US 20200241992A1

a2y Patent Application Publication o) Pub. No.: US 2020/0241992 Al

a9y United States

Attias

(54) SYSTEM AND METHOD FOR DYNAMIC
DOMAIN-SPECIFIC SEQUENCE DIAGRAM
VISUALIZATION

(71) Applicant: Cisco Technology, Inc., San Jose, CA
(US)

(72) Inventor: Roberto Attias, Alameda, CA (US)

(21) Appl. No.: 16/846,207

(22) Filed: Apr. 10, 2020

Related U.S. Application Data

(63) Continuation of application No. 14/796,289, filed on
Jul. 10, 2015, now Pat. No. 10,621,063.

Publication Classification

(51) Int. CL
GOGF 11/32 (2006.01)
GOGF 11/34 (2006.01)
GOGF 11/30 (2006.01)

43) Pub. Date: Jul. 30, 2020
(52) U.S. CL
CPC ... GOGF 11/328 (2013.01); GO6F 11/301

(2013.01); GOGF 11/3086 (2013.01); GO6F
11/3409 (2013.01)

(57) ABSTRACT

A system, method and computer-readable storage devices
for enhancing the presentation of structured log files. A
system configured according to this disclosure can track
events of a computing entity. The computing entity can be a
state machine, a virtual machine, a thread, a process, a
software component, or a hardware component. The com-
puting entity can be any device that generates or contributes
to an event log. The events can be tracked from at least one
of a structured log file and a stream of event data, for
example. The system can identify event types for the events.
The system can identify relationships between the events,
and generate a sequence diagram of the events. The
sequence diagram can include visual indications of the
relationships based on the event types. The system can
further select an icon for each event from an event-specific
icon directory based on event type.

MSCViewer v2.0b1

C:\DATA\ github\ mscviewer\ examples\ calvados.msc

1B

File Edit View Help

% [
Entities | Scripts| Find] 15| Filter KT v]
1633

2]
RP0/pm/1633/pm_role_assignment:54|-|X| RPO/timezone_config/1826 |- |X|[]
N

pm_role_assignment:50
pm_role_assignment:51
pm_role_assignment:52
nm_role_assignment:5

pif

_ : 17:0558: 2
pm_role_assignment:56 17:055 50904
17:05:54:09

pm_role_assignment:57 1 start
pm__role_.assignment:38 17:05:54:001
pm_role_assignment:59 17:05:54:091
pm_role_assignment:60 17:05:54:002

pm_role_assignment:61
pm_role_assignment:62

pm_go_aclive_ev

pm_lib_service_control{)

17:05:35:773
17:05:38:773
17:05:35:837 [CAP}]

calvados_ds_nofify_service()
DS dispafched endpoini{s}ior connecﬁon\;

defut DS fler endpo{O046784)or
17:05:35:637 connecfing o platform_local with endpeint
17:05:35:637 connecting fo plaform_local{hd=0x0ca?
17:05:35:646~[CAPH] platform_local_int>
plojform_local_client _hi() |
platform_ocal_register_for_my_nodeid{
plattorm_local_nodeid_regisirafion_resp|

IS\ PO | i i o
Open Entities 17:05:54:091 R\ Pm_tYe_ossigned_ev , \17:05:54091 [CAPI) pm.Tb.senice_acapt. o)
Input [results]l dafa \ \
FindR \\ \\ \\ 5]
) 1
100 106 102 104 108

US 2020/0241992 A1l

Jul. 30, 2020 Sheet 1 of 5

Patent Application Publication

[BID
80} y01 201 90 %
—
Kl { \ STpul] .
\ \ piop [[synses] ndyj| ¥ Eos_a_ma o_s Ea\mmm_\sa\c&
B (Jofode0an"sapuis gy ud 1G] 160:RS0:L] [t E__o%,m_wow_l E\m 3 ﬂmmwmmwﬁ selju3 uedg
()Joyuod™s0puss gy Wd [1dv]| 160:¥6:G0:L) NGYO~ONyOD —ofwd 0]
Z9:juswubisso™s|os"wd
._ws.__o_E_%ea_og__ [po|"uLloyjoid . 19:juawuubissn™aj0 " wd
e it | s
[| (™ *_s__"v |00 uuofiof™1dvd c:.mm.mo.: ()roapuo™oowias~qy"wd ~X{Id¥O] 160:55:G0:L} gG:1uawubissps)0s~lud
<JurTjpoojuuogoyd [IdYO|~k:GE+G0:L) %EM $6:50:L) /G: Eoecm_mmc 9]0J Em
[7oogg=py)oso "wopd of Buyoeuuod Tidv] £99:GE+G0:L) A8™8Al{oD™0b™ W GG L) 9G:jusluuDIssD™ 8o W
uiodpua wun jpso"woynyd of Buyseuuos [IAVD] £89:GEG0:L) L) mm ,wa.,"hmmww MMJ,HM_
|| oi(y89y xg)uiodpuo Jeyl S 4n0jep [1VD]~LER:CEG0L) cc:uaubissn™s|oJ-wd

Uoljd8ULC) _ez,____o%_s pouodsip S0 [1ldvD] £LL:66:G0:L1
(Joowias™Ayyou~spsopoupa (V] €LL°6€*G0:L)

7G:juswubissp~a|os"wd
1 G:juswubisso~ajos"wd

v b d
1| X|-| 9281 /byuooTsuozowlt/ody | X|-|yG:uswubisso™ajos"wd/ogg| /wd/ody Doty aier ool
Kila [>l4efj1 KI[a [>{put4 spduiag | seyyul
[&] I
djsH MSIA JIP3 2l
NN 9sw'soppA|pd \sa|dwpxa \Jamelaosw\qnypb \y1ya\:d 190°ZA JamaIAISK

Patent Application Publication Jul. 30,2020 Sheet 2 of 5 US 2020/0241992 A1

200\ 202
S
LOG FILE
Y = =
204~ TEMPLATES FOR 206
L0G FILE SUPPORTED LOG
210~ DISPLAY |« VIEWER FILE TYPES
ICON 208
DATABASE
FIG. 2
320
LOG FILE

DEVICE1 EVENT1
DEVICE2 EVENT1
DEVICE1 EVENT2
DEVICE1 EVENT3
DEVICE2 EVENT2
DEVICE3 EVENT1
DEVICE1 EVENT4
DEVICE1 EVENTS
DEVICE2 EVENT3
DEVICE1 EVENT6
DEVICE1 EVENT6
DEVICE3 EVENT2

FIG. 3

Patent Application Publication

Jul. 30, 2020 Sheet 3 of 5

400

4

US 2020/0241992 A1l

ENHANCED

LOG FILE

DEVICE1 ~~ 402

DEVICE2 — 404

DEVICE3 — 406

DEVICE1 EVENT1 ~

DEVICE1 EVENT2
DEVICE1 EVENT3 ~

DEVICE1 EVENT4/
DEVICET EVENTS ~

DEVICE1 EVENT6 -

DEVICE1 EVENT7 =

{“f
DEVICE2 EVENT1

\%
/

P 412

1 Q{MO

\DEVICEZ EVENT3

1 <\x416

/ DEVICE2 EVENT4

(29— 18

™ DEVICE3 EVENTI

-

414

Yy

— DEVICE3 EVENT2

FIG. 4

Patent Application Publication Jul. 30,2020 Sheet 4 of 5 US 2020/0241992 A1

(_START)

|

TRACKING EVENTS OF A COMPUTING ENTITY [~ 502

Y

IDENTIFYING EVENT TYPES FOR THE EVENTS [504

Y

IDENTIFYING RELATIONSHIPS BETWEEN 506
THE EVENTS

Y

GENERATING A SEQUENCE DIAGRAM OF THE
EVENTS, WHEREIN THE SEQUENCE DIAGRAM
INCLUDES VISUAL INDICATIONS OF THE
RELATIONSHIPS BASED ON THE EVENT TYPES

(FIN‘I'SH)
FIG. 5

—~ 508

US 2020/0241992 A1l

Jul. 30, 2020 Sheet S of 5

Patent Application Publication

009 ~

d40SS3004d

\]

JHIVD

— {09

019

Sng

999 —11_¢£ Q0N
¥99 —11_C Q0N

799 —1f 1 GON |

EN)LE(l
JIVH0LS

AVY

NOY

AJONIN

JOVAYILINI
NOILLVOINNANOD

-~ 089

ENILE
1nd1Nno

0.9

)

099

069

)

0%9

)

0£9

\

009

ENJLEN
1NdNI

~~ 069

9 51D

US 2020/0241992 Al

SYSTEM AND METHOD FOR DYNAMIC
DOMAIN-SPECIFIC SEQUENCE DIAGRAM
VISUALIZATION

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of U.S. patent
application Ser. No. 14/796,289 filed on Jul. 10, 2015, the
contents of which is incorporated by reference in its entirety.

BACKGROUND

1. Technical Field

[0002] The present disclosure relates to visualizing log
files and more specifically to domain-specific visualizations
of log files to be more understandable to a human viewer.

2. Introduction

[0003] Distributed and concurrent systems can implement
complex control flows spawning multiple concurrent com-
ponents. For example, in the context of Openstack a north-
bound API request to create a virtual machine (VM) is
implemented by various components handling different con-
cerns, such as authentication, networking, VM spawning.
Potentially each component in the system can produce log
files or traces. Analyzing a particular flow execution requires
inspection and correlation of multiple such files, which is not
particularly suitable to a human being.

[0004] One common way to represent flow information for
concurrent systems is sequence diagrams. Sequence diagram
are an UML technique originally intended to capture flows
and interactions at design time. Some tools can generate
sequence diagrams out of traces or logs collected from a
running system. However the amount of information visu-
alized is typically much greater, and can include multiple
flows interlaced with each other. This representation of
sequence diagrams is mostly concerned with depicting inter-
actions and activity blocks, and does not provide any type of
visual clues to allow rapid identification of desired flows.
Thus, the amount of information is simply overwhelming
and, though all the information is displayed, the significance
or meaning of the information is difficult for humans to
decipher.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 illustrates an example enhanced log file;
[0006] FIG. 2 illustrates a block diagram of an example
system for enhancing log files;

[0007] FIG. 3 illustrates an example traditional log file;
[0008] FIG. 4 illustrates an example enhanced version of
a state machine based on the log file of FIG. 3;

[0009] FIG. 5 illustrates an example method embodiment;

and

[0010] FIG. 6 illustrates an example system embodiment.
DETAILED DESCRIPTION

[0011] A system, method and computer-readable storage

devices are disclosed which visually enhance sequence
diagrams to facilitate visual inspection when diagrams
include a large amount of information, such as sequence
diagrams automatically constructed from log or trace files.

Jul. 30, 2020

[0012] FIG. 1 illustrates an example enhanced log file 102
in an example software tool 100 for graphical visualization
of sequence diagrams from structured log files. While most
of the examples presented herein are discussed in terms of
a single log file, in practically every instance the tools 100
can apply equally to multiple related log files, such as the
separate log file outputs from multiple hardware and/or
software components acting in concert. Traditional sequence
diagrams visualize interactions as arrows and local activities
as “activate” blocks (rectangles on the life line of an entity).
The tool 100 represents events from the structured log files
with graphical icons 106, 108 or arrows 104 specific to the
event type, and supplemented by additional metadata when
needed. The additional metadata can include text in a popup,
tooltip, or rollover, sounds, video clips, more detailed or
larger graphical icons, an additional graphical emphasis on
related events or relationships such as a blinking icon, a
wobbly icon, a highlighted icon, and so forth. Thus, the tool
100 can render, instead of a straight wall of text entries from
the log file, a graphically enhanced presentation of the data
in the log file. The graphical enhancements can demonstrate
relationships between collections of entries in the log file.

[0013] For example, the enhanced log file 102 of FIG. 1
visualizes interactions of two entities. The first entity is a
state machine. The first visible event is a triangle, identifying
the birth of the state machine. Below the birth of the state
machine is an incoming interaction with a thunderbolt-
shaped icon, representing a state machine event received by
the state machine, which will cause a transition to be taken.
The next, larger circle represents the event of leaving or
entering a state of the state machine. Arrows represent taken
transitions. So in this example, the state machine leaves the
“start” state and enters the “wait_active” state due to event
“pm_go_active_ev”. In taking the transition, the state
machine performs some additional actions, one of which is
sending a particular type of message (CAPI) to the second
entity.

[0014] The second entity is not a state machine, but a
thread. The thread sends and receives various CAPI mes-
sages, but also it initiates and completes an asynchronous
connection, as indicated by the icons with labels “connect-
ingto...” and “connected to . . . ”. As shown, a user aware
of the particular domain specific notation used can quickly
identify different type of events such as state machines
interactions, reception of state machine events, sending/
receiving CAPI messages, initiation/completion of interac-
tions.

[0015] FIG. 2 illustrates a block diagram of an example
system 200 for enhancing log files with graphical elements.
The system 200 can include tool 100 as in FIG. 1 in the form
of'a log file viewer 204 or similar software application. The
viewer 204 receives a structured log file 202, whether loaded
directly from a locally or remotely stored file, or streamed
over a network, for example. The viewer can consult a
templates database 206 for supported log file types. The
templates database 206 can define different relationships and
types of events to highlight, as well as rules for recognizing
the relationships and rules for enhancing the presentation of
the log file according to the various templates. The viewer
204 can also retrieve icons or graphical elements from an
icon database 208. The icon database 208 and the templates
database 206 can be related, such as the templates database
206 indicating a preferred or default set of corresponding
icons in the icon database 208. However, the viewer 204 can

US 2020/0241992 Al

receive user input to select a specific template and/or set of
icons. The viewer 204 then overlays one or more icon or
graphical element from the icon database 208 over at least
part of the log file 202 on a display 210 or as graphical
output to a video or image file.

[0016] In order to keep the viewer 204 more generically
applicable to different types of event logs and structured log
files, the viewer 204 can have no knowledge a priori
regarding the particular event types and their graphical
representation. When loading a log file 202, the viewer 204
can discover event types in the log file 202 and look for an
icon corresponding to that event type in the icon database
208 or icon directory. The icon database can be a list of
image files, such as PNG files corresponding to event files
based on the file name. For example, a PNG file for an event
file entry “pm_go_active_ev” can be named “pm_go_ac-
tive_ev.PNG,” and a PNG file for an event file entry “wait_
active” can be named “wait_active PNG.”

[0017] Thus, the viewer 204 can provide a domain-spe-
cific graphical representation of events while remaining a
generic tool able to display different types of events. Further,
a user can specify a specific type perspective of the log file
202 that is of interest. A single type of log file can be
presented differently to emphasize different aspects of the
events contained therein that may be meaningful to different
users. For example, a domain-specific graphical representa-
tion of network logs may highlight different events and
relationships for a network security engineer than for a
quality of service performance analyst, even though the
underlying event logs contain the same information. This
domain-specific graphical representation can highly enhance
the visual separation of information and further facilitate
interpretation of diagrams derived from structured log files.
[0018] The viewer 204 can provide an increased ability to
visually navigate an extended sequence diagram, and can
graphically identify regions of interest based on visual clues.
The viewer 204 can allow a user to load different domain-
specific sets of visual clues to be used with domain specific
logs/traces, without modifying the tool. The viewer 204 can
improve visual inspection of graphical representation of
logs, resulting increased ease of debugging a system. The
viewer allows the user to assign specific icons or visual cues
to different types of state transitions in a state diagram
generated from one or more structured log files.

[0019] FIG. 3 illustrates an example traditional log file
300. In this traditional log file 300, the entries are simply a
listing of text events. While this log file 300 contains a very
simplistic set of log entries for devicel, device2, and
device3, the log file 300 can include many other details, such
as a timestamp, a thread ID, a username, a message or
descriptor, a status, a permission level, a network address, a
unique identifier, a file name, a computer name, and so forth.
[0020] FIG. 4 illustrates an example enhanced version of
a state machine 400 based on the log file of FIG. 3. In this
example, the state machine 400 identifies the three entities,
devicel, device2, and device3, in the structured log and
organizes events for the three entities into three correspond-
ing columns 402, 404, 406. The state machine 400 shows an
arrow 408 from devicel eventl to device2 eventl, signify-
ing a request for device2 to perform an action. Lightning
bolt 410 represents device2 attempting to perform the
requested action. The cross 412 and arrow from device2
event2 represent reporting a failure to perform the requested
action. However, before receiving the report of a failure,

Jul. 30, 2020

devicel event3 sends a request, represented by a bold arrow,
to device3 to perform a different action. After receiving the
request, device3 performs the requested action, indicated by
database icon 414. Then device3 can report success to
devicel with a circle icon 420. However, in the intervening
time device3 took to perform the action, devicel sends
another request to device2 to re-perform the previously
failed action, represented as the second lightning bolt 416.
This time, device2 succeeds and reports accordingly, as
indicated by the circle 418. The actions and behaviors of this
portion of a state machine 400 are far more understandable
than the straight, unannotated text of FIG. 3. The enhanced
display 400 can allow for interactions, as well. For example,
a user can click on an icon, such as icon 414 to view more
details from the underlying event logs.

[0021] This approach enables the user to apply a wider set
of graphical representations which are more easily recog-
nizable at a glance, so the user can quickly navigate the
format and isolate the desired parts. The system rendering
the graphical representations can be separated from the
graphical elements themselves, so alternate graphical rep-
resentations are pluggable for different domains. The system
can display different logs with different icon sets specific to
that tool, event, or communication type. Users can custom-
ize and share different libraries of icons and patterns for
interpreting log files. In this way, a first user can create or
modify one set of icons and share that set of icons with other
users, who can, in turn, also modify the set of icons. The
system can incorporate an icon library hosting feature to
share icon libraries with other users, or to search a server
hosting different icon libraries. Alternatively, users can
create or download other icon libraries and install them in
the system, or simply save them on a local machine for later
use.

[0022] Having disclosed some basic system components
and concepts, the disclosure now turns to the exemplary
method embodiment shown in FIG. 5. For the sake of clarity,
the method is described in terms of an exemplary system 600
as shown in FIG. 6 configured to practice the method. The
steps outlined herein are exemplary and can be implemented
in any combination thereof, including combinations that
exclude, add, or modify certain steps.

[0023] A system configured according to this disclosure
can track events of a computing entity (502). The computing
entity can be a state machine, a virtual machine, a thread, a
process, a software component, a logical entity, or a hard-
ware component. The computing entity can be any device
that generates or contributes to an event log. The events can
be tracked from at least one of a structured log file and a
stream of event data, for example. The system can identify
event types for the events (504). The system can identify
relationships between the events (506). Then the system can
generate a sequence diagram of the events, wherein the
sequence diagram includes visual indications of the rela-
tionships based on the event types (508). The system can
further select an icon for each event from an event directory
based on event type. The icons can be selected from an
event-specific icon directory. The system can optionally
receive user input to switch from a first icon set to a second
icon set, wherein each of the first icon set and the second
icon set targets a different domain with different, domain-
specific visual cues, and transition the visual indications
based on the second icon set. The system can identify a
region of interest within the sequence diagram, and highlight

US 2020/0241992 Al

the region of interest with a visual indicator. The region of
interest can be identified based on at least one of user input,
a user profile, and data contained in a file associated with the
events.

[0024] The system can render at least a portion of the
sequence diagram on a display, and present controls on the
display for a user to visually navigate within the sequence
diagram, such as scrolling, zooming in and out, selecting one
or more element of the sequence diagram, drill down to the
associated underlying log file data for a particular graphical
element, search for other instances of a particular pattern of
interaction, and so forth. The user can toggle display of all
or part of the graphical elements, in order to view the
underlying data in an unmodified or non-enhanced form.
[0025] In one variation, the system can look in the log file
for clues or directives for where to find appropriate sets of
icons for enhanced display of that log file. For example, the
log file can include a URL to an icon set repository for use
with that type of log file. Alternatively, the system can use
pattern recognition or some other recognition mechanism to
determine a type of log file, and automatically find an
appropriate library of icons for use with that log file. The
system can generate and display a legend describing the
meanings of the various icons in the enhanced graphical
display of the log file.

[0026] Various embodiments of the disclosure are
described in detail below. While specific implementations
are described, it should be understood that this is done for
illustration purposes only. Other components and configu-
rations may be used without parting from the spirit and
scope of the disclosure.

[0027] A brief description of a basic general purpose
system or computing device in FIG. 6 which can be
employed to practice the concepts, methods, and techniques
disclosed is illustrated. These variations shall be described
herein as the various embodiments are set forth. The dis-
closure now turns to FIG. 6.

[0028] With reference to FIG. 6, an exemplary system
and/or computing device 600 includes a processing unit
(CPU or processor) 620 and a system bus 610 that couples
various system components including the system memory
630 such as read only memory (ROM) 640 and random
access memory (RAM) 650 to the processor 620. The
system 600 can include a cache 622 of high-speed memory
connected directly with, in close proximity to, or integrated
as part of the processor 620. The system 600 copies data
from the memory 630 and/or the storage device 660 to the
cache 622 for quick access by the processor 620. In this way,
the cache provides a performance boost that avoids proces-
sor 620 delays while waiting for data. These and other
modules can control or be configured to control the proces-
sor 620 to perform various operations or actions. Other
system memory 630 may be available for use as well. The
memory 630 can include multiple different types of memory
with different performance characteristics. It can be appre-
ciated that the disclosure may operate on a computing device
600 with more than one processor 620 or on a group or
cluster of computing devices networked together to provide
greater processing capability. The processor 620 can include
any general purpose processor and a hardware module or
software module, such as module 1 662, module 2 664, and
module 3 666 stored in storage device 660, configured to
control the processor 620 as well as a special-purpose
processor where software instructions are incorporated into

Jul. 30, 2020

the processor. The processor 620 may be a self-contained
computing system, containing multiple cores or processors,
a bus, memory controller, cache, etc. A multi-core processor
may be symmetric or asymmetric. The processor 620 can
include multiple processors, such as a system having mul-
tiple, physically separate processors in different sockets, or
a system having multiple processor cores on a single physi-
cal chip. Similarly, the processor 620 can include multiple
distributed processors located in multiple separate comput-
ing devices, but working together such as via a communi-
cations network. Multiple processors or processor cores can
share resources such as memory 630 or the cache 622, or can
operate using independent resources. The processor 620 can
include one or more of a state machine, an application
specific integrated circuit (ASIC), or a programmable gate
array (PGA) including a field PGA.

[0029] The system bus 610 may be any of several types of
bus structures including a memory bus or memory control-
ler, a peripheral bus, and a local bus using any of a variety
of bus architectures. A basic input/output (BIOS) stored in
ROM 640 or the like, may provide the basic routine that
helps to transfer information between elements within the
computing device 600, such as during start-up. The com-
puting device 600 further includes storage devices 660 or
computer-readable storage media such as a hard disk drive,
a magnetic disk drive, an optical disk drive, tape drive,
solid-state drive, RAM drive, removable storage devices, a
redundant array of inexpensive disks (RAID), hybrid storage
device, or the like. The storage device 660 can include
software modules 662, 664, 666 for controlling the proces-
sor 620. The system 600 can include other hardware or
software modules. The storage device 660 is connected to
the system bus 610 by a drive interface. The drives and the
associated computer-readable storage devices provide non-
volatile storage of computer-readable instructions, data
structures, program modules and other data for the comput-
ing device 600. In one aspect, a hardware module that
performs a particular function includes the software com-
ponent stored in a tangible computer-readable storage device
in connection with the necessary hardware components,
such as the processor 620, bus 610, display 670, and so forth,
to carry out a particular function. In another aspect, the
system can use a processor and computer-readable storage
device to store instructions which, when executed by the
processor, cause the processor to perform operations, a
method or other specific actions. The basic components and
appropriate variations can be modified depending on the
type of device, such as whether the device 600 is a small,
handheld computing device, a desktop computer, or a com-
puter server. When the processor 620 executes instructions
to perform “operations”, the processor 620 can perform the
operations directly and/or facilitate, direct, or cooperate with
another device or component to perform the operations.

[0030] Although the exemplary embodiment(s) described
herein employs the hard disk 660, other types of computer-
readable storage devices which can store data that are
accessible by a computer, such as magnetic cassettes, flash
memory cards, digital versatile disks (DVDs), cartridges,
random access memories (RAMs) 650, read only memory
(ROM) 640, a cable containing a bit stream and the like, may
also be used in the exemplary operating environment. Tan-
gible computer-readable storage media, computer-readable
storage devices, or computer-readable memory devices,

US 2020/0241992 Al

expressly exclude media such as transitory waves, energy,
carrier signals, electromagnetic waves, and signals per se.
[0031] To enable user interaction with the computing
device 600, an input device 690 represents any number of
input mechanisms, such as a microphone for speech, a
touch-sensitive screen for gesture or graphical input, key-
board, mouse, motion input, speech and so forth. An output
device 670 can also be one or more of a number of output
mechanisms known to those of skill in the art. In some
instances, multimodal systems enable a user to provide
multiple types of input to communicate with the computing
device 600. The communications interface 680 generally
governs and manages the user input and system output.
There is no restriction on operating on any particular hard-
ware arrangement and therefore the basic hardware depicted
may easily be substituted for improved hardware or firm-
ware arrangements as they are developed.

[0032] For clarity of explanation, the illustrative system
embodiment is presented as including individual functional
blocks including functional blocks labeled as a “processor”
or processor 620. The functions these blocks represent may
be provided through the use of either shared or dedicated
hardware, including, but not limited to, hardware capable of
executing software and hardware, such as a processor 620,
that is purpose-built to operate as an equivalent to software
executing on a general purpose processor. For example the
functions of one or more processors presented in FIG. 6 may
be provided by a single shared processor or multiple pro-
cessors. (Use of the term “processor” should not be con-
strued to refer exclusively to hardware capable of executing
software.) Illustrative embodiments may include micropro-
cessor and/or digital signal processor (DSP) hardware, read-
only memory (ROM) 640 for storing software performing
the operations described below, and random access memory
(RAM) 650 for storing results. Very large scale integration
(VLSI) hardware embodiments, as well as custom VLSI
circuitry in combination with a general purpose DSP circuit,
may also be provided.

[0033] The logical operations of the various embodiments
are implemented as: (1) a sequence of computer imple-
mented steps, operations, or procedures running on a pro-
grammable circuit within a general use computer, (2) a
sequence of computer implemented steps, operations, or
procedures running on a specific-use programmable circuit;
and/or (3) interconnected machine modules or program
engines within the programmable circuits. The system 600
shown in FIG. 6 can practice all or part of the recited
methods, can be a part of the recited systems, and/or can
operate according to instructions in the recited tangible
computer-readable storage devices. Such logical operations
can be implemented as modules configured to control the
processor 620 to perform particular functions according to
the programming of the module. For example, FIG. 6
illustrates three modules Modl 662, Mod2 664 and Mod3
666 which are modules configured to control the processor
620. These modules may be stored on the storage device 660
and loaded into RAM 650 or memory 630 at runtime or may
be stored in other computer-readable memory locations.
[0034] One or more parts of the example computing
device 600, up to and including the entire computing device
600, can be virtualized. For example, a virtual processor can
be a software object that executes according to a particular
instruction set, even when a physical processor of the same
type as the virtual processor is unavailable. A virtualization

Jul. 30, 2020

layer or a virtual “host” can enable virtualized components
of one or more different computing devices or device types
by translating virtualized operations to actual operations.
Ultimately however, virtualized hardware of every type is
implemented or executed by some underlying physical hard-
ware. Thus, a virtualization compute layer can operate on
top of a physical compute layer. The virtualization compute
layer can include one or more of a virtual machine, an
overlay network, a hypervisor, virtual switching, and any
other virtualization application.

[0035] The processor 620 can include all types of proces-
sors disclosed herein, including a virtual processor. How-
ever, when referring to a virtual processor, the processor 620
includes the software components associated with executing
the virtual processor in a virtualization layer and underlying
hardware necessary to execute the virtualization layer. The
system 600 can include a physical or virtual processor 620
that receive instructions stored in a computer-readable stor-
age device, which cause the processor 620 to perform certain
operations. When referring to a virtual processor 620, the
system also includes the underlying physical hardware
executing the virtual processor 620.

[0036] Embodiments within the scope of the present dis-
closure may also include tangible and/or non-transitory
computer-readable storage devices for carrying or having
computer-executable instructions or data structures stored
thereon. Such tangible computer-readable storage devices
can be any available device that can be accessed by a general
purpose or special purpose computer, including the func-
tional design of any special purpose processor as described
above. By way of example, and not limitation, such tangible
computer-readable devices can include RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
device which can be used to carry or store desired program
code in the form of computer-executable instructions, data
structures, or processor chip design. When information or
instructions are provided via a network or another commu-
nications connection (either hardwired, wireless, or combi-
nation thereof) to a computer, the computer properly views
the connection as a computer-readable medium. Thus, any
such connection is properly termed a computer-readable
medium. Combinations of the above should also be included
within the scope of the computer-readable storage devices.
[0037] Computer-executable instructions include, for
example, instructions and data which cause a general pur-
pose computer, special purpose computer, or special purpose
processing device to perform a certain function or group of
functions. Computer-executable instructions also include
program modules that are executed by computers in stand-
alone or network environments. Generally, program mod-
ules include routines, programs, components, data struc-
tures, objects, and the functions inherent in the design of
special-purpose processors, etc. that perform particular tasks
or implement particular abstract data types. Computer-ex-
ecutable instructions, associated data structures, and pro-
gram modules represent examples of the program code
means for executing steps of the methods disclosed herein.
The particular sequence of such executable instructions or
associated data structures represents examples of corre-
sponding acts for implementing the functions described in
such steps.

[0038] Other embodiments of the disclosure may be prac-
ticed in network computing environments with many types

US 2020/0241992 Al

of computer system configurations, including personal com-
puters, hand-held devices, multi-processor systems, micro-
processor-based or programmable consumer electronics,
network PCs, minicomputers, mainframe computers, net-
work routers, wearable devices, and the like. Embodiments
may also be practiced in distributed computing environ-
ments where tasks are performed by local and remote
processing devices that are linked (either by hardwired links,
wireless links, or by a combination thereof) through a
communications network. In a distributed computing envi-
ronment, program modules may be located in both local and
remote memory storage devices.

[0039] The various embodiments described above are pro-
vided by way of illustration only and should not be con-
strued to limit the scope of the disclosure. Various modifi-
cations and changes may be made to the principles described
herein without following the example embodiments and
applications illustrated and described herein, and without
departing from the spirit and scope of the disclosure. Claim
language reciting “at least one of” a set indicates that one
member of the set or multiple members of the set satisty the
claim.

1. A method comprising:

identifying a plurality of event types for a plurality of

events;

identifying relationships between the plurality of events;

and

generating a sequence diagram including visual indica-

tions positioned between respective ones of the plural-
ity of events to illustrate a respective relationship of the
relationships between the respective ones of the plu-
rality of events.

2. The method of claim 1,

wherein,

the plurality of events are associated with a plurality of
entities, and

the plurality of entities include at least one of a state
machine, a thread, or a logical entity.

3. The method of claim 1, wherein the plurality of events
are tracked from a plurality of structured log files output
from multiple hardware and/or software components acting
in concert.

4. The method of claim 1, further comprising:

selecting different icons for different ones of the plurality

of events from an event directory based on the event
types.
5. The method of claim 4, wherein the different icons are
selected from an event-specific event directory.
6. The method of claim 4, further comprising:
receiving an input to switch from a first icon set to a
second icon set, wherein each of the first icon set and
the second icon set targets a different domain with
different, domain-specific visual cues; and

transitioning the visual indications based on the second
icon set.

7. The method of claim 1, further comprising:

rendering at least a portion of the sequence diagram on a

display; and

presenting controls on the display to visually navigate

within the sequence diagram.

8. The method of claim 1, further comprising:

identifying a region of interest within the sequence dia-

gram; and

highlighting the region of interest with a visual indicator.

Jul. 30, 2020

9. The method of claim 8, wherein the region of interest
is identified based on at least one of an input, a profile,
and/or data contained in a file associated with plurality of
events.
10. A system comprising:
at least one processor;
a memory storing instructions which, when executed by
the at least one processor, cause the at least one
processor to:
identify a plurality of event types for a plurality of
events;

identify relationships between the plurality of events;
and

generate a sequence diagram including visual indica-
tions positioned between respective ones of the plu-
rality of events to illustrate a respective relationship
of the relationships between the respective ones of
the plurality of events.

11. The system of claim 10, wherein,

the plurality of events are associated with a plurality of
entities, and

the plurality of entities include a state machine, a thread,
or a logical entity.

12. The system of claim 10, wherein the plurality of
events are tracked from a plurality of structured log files
output from multiple hardware and/or software components
acting in concert.

13. The system of claim 10, comprising further instruc-
tions, which when executed cause the at least one processor
to: select different icons for different ones of the plurality of
events from an event directory based on the event types.

14. The system of claim 13, wherein the different icons
are selected from an event-specific event directory.

15. The system of claim 13, comprising further instruc-
tions, which when executed cause the at least one processor
to:

receive input to switch from a first icon set to a second
icon set, wherein each of the first icon set and the
second icon set targets a different domain with differ-
ent, domain-specific visual cues; and

transition the visual indications based on the second icon
set.

16. The system of claim 10, comprising further instruc-
tions, which when executed cause the at least one processor
to:

render at least a portion of the sequence diagram on a
display; and

present controls on the display to visually navigate within
the sequence diagram.

17. The system of claim 10, comprising further instruc-
tions, which when executed cause the at least one processor
to:

identify a region of interest within the sequence diagram;

and highlight the region of interest with a visual indicator.

18. The system of claim 17, wherein the region of interest
is identified based on at least one of an input, a profile,
and/or data contained in a file associated with the events.

19. A non-transitory computer-readable storage device
storing instructions which, when executed by at least one
processor, cause the processor to:

identify a plurality of event types for a plurality of events;

identify relationships between the plurality of events; and

generate a sequence diagram including visual indications
positioned between respective ones of the plurality of

US 2020/0241992 Al

events to illustrate a respective relationship of the
relationships between the respective ones of the plu-
rality of events.

20. The non-transitory computer-readable storage device
of claim 19, comprising further instructions, which when
executed cause the at least one processor to:

select different icons for different ones of the plurality of

events from an event directory based on event type, the
different icons selected from an event-specific event
directory;

receive input to switch from a first icon set to a second

icon set, each of the first icon set and the second icon
set targeting a different domain with different, domain-
specific visual cues; and

transition the visual indications based on the second icon

set.

Jul. 30, 2020

