according to the NIST standard, i.e., by generating round
keys for each block encryption starting from the cipher key.
If continuous key evolution is not enabled, then 912 may be
performed. Alternatively, if at 908 key evolution mode is
enabled, then 910 may be performed.

[0096] At 910, plaintext (or obfuscated plaintext from 906
if plaintext whitening is enabled) is encrypted with such that
different blocks are encrypted with different keys, as
described in connection with FIGS. 3A-C above. Otherwise,
at 912, plaintext (or obfuscated plaintext from 906 if plain-
text whitening is enabled) is encrypted using normal AES,
i.e., using the original cipher key for generating the sequence
of round keys (key schedule).

[0097] At 914, it is determined whether S-box obfuscation
is enabled. For example, a bit register in the configuration
device may be set to enable or disable this feature. Given
that obfuscating cryptographic S-boxes may add computa-
tional overhead, a user may wish to disable this feature in
some implementations.

[0098] If S-box obfuscation is enabled, plaintext is
encrypted at 916 using obfuscated S-boxes as described in
connection with FIG. 4 above, where plaintext is input into
the obfuscated S-box. If S-box obfuscation is disabled,
plaintext is encrypted at 918 using non-obfuscated S-boxes,
such as the normal AES S-boxes.

[0099] At 920, it is determined whether ciphertext obfus-
cation is enabled. If it is, 922 may be performed. Otherwise,
924 may be performed.

[0100] At 922, encryption is carried out by whitening
output blocks of ciphertext with blocks of plaintext (that
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may have been whitened or not at 906). This may be
implemented using encryption system 500 of FIG. 5A or
encryption 700 of FIG. 7A.

[0101] Alternatively, if ciphertext obfuscation is not
enabled, then the normal cryptographic method (e.g., AES
encryption) may be implemented using normal CBC mode.
[0102] Finally, at 930, ciphertext corresponding to the
plaintext received at 902 is output.

[0103] FIG. 10 shows an exemplary flowchart of process
1000 for decrypting data in accordance with some embodi-
ments. Process 1000 may be executed, for example, in a
system for decrypting configuration data in a programmable
device, e.g., decoder 102 of programmable logic device 100
of FIG. 1.

[0104] At step 1002, ciphertext is received, for example,
encrypted configuration data for configuring PLD 100 of
FIG. 1 is received at the decryption system, or ciphertext
output by encryption process 900 of FIG. 9.

[0105] At 1004, it is determined whether ciphertext obfus-
cation is enabled. For example, feedback lines 620 of FIG.
6 or 820 of FIG. 8 may be enabled in this case. If ciphertext
obfuscation is enabled, 1006 may be performed. Otherwise,
1008 may be performed.

[0106] At 1006, decryption is carried out by whitening
ciphertext with blocks of plaintext. This may be imple-
mented using decryption systems 550 of FIG. 5B, 600 of
FIG. 6, 750 of FIG. 7B, or 800 of FIG. 8. Alternatively, at
1008, if ciphertext obfuscation is not enabled, then the
normal cryptographic method (e.g., AES decryption) may be
implemented using normal CBC mode. For example, feed-
back lines 620 of FIG. 6 or 820 of FIG. 8 may be disabled
in this case.

[0107] At 1010, it is determined whether S-box obfusca-
tion is enabled. If S-box obfuscation is enabled, ciphertext is
decrypted at 1012 using obfuscated S-boxes as described in
connection with FIG. 4 above, where ciphertext is input into
the obfuscated S-box. Otherwise, if S-box obfuscation is
disabled, ciphertext is decrypted using non-obfuscated
S-boxes at 1014, such as the normal AES S-boxes.

[0108] At 1016, it is determined whether continuous key
evolution is enabled. If continuous key evolution is disabled,
then ciphertext may be decrypted using normal AES decryp-
tion at 1020. Alternatively, if the key evolution mode is
enabled, then 1018 may be performed.

[0109] At 1018, ciphertext is decrypted with a continu-
ously evolving key, as described in connection with FIGS.
3A-B. In some implementations, different cipher keys may
be used to decrypt different blocks. In some implementa-
tions, while running the AES decryption based on cipher key
K, decryption of a subsequent block may use round keys that
have been expanded from the key schedule of a previous
block decryption.

[0110] At 1022, it is determined whether plaintext obfus-
cation is enabled. If plaintext obfuscation is enabled, then
whitened plaintext is whitened at step 1024, for example, as
described in FIG. 2B above. In particular, whitening blocks
of whitened plaintext using LFSR 254 and combining cir-
cuitry 258 of FIG. 2B may generate corresponding blocks of
plaintext.

[0111] Finally, at 1026, plaintext (e.g., corresponding to
configuration data) that corresponds to ciphertext received at
1002 is output.

[0112] It will be understood that the above steps of pro-
cesses 900 and 1000 may be executed or performed in any
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order or sequence not limited to the order and sequence
shown and described in the figure. Also, some of the above
steps of process 900 and 1000 may be executed or performed
substantially simultaneously where appropriate or in parallel
to reduce latency and processing times.

[0113] It will be understood that the foregoing is only
illustrative of the principles of the invention, and that
various modifications can be made by those skilled in the art
without departing from the scope and spirit of the invention.
For example, the various elements of this invention can be
provided on a PLD in any desired number and/or arrange-
ment. One skilled in the art will appreciate that the present
invention can be practiced by other than the described
embodiments, which are presented for purposes of illustra-
tion and not of limitation, and the present invention is
limited only by the claims that follow.

1-20. (canceled)

21. A system, comprising:

an electronic device to generate an encrypted bitstream to

configure a field programmable gate array (FPGA),

wherein the electronic device is operable to:

encrypt a first block of an unencrypted bitstream based
on a first key to generate a first encrypted block of
the encrypted bitstream;

encrypt a second block of the unencrypted bitstream
based on a second key to generate a second
encrypted block of the encrypted bitstream; and

encrypt a third block of the unencrypted bitstream
based on a third key to generate a third encrypted
block of the encrypted bitstream; and

the FPGA, wherein the FPGA is operable to receive the

encrypted bitstream and use an internal decryption

engine to:

decrypt the first encrypted block based on the first key;

obtain the second key based on the decryption of the
first encrypted block;

decrypt the second encrypted block based on the sec-
ond key;

obtain the third key based on the decryption of the
second encrypted block; and

decrypt the third encrypted block based on the third
key.

22. The system of claim 21, wherein the encrypted
bitstream is stored in an off-chip memory prior to sending
the encrypted bitstream to the FPGA.

23. The system of claim 21, wherein the FPGA stores the
first key in an on-chip memory of the FPGA.

24. The system of claim 21, wherein the internal decryp-
tion engine decrypts using an Advanced Encryption Stan-
dard (AES) algorithm.

25. The system of claim 21, wherein the first key, the
second key, and the third key are different from one another.

26. The system of claim 21, wherein the encrypted
bitstream results in a disabled readback of configuration.

27. The system of claim 21, wherein the first key com-
prises a user-supplied key.

28. The system of claim 21, wherein the first key is
obfuscated.

29. The system of claim 21, wherein the decrypted first
block, the decrypted second block, the decrypted third
block, or a combination thereof, are stored as configuration
data in configuration memory of the FPGA.

30. The system of claim 29, wherein the configuration
data is used to configure the FPGA.
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31. The system of claim 21, wherein the first key is a
symmetric key enabling access to the encrypted bitstream.
32. A field programmable gate array (FPGA) configured
to receive a plurality of blocks of an encrypted bitstream, the
FPGA comprising:
a plurality of configurable logic blocks;
a decryption engine configured to:
decrypt a first block of the plurality of blocks, wherein
decrypting the first block is based on a first key; and
decrypt successive blocks of the plurality of blocks
using successive keys, wherein the successive keys
are determined based on a previously decrypted
block of the plurality of blocks; and
configuration memory configured to store at least part of
the decrypted first block, the decrypted successive
blocks, or some combination thereof, as configuration
data, wherein the configuration data configures the
plurality of configurable logic blocks of the FPGA.
33. The FPGA of claim 32, wherein the plurality of blocks
are stored in an external memory device separate from the
FPGA before decryption by the decryption engine.
34. The FPGA of claim 32, wherein the first key is stored
on an on-chip memory of the FPGA.
35. The FPGA of claim 32, wherein the decrypting
comprises using an Advanced Encryption Standard (AES)
algorithm.
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36. The FPGA of claim 32, wherein the successive keys
are unique keys.

37. A method for configuring a field programmable gate
array (FPGA) with an encrypted bitstream, comprising:

partitioning an unencrypted bitstream into a plurality of

blocks;

encrypting a first block of the plurality of blocks based on

a first key;

encrypting successive blocks of the plurality of blocks

based on successive keys;

transmitting the encrypted plurality of blocks to a decryp-

tion engine to decrypt the encrypted plurality of blocks;
direct a decryption of the first block based on the first key;
and

direct a decryption of the successive blocks based on the

successive keys, wherein the successive keys are deter-
mined based on a decryption of a previously encrypted
block of the successive blocks.

38. The method of claim 37, wherein the first key is stored
in an on-chip memory of the FPGA.

39. The method of claim 37, wherein the decrypted first
block, the decrypted successive blocks, or a combination
thereof, are stored as configuration data in configuration
memory of the FPGA.

40. The method of claim 39, wherein the configuration
data is used to configure the FPGA.
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