US 20200242093A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0242093 A1

Simeonov 43) Pub. Date: Jul. 30, 2020
(54) HIGH-ACCURACY DATA PROCESSING AND GO6N 20/00 (2006.01)
MACHINE LEARNING TECHNIQUES FOR GOG6F 16/2453 (2006.01)
SENSITIVE DATA (52) US. CL
CPC GO6F 16/215 (2019.01); GOGF 21/6254
(71) Applicant: Swoop Inc., Cambridge, MA (US) (2013.01); GO6F 16/212 (2019.01); GO6F
. . . 16/24542 (2019.01); GO6F 16/2246 (2019.01);
(72) Inventor: Simeon Slmeonov, Llncoln, MA (US) GO6N 20/00 (2019.01); GO6F 21/6245
(21) Appl. No.: 16/773,151 (2013.01)
(22) Filed: Jan. 27, 2020 67 ABSTRACT
L. Flexible, high-accuracy data processing techniques and
Related U.S. Application Data accompanying systems avoid criticality in intermediate
(63) Continuation of application No. 16/255,024, filed on computations through intelligent, low cost sanitization of
Jan. 23, 2019, now Pat. No. 10,572,459. data operations. A data processing operation including one
. o or more plans is received, with each plan having a data
(60) Provisional application No. 62/620,679, filed on Jan. operation described as a tree based-structure. The plans that
23, 2018. are determined to create criticality on execution are sanitized
Publication Classification by transforming the. plan itself, ancestors, and/or children of
the plan. Determining whether execution of a plan creates
(51) Int. CL criticality is based on the determination of whether a set of
GOG6F 16215 (2006.01) criticality conditions includes data signals that are associated
GOG6F 21/62 (2006.01) with the plan. After sanitization, the data processing opera-
GOG6F 1621 (2006.01) tion can be fully executed without criticality arising in
GOG6F 16/22 (2006.01) intermediate operations.

/\ “"/m 111

T 107

Patent Application Publication Jul. 30,2020 Sheet 1 of 5 US 2020/0242093 A1

108

103
101 7

T 113
107

US 2020/0242093 A1l

€0

Jul. 30, 2020 Sheet 2 of 5

uogeiado

{1 Buissesoad Bjep snsoxy
82 .

O

10¢

Patent Application Publication

uppd sziueg

1

(23Rt

uejd
403 Algesnuos sulusisg

————{E31IT JON—

1

SOA

usiieiado
Buissanoid giep oI008y

US 2020/0242093 A1l

Jul. 30, 2020 Sheet 3 of 5

Patent Application Publication

o8

€08

3SR} suyaq

A

ABarens AbBsyess
HOREZIIURS 818040 uciezinues Ajddy
& 08) H
804
asyeiduwiog

7 comdwey

. poaosdde
N eud sy sy

US 2020/0242093 A1l

Jul. 30, 2020 Sheet 4 of 5

aziund0 1981 B SIEDURA
A A - 6680 DZo XAz
¥ ¥ . - A ZAX
= B GomoBa &—{ - mmo 0 iﬁm _
ybse] EHE I - gp eye | £z sioos | pusned | P Bosiad
A
UONNSEXT TIPSR WHOHBIY IY ¢ S0USIOG BB
& m 4
14 & 33
8
i ¥
) Ay 9e6'0 65680 pZo 8680 pro
0C qie £81°0 £00°0 qie £00°0 gie
e uswles|pr waned BICTE BRHBHOO} 71 ©i0us P wened oA -tk P wened
% A
A yoyeznies
g 1
8R40 %
< BIO08 WUEROO ge60 66870 pzo - 668°0 pzo
2 L aec £81°0 200°0 qie -~ £0G°0 qie
¥ BI008 BRIRNN0 24008 X UOpUOS [l used BIBp Ueay {94008 X uniipuos [pi wened
LHIen AT A
@acsdi] pue 33RI8YH
WIOHEI 1Y 7 90uUB108 BB

% 434

Patent Application Publication

US 2020/0242093 A1l

Jul. 30, 2020 Sheet S of 5

055

r

Patent Application Publication

0€s
sonag sbaang

H 34

SEBI0I

US 2020/0242093 Al

HIGH-ACCURACY DATA PROCESSING AND
MACHINE LEARNING TECHNIQUES FOR
SENSITIVE DATA

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of U.S. Patent
Application No. 16/255,024, filed on Jan. 23, 2019, which
claims priority to and the benefit of U.S. Provisional Patent
Application No. 62/620,679, filed on Jan. 23, 2018, the
entirety of which is incorporated by reference herein.

FIELD OF THE INVENTION

[0002] The present disclosure relates generally to elec-
tronic data processing, and, more specifically, to systems and
methods for flexible, high-accuracy data processing of sen-
sitive data that avoid criticality in intermediate computa-
tions.

BACKGROUND

[0003] In a world increasingly shaped by analytics, data
science (DS), machine learning (ML) and artificial intelli-
gence (Al) techniques that are readily available, value and
competitive differentiation often stem from the data that is
available for processing. In many domains, for reasons
including but not limited to business, operational, legal,
regulatory, security and privacy concerns, it is desirable to
guarantee certain invariants during data processing.

[0004] For example, the HIPAA Privacy Rule refers to
protected health information (PHI) as “individually identi-
fiable health information.” Entities that handle PHI are
subject to a number of business and operational restrictions.
In order to avoid such restrictions, it may be desirable to
assert that, if data inputs are not PHI, then at no point during
processing will PHI be created. There are similar examples
in other domains involving potentially sensitive information
including but not limited to identifiable information (II) (a
superset of the traditionally narrow personally identifiable
information (PII)) as well as consumption data (be that of
physical or virtual goods, services or content), location data,
communications data, social graph information, government
records, vehicle telematics, blockchain-related information,
etc.

[0005] When processing potentially sensitive data, there
are a number of conventional approaches to ensuring the
absence of criticality involving a combination of three
techniques. (1) Data sanitization: Ahead of data processing,
the data is pre-processed to ascertain various properties such
as a certain level of k-anonymity or the absence of certain
type of fields in the data. This may be combined with a safe
harbor-type attestation by the entities involved in processing
the data. (2) Expert determination: An expert uses statistical
or scientific principles to ascertain with high degree of
certainty that criticality has not been achieved and/or will
not be achieved during data processing. (3) Externalizing
critical operations: Operations that involve criticality are
executed elsewhere, often at a separate business entity.
[0006] FEach approach has its drawbacks. For example,
data sanitation is typically done in preparation of performing
multiple operations on the data. As a result, the data is
typically over-sanitized via omission, redaction, randomiza-
tion, coding and related techniques. Further, this data sani-
tization affects the quality of output of data processing

Jul. 30, 2020

operations such as training machine learning and Al models.
Expert determination focuses on the data being processed as
well as the systems, controls and workflows for doing the
data processing. It is usually the case that a sample of data
is analyzed by the expert(s) to reach a determination. When
the data materially changes in either breadth or depth, a new
expert determination is required. This introduces cost and
friction as new data may not be readily usable until a new
determination is achieved. Externalizing critical operations
adds cost and complexity.

[0007] What is needed are techniques and supporting
systems that avoid criticality and avoid these and other
drawbacks inherent in current approaches.

BRIEF SUMMARY

[0008] In one aspect, a computer-implemented method
comprises the steps of receiving a data processing operation
comprising a plurality of plans, each plan comprising a data
operation having a tree-based structure, wherein the data
processing operation, when ordinarily executed, creates
criticality at least in intermediate operations; determining,
for each plan, whether execution of the plan creates criti-
cality, wherein the determining comprises identifying one or
more data signals associated with the plan and determining
whether a set of criticality conditions includes one or more
of the data signals; sanitizing each plan that, when executed,
creates criticality, wherein the sanitizing comprises travers-
ing the tree-based structure of the plan and transforming the
plan, an ancestor of the plan, and/or a child of the plan such
that execution of the plan does not create criticality; and
following the sanitizing, executing each plan of the data
processing operation, wherein execution of the data process-
ing operation following the sanitizing no longer creates
criticality in intermediate operations. Other aspects of the
foregoing include corresponding systems configured to
execute the computer-implemented method, and non-tran-
sitory computer-readable media storing instructions
embodying the computer-implemented method.

[0009] In one implementation, data pools on which the
data processing operation depends are individually absent of
criticality.

[0010] In another implementation, sanitizing a plan com-
prises: (a) determining a cost to remove from the plan each
data signal associated with the plan that is included in the set
of criticality conditions; and (b) identifying a permutation of
the data signals from step (a) that, when removed from the
plan, sanitize the plan at a lowest cost compared to other
permutations of the data signals.

[0011] In yet another implementation, sanitizing a plan
comprises applying to the plan at least one transform opera-
tion in a set of transform operations, the set of transform
operations being associated with (1) a data field in the plan
to be transformed and (2) a data signal to be removed from
the plan. The set of transform operations can include (1) a
self transform in which a plan is transformed without
transforming children of the plan, (2) an up transform in
which each ancestor of the plan is transformed without
transforming children of the plan, and/or (3) a root transform
in which one or more transformations are reverted. Sanitiz-
ing a plan can further include performing a self transform on
a name of the data field, the self transform comprising
renaming the name of the data field in the plan to create a
renamed data field in the plan. Sanitizing a plan can further
include performing an up transform on a name of the data

US 2020/0242093 Al

field, the up transform comprising changing, in each ances-
tor of the plan, each reference to the name of the data field
to a reference to the renamed data field. Sanitizing a plan can
further include performing a root transform on a name of the
data field, the root transform comprising reverting renaming
and reference changing operations performed by the self
transform and up transform of the plan.

[0012] In one implementation, sanitizing a plan further
comprises performing a self transform on a value of the data
field, the self transform comprising applying a lossless or
lossy projection to the value of the data field in the plan.
Sanitizing a plan can further include performing an up
transform on a value of the data field, the up transform
comprising identifying operations in ancestors of the plan
that are potentially negatively affected by the self transform
on the value of the data field. Sanitizing a plan can further
include performing a root transform on a value of the data
field, the root transform comprising either (1) reverting a
lossless projection applied by the self transform of the plan,
(2) no operation, or (3) producing a set of values associated
with a lossy projection applied by the self transform of the
plan.

[0013] Inanother implementation, execution of a first plan
comprises training a data model, wherein the first plan is
sanitized by applying a first transformation to inputs that are
used for training the data model, and wherein execution of
a second plan comprises: using the data model to provide a
prediction; and applying the first transformation to inputs
that are used by the data model to provide the prediction.
[0014] The details of one or more implementations of the
subject matter described in the present specification are set
forth in the accompanying drawings and the description
below. Other features, aspects, and advantages of the subject
matter will become apparent from the description, the draw-
ings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] In the drawings, like reference characters generally
refer to the same parts throughout the different views. Also,
the drawings are not necessarily to scale, emphasis instead
generally being placed upon illustrating the principles of the
implementations. In the following description, various
implementations are described with reference to the follow-
ing drawings.

[0016] FIG. 1 depicts an example tree-based structure for
data processing sub-operations.

[0017] FIG. 2 depicts an implementation of a method for
high-accuracy data processing that avoids criticality in inter-
mediate operations.

[0018] FIG. 3 depicts an example template-based tech-
nique for applying sanitization strategies to tasks.

[0019] FIG. 4 depicts an example task breakdown for a
data processing task that avoids criticality in execution.
[0020] FIG. 5 depicts an example computer system for
implementing the disclosed technology.

DETAILED DESCRIPTION

[0021] Described herein are systems and methods for
facilitating flexible, high-accuracy data processing that
avoids criticality in intermediate computations, regardless of
how criticality is defined in a given context. In general, the
techniques and supporting systems maintain sensitive data in
separate “‘execution environments” and orchestrate tasks

Jul. 30, 2020

across those execution environments to perform operations
that would have otherwise caused criticality had the data not
been separated and/or processed using conventional tech-
niques. The present disclosure therefore provides techniques
for analyzing data that have not previously been described in
the art, and discloses new and inventive methods for avoid-
ing criticality in intermediate data processing operations.
[0022] In various embodiments, these systems and meth-
ods perform light data transformations, which typically
involve no omission/redaction/randomization. As a result,
the quality of output of data processing operations is typi-
cally unaffected. Further, in the few cases where the data
transformations require omission/redaction/randomization
or related processes, such transformations can be tuned to
minimize the impact on the quality of output of the particular
operation(s). Moreover, aspects of the presently disclosed
techniques provide invariant guarantees for criticality avoid-
ance that are based on systems, controls and workflows for
data processing and, to a great extent, independent of the
specifics of the data. Therefore, changes considered material
using conventional approaches have no impact. Lastly, the
techniques and supporting systems facilitate the restructur-
ing of data processing tasks that would otherwise create
criticality into a coordinated set of sub-operations that avoid
criticality and produce either identical or practically equiva-
lent output.

[0023] The term “criticality,” as used herein, refers to the
point at which some volume (breadth) and/or specificity
(depth) of data leads to violating a desirable invariant. For
example, health data with no identifiability is not PHI. PII by
itself is also not PHI. However, if PII were added (or could
reasonably be added or inferred) to health data, then the
result is PHI. If the desirable invariant is “no PHI,” the data
(and system involved in storing, transmitting and processing
it) becomes critical at the point of combining the PII with the
health data. However, the techniques described herein can
equally apply to alternative definitions of “criticality” in
different contexts.

[0024] The term “sanitize” and its variants, as used herein,
refers to transforming or otherwise altering a data processing
operation such that execution of the operation avoids criti-
cality.

[0025] The term “data,” in addition to its commonly
understood definitions, may have different meanings and
representations depending on context. For example:

[0026] Metadata: There is a significant semantic difference
between the random number 51120 and the same number as
a numeric encoding of the social security number 000-05-
1120. A value of “true” for a boolean column of data, by
itself, carries no meaning related to criticality. If the name of
the data column containing this value is “bool_123,” that by
itself carries no additional meaning. However, if the name of
the column is “has_cancer,” the situation may be quite
different per HIPAA.

[0027] Data: Sometimes data carries implicit meaning. To
those skilled in the domain of health data, a data value of
“S42.414A,” with no additional context, would reasonably
look like an ICD-10-CM code for nondisplaced simple
supracondylar fracture without intercondylar fracture of
right humerus, initial encounter for closed fracture. To a
human expert, a data column with similar values will be
perceived to include ICD10-related health data even if the
column name is something as health-independent as “spe-
cial_value_7.” On the contrary, other things being equal,

US 2020/0242093 Al

neither “123” nor “Ee0VXfyyb49/HIb9uej21 A==" would
carry any meaning to the same expert, yet they could
represent the exact same ICD10 code. In the first case, the
mapping is via a lookup table. In the latter case, it is the
result of encryption and base64 encoding.

[0028] Context: Consider “percentage=100" as the output
of a data operation. In the context of the query “What
percentage of people named Kalikashvili aged over 80 in zip
code 10011 have cancer?”, 100% may very likely be PHI per
HIPAA, as the context adds implicit data fields with zip
code, last name and age range as well as effectively changes
the name of the result from percentage to “percentage_with_
cancer.”

[0029] Code and other assets: The context described above
could be implicit in SQL defining a query.

[0030] The techniques described herein avoid criticality
by breaking up a data processing operation into a set of
coordinated tasks, where some tasks perform (potentially
invertible) data transformations that remove and, in some
cases, re-apply, data semantics so as to produce either
identical or practically equivalent output to the one expected
from the given data processing operation.

[0031] Inone implementation, a data processing operation
includes one or more sub-operations on data. Any particular
sub-operation on data can be described by a recursive,
tree-based data structure referred to herein as a “plan.” Plans
can include any form of computation, including query
execution plans in databases, dataflow-based execution
plans, and abstract syntax trees (ASTs). A plan can have a
parent plan and children that are also plans. A plan without
a parent is a root plan. A plan with children is an inner plan.
A plan without children is a leaf plan. FIG. 1 illustrates one
example of a tree-based structure of plans. Taking plan 101
as the plan of interest, plan 101 has a parent plan 103 and
three child plans 105, 107, and 109. The parent plan 103 is
an ancestor plan of plan 101, as is plan 111. Plan 111 is a root
plan, and plans 105 and 107 are leaf plans.

[0032] Plans can be categorized into subtypes as needed,
describing everything from storing and manipulating data
via computer systems to a human expert receiving and
replying to an email. The mixture of “online” and “offline”
plan elements can be used when considering data operations
that combine automated and human sub-operations.

[0033] The initial state of the system is not critical. In
practical terms, this means that data is partitioned into one
or more logical pools with a sufficient level of inaccessibil-
ity, independence, separation, isolation, etc. by whatever
technical means necessary, to guarantee the absence of
criticality. For example, one pool might contain health data
and some non-identifiable personal information, another
pool might contain PII, a third pool might contain depart-
ment of motor vehicles (DMV) information, and a fourth
pool might contain online content consumption information.
The embodiment of pools is orthogonal to the presently
described technology. Such data pools can include files,
databases, tables, collections, individual objects/rows/docu-
ments in databases, or other structuring of data used to
satisfy the initial non-criticality condition. Any publicly-
available or reasonably easy to acquire, within the relevant
constraints of the definition of criticality, data that could be
linked or joined to the foregoing data can be considered
implicitly available in all pools.

[0034] A plan is “sanitized” when its execution avoids
criticality. Because the initial state of the system is non-

Jul. 30, 2020

critical, all leaf plans are sanitized. Without loss of gener-
ality, it can be assumed that the creation of criticality at an
inner plan in a plan representation is due to the attributes of
the children of the inner plan.

[0035] A plan is executed by a “task.” Tasks encapsulate
the general notion of doing anything in an appropriate
execution environment, from a cloud platform to the office
of a human. Tasks can have dependencies that form a
directed acyclic graph (DAG). Therefore, producing the
result of a task may require producing the results of depen-
dent tasks first. Net of this constraint, the disclosed tech-
niques apply to any task execution ordering.

[0036] If a child plan cannot be executed in the same task
as its parent, the child plan can be executed in a different task
and, in the parent plan, the child is replaced with a plan that
describes the result of that task. In one embodiment, this
captures a combined requirement related to both system
operational constraints as well as constraints for avoiding
data criticality, e.g., that data of domain X and data of
domain Y cannot be processed together in the same execu-
tion environment.

[0037] In some implementations, the system assumes that
the result of executing the root plan is not critical. This is a
practical assumption, as the goal is to avoid criticality in
intermediate computation. By definition, if a critical result is
sought, no change in how the result is achieved can elimi-
nate criticality in a system.

[0038] FIG. 2 depicts a high-accuracy data processing that
avoids criticality in intermediate computations. In Step 201,
a computing system receives a data processing operation
that is composed of one or more plans. Prior to any saniti-
zation of the individual plans, the data processing operation
creates criticality in its intermediate operations and, in some
instances, produces a critical result. In Step 203, for each
plan, the computing system determines whether execution of
such plan creates criticality. This can determination can
include, for example, identifying the data signals that are
associated with the plan and determining whether the data
signals are included in a set of criticality conditions. If a plan
is identified as creating criticality on execution, the plan is
sanitized in Step 205. In some implementations, sanitizing
the plan is performed by traversing the tree-based structure
of the plan and transforming, as needed, the plan itself,
children and/or ancestors. Once there are no further plans
requiring sanitization and the data processing operation can
be executed without creating criticality in intermediate
operations, the plans in the operation are executed, in Step
207. The foregoing steps are described in further detail,
below.

[0039] To sanitize an unsanitized inner plan whose chil-
dren are sanitized, one or more of its children must be
transformed, which may also require changes to ancestor
plans. This operation can be generalized as three separate
transformations: (1) Self transform: this operation trans-
forms a plan, leaving its children unchanged; (2) Up trans-
form: this operation transforms each plan ancestor, leaving
its children unchanged, to propagate any changes introduced
by the self transformation; and (3) Root transform: this
operates as the inverse (in a casual, not mathematical sense)
of the up transform, and is used to potentially revert trans-
formations required by sanitization and make the result of
plan execution usable in an appropriate context.

[0040] Each of the above transformations takes as input a
plan and returns as output a plan. No-operations (also known

US 2020/0242093 Al

as “no-ops”) behave as identity[plan]. The general algorithm
for sanitizing a plan, in Scala-inspired pseudocode, is pro-
vided below. Without loss of generality, the pseudocode
assumes an immutable plan and, hence, postOrderTraversal(
)must take into account the effect of up transformations. The
algorithm depends on two situation and implementation
specific functions: “isSanitized,” which determines whether
a plan is sanitized, and “sanitization,” which, given an
unsanitized plan, attempts to return sanitization transforma-
tion functions or fails (when criticality cannot be avoided
with available sanitization strategies).

def sanitize(root):
newRoot = root
rootTransforms = []
postOrderTraversal(root).filterNot(isSanitized).foreach { plan =>
(selfTransform, upTransform, rootTransform) = sanitization(plan)
newRoot = plan.ancestors.foldLeft((plan, selfTransform(plan))) {
case ((child, newChild), parent) =>
(parent, up Transform(parent.withChildReplaced(child,
newChild))
12
rootTransforms.add(rootTransform)

rootTransforms.foldLeft(newRoot) { (current, rootTransform) =>
rootTransform(current)

}

[0041] While there are many possible approaches for
determining whether a plan is sanitized and for sanitizing
plans based on the type of data being processed, the data
domains, and the plan types, described herein, in one imple-
mentation, is a general approach adaptable to any situation.
First, all data to be processed is represented in flattened
tabular form, i.e., with the fields of any composite types
expressed as separate columns, such that field values can be
thought of as pure data with the only metadata being the
fully-qualified field name, which is globally unique and may
have any amount of associated metadata. Note that for
simplicity, field name qualifiers as well as internal identifiers
associated with calculated fields and any other intermediate
data structures can be skipped, as they are implicit. This is
not a restrictive assumption when considering general algo-
rithms, as any computable data structure can be represented
as a graph and any graph can be expressed in table form, e.g.,
as RDF triplets.

[0042] Next, there is a set of data signals DS and a set of
criticality conditions CS, which is a subset of the powerset
of DS. Generally, a data signal is an indicator or some other
form of characterizing information associated with data. In
simple embodiments, a data signal can be a data domain,
e.g., DS: {health_data, identifiability} and CS: {{health_
data, identifiability } }. Embodiments of a data signal include,
but are not limited to, metadata of various types associated
with data sources, data schemas, business rules and heuris-
tics, as well as specific data operations. Other embodiments
need not use the set-theoretic approach described herein, but
will have a practically-equivalent impact on how criticality
is avoided. Finally, every field of every input table is
associated with two proper subsets of DS: one for the field
name and one for the values of the field. Various other
embodiments use probabilistic or uncertainty-based
approaches to working with signals, e.g., fuzzy instead of
crisp true false membership in DS and CS.

Jul. 30, 2020

[0043] Continuing with a pseudocode paradigm, the func-
tion ds()returns the data signal(s) associated with its argu-
ment(s). More specifically:

[0044] ds(set) returns the data signals for a set of poten-
tially heterogeneous elements. The result of ds(set) is a
superset of the union of results of ds applied to all members
of the proper subset of the powerset of set. For example,
first_name on its own may not be associated with a PII signal
but {first_name, last_name, age} together may result in
identifiable information and be associated with a PII signal.
[0045] ds(field.name) returns the data signals for a field
with a given name independent of any field data. For
example, ds(“ssn”) could be {identifiability} . The result can
be determined via a combination of explicitly provided
metadata and various rules, heuristics, natural language
processing (NLP), embeddings, machine learning and Al
approaches, etc.

[0046] ds(field) returns the union of the data signals for the
field name and the field values. Data signals for a field name
can be provided explicitly and/or implicitly determined by
context, e.g., table, database, data source, etc., as well as
ds(field.name). If the field is calculated, the signals for its
expression are included.

[0047] ds(expression) returns the signals for an expres-
sion. Calculated fields are built from input fields using
expressions. Expressions are used in plans and, just as plans,
expressions are represented as trees. Leaf expressions have
the following signals:

[0048] (1) Constants: { }, unless specialized by signal
matching (see below).

[0049] (2) Field reference: ds(field).

[0050] (3) Zero-argument function: { }, unless special-
ized by signal matching.

[0051] (4) Special references, e.g., * in SQL, which
denotes all fields: the result of their expanded equiva-
lent.

[0052] Unless specialized by signal matching, a composite
expression’s signals are ds(expression.children). The signals
for an alias expression (x as y) are ds({x, “y”}).

[0053] ds(plan) returns the data signals for a plan. Unless
explicitly provided at plan creation, leaf plans have the
following signals:

[0054] (1) Reading fields from an input table: ds(fields).

[0055] (2) Unless specialized by signal matching:
ds(plan.expressions).

[0056] Unless explicitly provided at plan creation, and
unless specialized by signal matching, inner plans have the
following signals:

[0057] (1) ds(plan.expressions), when the plan has
expressions.

[0058] (2) ds(plan.children) otherwise.

[0059] “Signal matching” refers to a broad set of tech-
niques for overriding the default behavior of ds() Plan and
expression trees are examples of approaches for identifying
specific patterns in hierarchical data structures. Combined
with metadata about data processing primitives, this allows
for the specification of pattern matching rules for custom-
izing signal determination. For example, the signals for
hash(field, num_buckets) can be {}, provided the collision
rate is sufficiently high and a rainbow table attack is not
feasible; the signals for a function encrypting data can be {};
the signals for a function decrypting data can be the same as
the signals for the input to the function that encrypted the

US 2020/0242093 Al

data; and the signals for the expression substr(zip_code, 1,
3) can be ds(zip_code)-{identifiability}.

[0060] In addition to or instead of using pattern matching
at the plan and/or expression level, signal matching may be
informed by explicitly provided metadata, pre- or just-in-
time-calculated statistics about data, or by other techniques.

[0061] Now, therefore:

def achieveCriticality(signals):
CS contains signals
def isSanitized(plan):
tachieveCriticality(ds(plan))
def sanitization(plan):
noop = identity [Plan] _
childSanitizations(plan).distinct. foldLeft((noop, noop, noop)) {
case ((self, up, root), (child, selfNext, upNext, rootNext)) =>

self andThen ((parent: Plan) =>
upNext(parent.withChildReplaced(child, selfNext(child)))),

up andThen upNext,

root andThen rootNext

)

def childSanitizations(plan):
lowestCostSanitization(plan.children).map { case (child,
signalsToRemove) =>
(selfTransform, upTransform, rootTransform) =
sanitization Transforms(child, signalsToRemove)
(child, selfTransform, upTransform, rootTransform)

def sanitizationTransforms(plan, signalsToRemove):
composeTransforms(
for {
signal <- signalsToRemove
field <- plan.schema.fields
transform <- field.sanitizationTransforms(signal)
} vield transform
)
composeTransforms(seq):
noop = identity [Plan] _
seq.distinct.foldLeft((noop, noop, noop)) {
case ((self, up, root), (selfNext, upNext, rootNext)) =>
(self andThen selfNext, up andThen upNext, root andThen
rootNext)

def signalRemovalCost(plan, signals):
return cost to remove signals from plan or Infinity if not possible
def lowestCostSanitizations(plans):
let S be sequence (plan, signalsToRemove) for all plans
minimize.over(S)(sum.over(S)(signalRemovalCost)) such that
tachieveCriticality(union.over(S)(ds(plan) - signalsToRemove)
if sum is Infinity then fail
else return S

[0062] The function lowestCostSanitizations(plan)
returns a sequence of (child, signalsToRemove) pairs that
would allow an unsanitized plan to become sanitized using
an optimization/search approach. Removing a set of signals
from a plan has an associated cost, a measure similar to the
cost of executing a query that a database optimizer uses to
choose between alternative plans. In some embodiments,
rule-based logic with naive cost estimates is used to deter-
mine costs. Other implementations take advantage of statis-
tics and heuristics. One of skill in the art will appreciate the
various techniques that can be used to determine the cost of
removing a set of signals from a plan. Cost estimates can
also include the cost of executing plans in different tasks.

[0063] Without loss of generality, sanitizationTransforms
assumes that a schema for the data that a plan produces is
available from the plan. In addition, each field can have a per
signal sanitization strategy. In one implementation, a sani-

Jul. 30, 2020

tization strategy is the triplet of self transform, up transform
and root transform, as described above.

[0064] Transformations related to field names are renam-
ing-oriented. Approaches may vary in their details of how
useful-yet-non-critical the self transformations are and how
sophisticated the heuristics of the up transforms are. One
implementation of a sanitization strategy for names of data
fields will now be described.

[0065] Self transform: This transform is a projection to
rename the field applied to the plan. Using a database query
analogy, this is the equivalent of select field_name as
renamed . . . One possible transformation is the creation of
a random field name, but other strategies can use pattern
matching based on the field name and/or data type, e.g.,
renaming a boolean has cancer to bool_123 and sum_
patients to sum_456. A specific self transform can be asso-
ciated with any field. In some cases, multiple strategies are
scored to select the one to be applied.

[0066] Up transform: This transform involves changing
references to the original field name to the renamed name,
as well as heuristic renaming of calculated fields related to
the original field name, e.g., renaming has_cancer_count to
bool_123_count. Within the context of a use case, all
common patterns of column naming can be taken into
account, including pluralization/singularization, different
formatting of multi-term names (titlecase, camelcase, snake-
case, dot or space separated, . . .), e.g., things, sum_thing,
sum_things, thing sum, things_sum, thingsSum, sum.
things, ‘Sum Things’, etc. The heuristics need not be solely
based on field names as plans, and data structures used by
the data source are likely to provide additional information,
e.g., reference expression IDs. In addition, a data flow graph
can be used to ensure that only relevant references are
renamed.

[0067] Root transform: This transform reverts the renam-
ing done by the self and up transforms. This may be done by
code alone, without shared state of the fields that have been
renamed, or with some shared state or other communication
mechanism, e.g., a secure secret for decrypting encrypted
information, which allows the root transform to act on the
changes performed by the self transformer and up mutator.
[0068] Transformations related to field values can be
much more diverse yet they typically share a number of
common characteristics. One implementation of a sanitiza-
tion strategy for values of data fields will now be described.
[0069] Self transform: The self transform is a projection
applied to the value. Using a database query analogy, this is
logically equivalent to select func(field_name) as field_
name . . . Self transforms can be lossless or lossy. Encryption
is an example of the former while hashing is typically an
example of the latter. There may be benefits to using a
transformation that allows the up transform to be a no-op.
Transformations may use conditional logic to handle the
case where the same field contains logically different values.
Transformations may require the execution of tasks before
they are applied, e.g., in order to collect statistics about the
data to be transformed. A number of optimizations can be
applied to speed up execution of self transforms, including
setting up pre-computations, etc. In some cases, the self
transform preserves structures and patterns in the field
values, e.g., preserving prefix ordering in strings for the first
k characters, or generating multiple fields from a single one
in order to allow desirable structures and patterns to be
expressed in a sanitized manner.

US 2020/0242093 Al

[0070] Up transform: The up transform’s behavior is
defined by the need to propagate the effect of the self
transform. Up transforms may use heuristics to detect pos-
sible cases of data manipulation that may be negatively
affected by the self transform. For example, if an expression
that attempts to parse an ICDI10 code is applied to an
encrypted version of an ICD10 code the results may be
unpredictable. Up mutators may issue warnings, errors,
generate exceptions, flag cases for human intervention or
attempt plan rewrites to adapt the processing logic to the self
transformer.

[0071] Root transform: In the case of lossless self trans-
forms, the root transform is generally the inverse of the self
transform. In the case of lossy self transforms, the root
transform is generally either a no-op or produces a set of
values, e.g., the inputs to a hash function that produced the
replaced value. This can be done either by sharing some type
of state or messaging between the self transformer and the
root transformer or by building a lookup or rainbow table.
[0072] There are cases, e.g., encryption/decryption or
reverting lookup from a secure table, in which the root
transform (as well as, in some instances, the self transform)
requires access to sensitive information. Rather than includ-
ing this information with the plan, it may be desirable to
refer to external system services, e.g., secure credentials
storage, that are only available in a subset of execution
environments and/or with appropriate access controls.
[0073] Once the plan sanitization algorithm is in place,
plan execution and the allocation of plans to tasks, with their
associated execution environments, is addressed. One
embodiment of an algorithm that returns the task that
executes a plan is:

def task(root):
def allocateToTasks(plan):
plan.copy(children = plan.children.map { child =>
newChild = allocateToTasks(child)
if (canExecuteInSameTask(plan, newChild)) newChild
else getOrCreateTask(newChild).resultPlan

getOrCreateTask(allocateTo Tasks(sanitize(root)))

[0074] The function canExecuteInSameTask can use a
number of different strategies to determine its result includ-
ing, but not limited to, using the signals associated with the
plans and using processing affinity, the requirement that
computations with certain data happen in appropriate for the
data environments. Processing affinity may be represented
as a subset of signals or using a separate mechanism.

[0075] Before execution of a plan begins, the plan may be
transformed for any number of reasons. Such reasons can
include optimizing an aspect of execution, creating a com-
pletely different representation of the plan (e.g., via code
generation), and increasing security and/or privacy by
changing processing in ways that go beyond the minimum
required to avoid criticality (e.g., breaking up computation
across more execution environments, applying additional
field name & value transformations, fuzzing, collecting
detailed execution information, running “fake” tasks in
execution environments, adding fake data, etc.). Another
reason for transforming a plan is to introduce potentially
randomized data quality and/or criticality checks (e.g., auto-
mated, such as looking for patterns in field names and/or
values, or human-based, such as retrieving a sample of data

Jul. 30, 2020

and providing the sample to a human for inspection). Yet
another reason is to introduce automated result criticality
checks, which may include associated transformations to
avoid criticality, e.g., based on k-anonymity or other mea-
sures. Note, however, that this is a markedly different and
better approach than applying lossy privacy-oriented trans-
formations to the input data.

[0076] In one implementation, avoiding criticality is
achieved by transforming the structure of data processing by
subdividing the universe of data processing tasks into a
number of potentially overlapping regions and applying
prioritized sanitization strategies. FIG. 3 depicts an example
template-based technique for applying sanitization strategies
to tasks. In Step 301, a determination is made as to whether
aparticular task fits an existing, pre-approved template. [f an
applicable template exists, the sanitization strategy associ-
ated with the template is applied to the task, in Step 307. If
no such template exists, a new task template is defined that
applies to the task , in Step 303. A sanitization strategy is
then created and associated with the new task template, in
Step 305. Moving to Step 307, this new sanitization strategy
is then applied to the task.

[0077] When criticality cannot be provably avoided by
sanitization, it can be avoided be restricting capabilities
(early decision) or failing during processing (just-in-time
decision). In lieu of having sufficiently advanced automatic
sanitization of plans, embodiments may implement addi-
tional techniques for criticality avoidance, e.g., restricting
the types of data operations, plans and/or data that are
allowed to be processed by the system or introducing human
workflow steps (approval, plan rewriting, etc.) into the
overall process.

[0078] Without loss of generality, the result of a plan
which trains a machine learning/Al model can be thought of
as a function that maps future input data to model output,
whether prediction, clustering or some other technique. If a
self transform has been applied to one or more of its inputs
during training, the same transform would have to be applied
during prediction for best results. For example, if ICD10
diagnostic codes were encrypted before classifier training,
they would need to be encrypted when passed as inputs
during prediction. Alternatively, model output for a broad
range of inputs may be computed and a new model encoded
or trained from that output. Alternatively, the specification of
the featurization-transformer pipeline pf the model can be
re-written to perform an equivalent task. If the configuration
of these transformations is highly sensitive, a model can be
deployed to a secure model evaluation server, which con-
figures these transformations through a side channel.

Example #1

[0079] Goal: List all five digit US zip codes where less
than 2% of people satisfy the conditions (1) over 80 years,
(2) last name Kalikashvili, and (3) has been diagnosed with
cancer; include the count of people satisfying the condition
per zip code. Avoid creating PHI per HIPAA.

[0080] Per HIPAA, the result of the query is not PHI as
any zip code in the result would contain 50+ people match-
ing the criteria. If the desired percentage was greater than
50% as opposed to 2%, however, it would effectively
identify a person and would be considered PHI.

[0081] Using conventional techniques using joined data,
both versions of the query would require critical systems
because computing the result would require mixing health

US 2020/0242093 Al

data with identifiable information. Using the disclosed tech-
niques, however, the 2% query can be satisfied while avoid-
ing criticality.
[0082] Forexample, consider a realistic system containing
three types of isolated data, which is not Protected Health
Information (PHI) per HIPAA:
[0083] (1) De-identified health data in execution envi-
ronment (EE) #1.
[0084] a. health_data: a table with primary key pati-
ent_id of summary patient health information with
columns such as has_cancer and has_diabetes.

[0085] (2) Personal information in execution environ-
ment #2
[0086] a. personal_data: a table with primary key

person id of personally identifiable information such
as first_name, last_name, age and zip_code as well

as various demographic & psychographic signals.
[0087] (3) Mapping table in execution environment #2.
[0088] a. id_mapping: a table with composite pri-
mary key (person_id, patient_id). Without loss of
generality, assume that all IDs are securely anony-

mized and match perfectly via the mapping table.
[0089] The example uses SQL-like pseudocode for its
accessibility. Further, assume that there is an appropriate
mechanism for accessing/moving/copying data among

execution environments.

Task 1 EE #1: sanitize health-related information
insert into sanitized_health data_projection
select patient_id, has_cancer as bool_123
from health_data
Task 2 EE #2: sanitized result
insert into sanitized_result
with
personal_data_projection as (
select person_id, zip_code
from personal_data
where last_name = (‘Kalikashvili’ and age > 80

joined_data as (
select zip_code, coalesce(bool_123, false) as bool 123
from personal_data_projection
join id_mapping using person_id
left outer join sanitized_health_data_projection using patient_id

select zip_code, [true] as bool 123_count
from joined_data
pivot (

count(zip_code)

for bool 123 in ([true], [false])

where [true] / ([true] + [false]) < 0.02

Task 3 EE #1: final result

insert into final_result
select zip_code, bool _123_count as has_cancer_count
from sanitized_result

[0090] In this case, sanitization involved removing health
data semantics has cancer by renaming it to bool_123.

[0091] It is of interest to note that embodiments of dis-
closed techniques can be used to produce critical results
while still avoiding criticality in intermediate computations.
(Task 2 would not be dealing with PHI even if the filter
condition was >50% as opposed to <2%). This is desirable
in cases where the recipient of the final result can deal with
criticality but the processor(s) should avoid it, such as an
embodiment where the recipient operates execution envi-
ronment #3, which executes Task 3 above having received

Jul. 30, 2020

information about the root transform required to invert the
sanitization strategy via a side channel from execution
environment #1.
[0092] Example #2
[0093] Goal: Build a lookalike segment ABC from
patients with the rare disease condition X. Avoid creating
PHI per HIPAA.
[0094] FIG. 4 depicts one possible task breakdown for
achieving the goal. It demonstrates how health-domain-
specific, condition-X-aware model evaluation may be per-
formed in execution environment (EE) #1 after basic ML/AI
domain-independent evaluation is performed in EE #2. The
sanitization layer is part of EE #1. The steps as numbered in
FIG. 4 are as follows:
[0095] (1) In EE#1, sanitize condition x score by
renaming to score 123.
[0096] (2) Move data to EE #2.
[0097] (3) Train a model using score 123 as an inde-
pendent variable.

[0098] (4) Generate model predictions and move data to
EE#1.

[0099] (5) Reverse sanitization strategy.

[0100] (6) Perform additional model evaluation using

all the data in EE#1 and repeat steps (1)-(5) as needed.
[0101] (7) Pick a lookalike score threshold to determine
which patient IDs belong in the lookalike segment.
Rows not belonging to the segment may be omitted. In
that case, the segment abc column may also be omitted.
[0102] (8) Send segment information to EE#2 for media
execution.

Computer-Based Implementations

[0103] In some examples, some or all of the processing
described above can be carried out on a personal computing
device, on one or more centralized computing devices, or via
cloud-based processing by one or more servers. In some
examples, some types of processing occur on one device and
other types of processing occur on another device. In some
examples, some or all of the data described above can be
stored on a personal computing device, in data storage
hosted on one or more centralized computing devices, or via
cloud-based storage. In some examples, some data are stored
in one location and other data are stored in another location.
In some examples, quantum computing can be used. In some
examples, functional programming languages can be used.
In some examples, electrical memory, such as flash-based
memory, can be used.

[0104] FIG. 5 is a block diagram of an example computer
system 500 that may be used in implementing the technol-
ogy described in this document. General-purpose comput-
ers, network appliances, mobile devices, or other electronic
systems may also include at least portions of the system 500.
The system 500 includes a processor 510, a memory 520, a
storage device 530, and an input/output device 540. Each of
the components 510, 520, 530, and 540 may be intercon-
nected, for example, using a system bus 550. The processor
510 is capable of processing instructions for execution
within the system 500. In some implementations, the pro-
cessor 510 is a single-threaded processor. In some imple-
mentations, the processor 510 is a multi-threaded processor.
The processor 510 is capable of processing instructions
stored in the memory 520 or on the storage device 530.
[0105] The memory 520 stores information within the
system 500. In some implementations, the memory 520 is a

US 2020/0242093 Al

non-transitory computer-readable medium. In some imple-
mentations, the memory 520 is a volatile memory unit. In
some implementations, the memory 550 is a non-volatile
memory unit.

[0106] The storage device 530 is capable of providing
mass storage for the system 500. In some implementations,
the storage device 530 is a non-transitory computer-readable
medium. In various different implementations, the storage
device 530 may include, for example, a hard disk device, an
optical disk device, a solid-date drive, a flash drive, or some
other large capacity storage device. For example, the storage
device may store long-term data (e.g., database data, file
system data, etc.). The input/output device 540 provides
input/output operations for the system 500. In some imple-
mentations, the input/output device 540 may include one or
more of a network interface devices, e.g., an Ethernet card,
a serial communication device, e.g., an RS-232 port, and/or
a wireless interface device, e.g., an 802.11 card, a 3G
wireless modem, or a 4G wireless modem. In some imple-
mentations, the input/output device may include driver
devices configured to receive input data and send output data
to other input/output devices, e.g., keyboard, printer and
display devices 560. In some examples, mobile computing
devices, mobile communication devices, and other devices
may be used.

[0107] In some implementations, at least a portion of the
approaches described above may be realized by instructions
that upon execution cause one or more processing devices to
carry out the processes and functions described above. Such
instructions may include, for example, interpreted instruc-
tions such as script instructions, or executable code, or other
instructions stored in a non-transitory computer readable
medium. The storage device 530 may be implemented in a
distributed way over a network, such as a server farm or a
set of widely distributed servers, or may be implemented in
a single computing device.

[0108] Although an example processing system has been
described in FIG. 5, embodiments of the subject matter,
functional operations and processes described in this speci-
fication can be implemented in other types of digital elec-
tronic circuitry, in tangibly-embodied computer software or
firmware, in computer hardware, including the structures
disclosed in this specification and their structural equiva-
lents, or in combinations of one or more of them. Embodi-
ments of the subject matter described in this specification
can be implemented as one or more computer programs, i.e.,
one or more modules of computer program instructions
encoded on a tangible nonvolatile program carrier for execu-
tion by, or to control the operation of, data processing
apparatus. Alternatively or in addition, the program instruc-
tions can be encoded on an artificially generated propagated
signal, e.g., a machine-generated electrical, optical, or elec-
tromagnetic signal that is generated to encode information
for transmission to suitable receiver apparatus for execution
by a data processing apparatus. The computer storage
medium can be a machine-readable storage device, a
machine-readable storage substrate, a random or serial
access memory device, or a combination of one or more of
them.

[0109] The term “system” may encompass all kinds of
apparatus, devices, and machines for processing data,
including by way of example a programmable processor, a
computer, or multiple processors or computers. A processing
system may include special purpose logic circuitry, e.g., an

Jul. 30, 2020

FPGA (field programmable gate array) or an ASIC (appli-
cation specific integrated circuit). A processing system may
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

[0110] A computer program (which may also be referred
to or described as a program, software, a software applica-
tion, a module, a software module, a script, or code) can be
written in any form of programming language, including
compiled or interpreted languages, or declarative or proce-
dural languages, and it can be deployed in any form,
including as a standalone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A computer program may, but need not, cor-
respond to a file in a file system. A program can be stored in
a portion of a file that holds other programs or data (e.g., one
or more scripts stored in a markup language document), in
a single file dedicated to the program in question, or in
multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or dis-
tributed across multiple sites and interconnected by a com-
munication network.

[0111] The processes and logic flows described in this
specification can be performed by one or more program-
mable computers executing one or more computer programs
to perform functions by operating on input data and gener-
ating output. The processes and logic flows can also be
performed by, and apparatus can also be implemented as,
special purpose logic circuitry, e.g., an FPGA (field pro-
grammable gate array) or an ASIC (application specific
integrated circuit).

[0112] Computers suitable for the execution of a computer
program can include, by way of example, general or special
purpose microprocessors or both, or any other kind of
central processing unit. Generally, a central processing unit
will receive instructions and data from a read-only memory
or a random access memory or both. A computer generally
includes a central processing unit for performing or execut-
ing instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded in another
device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a
Global Positioning System (GPS) receiver, or a portable
storage device (e.g., a universal serial bus (USB) flash
drive), to name just a few.

[0113] Computer readable media suitable for storing com-
puter program instructions and data include all forms of
nonvolatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD-ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or
incorporated in, special purpose logic circuitry.

US 2020/0242093 Al

[0114] To provide for interaction with a user, embodi-
ments of the subject matter described in this specification
can be implemented on a computer having a display device,
e.g., a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor, for displaying information to the user and
a keyboard and a pointing device, e.g., a mouse or a
trackball, by which the user can provide input to the com-
puter. Other kinds of devices can be used to provide for
interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback,
e.g., visual feedback, auditory feedback, or tactile feedback;
and input from the user can be received in any form,
including acoustic, speech, or tactile input. In addition, a
computer can interact with a user by sending documents to
and receiving documents from a device that is used by the
user; for example, by sending web pages to a web browser
on a user’s user device in response to requests received from
the web browser.

[0115] Embodiments of the subject matter described in
this specification can be implemented in a computing system
that includes a back end component, e.g., as a data server, or
that includes a middleware component, e.g., an application
server, or that includes a front end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any
combination of one or more such back end, middleware, or
front end components. The components of the system can be
interconnected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN™), e.g., the
Internet.

[0116] The computing system can include clients and
servers. A client and server are generally remote from each
other and typically interact through a communication net-
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other.

Terminology

[0117] The phraseology and terminology used herein is for
the purpose of description and should not be regarded as
limiting.

[0118] The term “approximately”, the phrase “approxi-
mately equal to”, and other similar phrases, as used in the
specification and the claims (e.g., “X has a value of approxi-
mately Y or “X is approximately equal to Y”), should be
understood to mean that one value (X) is within a predeter-
mined range of another value (Y). The predetermined range
may be plus or minus 20%, 10%, 5%, 3%, 1%, 0.1%, or less
than 0.1%, unless otherwise indicated.

[0119] The indefinite articles “a” and “an,” as used in the
specification and in the claims, unless clearly indicated to
the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used in the specification and in the
claims, should be understood to mean “either or both” of the
elements so conjoined, i.e., elements that are conjunctively
present in some cases and disjunctively present in other
cases. Multiple elements listed with “and/or” should be
construed in the same fashion, i.e., “one or more” of the
elements so conjoined. Other elements may optionally be
present other than the elements specifically identified by the
“and/or” clause, whether related or unrelated to those ele-

Jul. 30, 2020

ments specifically identified. Thus, as a non-limiting
example, a reference to “A and/or B”, when used in con-
junction with open-ended language such as “comprising”
can refer, in one embodiment, to A only (optionally includ-
ing elements other than B); in another embodiment, to B
only (optionally including elements other than A); in yet
another embodiment, to both A and B (optionally including
other elements); etc.

[0120] As used in the specification and in the claims, “or”
should be understood to have the same meaning as “and/or”
as defined above. For example, when separating items in a
list, “or” or “and/or” shall be interpreted as being inclusive,
i.e., the inclusion of at least one, but also including more
than one, of a number or list of elements, and, optionally,
additional unlisted items. Only terms clearly indicated to the
contrary, such as “only one of” or “exactly one of,” or, when
used in the claims, “consisting of,” will refer to the inclusion
of exactly one element of a number or list of elements. In
general, the term “or” as used shall only be interpreted as
indicating exclusive alternatives (i.e. “one or the other but
not both”) when preceded by terms of exclusivity, such as
“either,” “one of” “only one of” or “exactly one of.”
“Consisting essentially of,” when used in the claims, shall
have its ordinary meaning as used in the field of patent law.
[0121] As used in the specification and in the claims, the
phrase “at least one,” in reference to a list of one or more
elements, should be understood to mean at least one element
selected from any one or more of the elements in the list of
elements, but not necessarily including at least one of each
and every element specifically listed within the list of
elements and not excluding any combinations of elements in
the list of elements. This definition also allows that elements
may optionally be present other than the elements specifi-
cally identified within the list of elements to which the
phrase “at least one” refers, whether related or unrelated to
those elements specifically identified. Thus, as a non-limit-
ing example, “at least one of A and B” (or, equivalently, “at
least one of A or B,” or, equivalently “at least one of A and/or
B”) can refer, in one embodiment, to at least one, optionally
including more than one, A, with no B present (and option-
ally including elements other than B); in another embodi-
ment, to at least one, optionally including more than one, B,
with no A present (and optionally including elements other
than A); in yet another embodiment, to at least one, option-
ally including more than one, A, and at least one, optionally
including more than one, B (and optionally including other
elements); etc.

[0122] The use of “including,” “comprising,” “having,”
“containing,” “involving,” and variations thereof, is meant
to encompass the items listed thereafter and additional
items.

[0123] Use of ordinal terms such as “first,” “second,”
“third,” etc., in the claims to modify a claim element does
not by itself connote any priority, precedence, or order of
one claim element over another or the temporal order in
which acts of a method are performed. Ordinal terms are
used merely as labels to distinguish one claim element
having a certain name from another element having a same
name (but for use of the ordinal term), to distinguish the
claim elements.

[0124] While this specification contains many specific
implementation details, these should not be construed as
limitations on the scope of what may be claimed, but rather
as descriptions of features that may be specific to particular

2

2 <

US 2020/0242093 Al

embodiments. Certain features that are described in this
specification in the context of separate embodiments can
also be implemented in combination in a single embodi-
ment. Conversely, various features that are described in the
context of a single embodiment can also be implemented in
multiple embodiments separately or in any suitable sub-
combination. Moreover, although features may be described
above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
sub-combination or variation of a sub-combination.

[0125] Similarly, while operations are depicted in the
drawings in a particular order, this should not be understood
as requiring that such operations be performed in the par-
ticular order shown or in sequential order, or that all illus-
trated operations be performed, to achieve desirable results.
In certain circumstances, multitasking and parallel process-
ing may be advantageous. Moreover, the separation of
various system components in the embodiments described
above should not be understood as requiring such separation
in all embodiments, and it should be understood that the
described program components and systems can generally
be integrated together in a single software product or pack-
aged into multiple software products.

[0126] Particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In certain implementations, multitasking
and parallel processing may be advantageous. Other steps or
stages may be provided, or steps or stages may be elimi-
nated, from the described processes. Accordingly, other
implementations are within the scope of the following
claims.

1-24. (canceled)

25. A computer-implemented method comprising:

receiving a data processing operation defined by a first
tree-based structure comprising a plurality of plans, the
plans comprising a root plan, at least one inner plan,
and a plurality of leaf plans, wherein the data process-
ing operation when ordinarily executed creates criti-
cality, and wherein each of the leaf plans is initially in
a sanitized state such that execution of each such leaf
plan on an individual basis does not create criticality;

determining that execution of a first one of the plans
creates criticality, wherein the first plan is defined by a
second tree-based structure comprising a plurality of
sub-operations on data from a plurality of different
execution environments;

sanitizing the first plan, taking into account the data from
the different execution environments, by transforming
the first plan, an ancestor plan of the first plan in the
first tree-based structure, and/or a child plan of the first
plan in the first tree-based structure such that execution
of the first plan does not create criticality; and

following the sanitizing, executing the data processing
operation, wherein execution of the data processing
operation following the sanitizing no longer creates
criticality.

Jul. 30, 2020

26. The method of claim 25, wherein determining that
execution of the first plan creates criticality comprises
identifying one or more data signals associated with the first
plan and determining whether a set of criticality conditions
includes one or more of the data signals.

27. The method of claim 26, wherein sanitizing the first
plan comprises:

(a) determining a cost to remove from the first plan each
data signal associated with the first plan that is included
in the set of criticality conditions; and

(b) identifying a permutation of the data signals from step
(a) that, when removed from the first plan, sanitize the
first plan at a lowest cost compared to other permuta-
tions of the data signals.

28. The method of claim 25, wherein sanitizing the first
plan comprises applying to the first plan at least one trans-
form operation in a set of transform operations, the set of
transform operations being associated with (1) a data field in
the first plan to be transformed and (2) a data signal to be
removed from the first plan.

29. The method of claim 28, wherein the set of transform
operations comprises (1) a self transform in which a par-
ticular plan is transformed without transforming children of
the particular plan, (2) an up transform in which each
ancestor of the particular plan is transformed without trans-
forming children of the particular plan, and/or (3) a root
transform in which one or more transformations are
reverted.

30. The method of claim 29, wherein sanitizing the first
plan further comprises performing a self transform on a
name of the data field, the self transform comprising renam-
ing the name of the data field in the first plan to create a
renamed data field in the first plan.

31. The method of claim 30, wherein sanitizing the first
plan further comprises performing an up transform on a
name of the data field, the up transform comprising chang-
ing, in each ancestor of the first plan, each reference to the
name of the data field to a reference to the renamed data
field.

32. The method of claim 31, wherein sanitizing the first
plan further comprises performing a root transform on a
name of the data field, the root transform comprising revert-
ing renaming and reference changing operations performed
by the self transform and up transform of the first plan.

33. The method of claim 29, wherein sanitizing the first
plan further comprises performing a self transform on a
value of the data field, the self transform comprising apply-
ing a lossless or lossy projection to the value of the data field
in the first plan.

34. The method of claim 33, wherein sanitizing the first
plan further comprises performing an up transform on a
value of the data field, the up transform comprising identi-
fying operations in ancestors of the first plan that are
potentially negatively affected by the self transform on the
value of the data field.

35. The method of claim 34, wherein sanitizing the first
plan further comprises performing a root transform on a
value of the data field, the root transform comprising either
(1) reverting a lossless projection applied by the self trans-
form of the first plan, (2) no operation, or (3) producing a set
of values associated with a lossy projection applied by the
self transform of the first plan.

36. The method of claim 25, wherein execution of the first
plan comprises training a data model, wherein the first plan

US 2020/0242093 Al

is sanitized by applying a first transformation to inputs that
are used for training the data model, and wherein execution
of a second one of the plans comprises:

using the data model to provide a prediction; and

applying the first transformation to inputs that are used by

the data model to provide the prediction.

37. The method of claim 25, further comprising deter-
mining that other plans in the plurality of plans create
criticality on execution, and sanitizing the other plans prior
to executing the data processing operation.

38. A system comprising:

a processor; and

a memory storing computer-executable instructions that,

when executed by the processor, program the processor

to perform the operations of:

receiving a data processing operation defined by a first
tree-based structure comprising a plurality of plans,
the plans comprising a root plan, at least one inner
plan, and a plurality of leaf plans, wherein the data
processing operation when ordinarily executed cre-
ates criticality, and wherein each of the leaf plans is
initially in a sanitized state such that execution of
each such leaf plan on an individual basis does not
create criticality;

determining that execution of a first one of the plans
creates criticality, wherein the first plan is defined by
a second tree-based structure comprising a plurality
of sub-operations on data from a plurality of different
execution environments;

sanitizing the first plan, taking into account the data
from the different execution environments, by trans-
forming the first plan, an ancestor plan of the first
plan in the first tree-based structure, and/or a child
plan of the first plan in the first tree-based structure
such that execution of the first plan does not create
criticality; and

following the sanitizing, executing the data processing
operation, wherein execution of the data processing
operation following the sanitizing no longer creates
criticality.

Jul. 30, 2020

39. The system of claim 38, wherein determining that
execution of the first plan creates criticality comprises
identifying one or more data signals associated with the first
plan and determining whether a set of criticality conditions
includes one or more of the data signals.

40. The system of claim 39, wherein sanitizing the first
plan comprises:

(c) determining a cost to remove from the first plan each
data signal associated with the first plan that is included
in the set of criticality conditions; and

(d) identifying a permutation of the data signals from step
(a) that, when removed from the first plan, sanitize the
first plan at a lowest cost compared to other permuta-
tions of the data signals.

41. The system of claim 38, wherein sanitizing the first
plan comprises applying to the first plan at least one trans-
form operation in a set of transform operations, the set of
transform operations being associated with (1) a data field in
the first plan to be transformed and (2) a data signal to be
removed from the first plan.

42. The system of claim 41, wherein the set of transform
operations comprises (1) a self transform in which a par-
ticular plan is transformed without transforming children of
the particular plan, (2) an up transform in which each
ancestor of the particular plan is transformed without trans-
forming children of the particular plan, and/or (3) a root
transform in which one or more transformations are
reverted.

43. The system of claim 38, wherein execution of the first
plan comprises training a data model, wherein the first plan
is sanitized by applying a first transformation to inputs that
are used for training the data model, and wherein execution
of a second one of the plans comprises:

using the data model to provide a prediction; and

applying the first transformation to inputs that are used by
the data model to provide the prediction.

44. The system of claim 38, wherein the operations further
comprise determining that other plans in the plurality of
plans create criticality on execution, and sanitizing the other
plans prior to executing the data processing operation.

#* #* #* #* #*

