US 20200241939A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0241939 A1

WANG et al. 43) Pub. Date: Jul. 30, 2020
(54) SYSTEM AND METHODS OF ZERO-COPY (52) US. CL
DATA PATH AMONG USER LEVEL CPC ..ot GOG6F 9/544 (2013.01)
PROCESSES
(71) Applicant: VMware, Inc., Palo Alto, CA (US) 7 ABSTRACT
(72) Inventors: Wenguang WANG, Santa Clara, CA The d.isclosure provides an approach for performing an
(US); Christoph KLEE, Snoqualmie, operation by a ﬁ.rs.t process on behalf of a second process, the
WA (US); Adrian DRZEWIECKI, method comprising: obtaining, by the first process, a
Cupertino, CA (US); Christos memory handle from the second process, wherein the
K ARAM;&NOLIS ’L os Gatos. CA memory handle allows access, by the first process, to at least
(US); Richard P. éPILL ANE, some of the address space of the second process; dividing
M our’ltain View, CA (US); M a;(im e the address space of the memory handle into a plurality of
AUSTRUY. I e;us ane (CH’) sections; receiving, by the first process, a request from the
’ second process to perform an operation; determining, by the
(21) Appl. No.: 16/256,713 first process, a section of the plurality of sections that is to
be mapped from the address space of the memory handle to
(22) Filed: Jan. 24, 2019 the address space of the first process for the performance of
A . . the operation by the first process; mapping the section from
Publication Classification the agdress spaZe of the nfemory handrig togthe address space
(51) Int. CL of the first process; and performing the operation by the first
GO6F 9/54 (2006.01) process on behalf of the second process.

202
N\

Obtain memory handle
from a second process

204~ *

Divide handle into
sections

206\ +

Receive I/0 request
fram the second
process

28 *

Determine which
section(s) pertains to
the I/0 request

210~ *

Map section into
cache of memary

212N ‘

Perform 1/0 operation

End

200

e

Patent Application Publication Jul. 30,2020 Sheet 1 of 3 US 2020/0241939 A1

/ 100
Computing Device 124

/ ———————————————————————————————— b N
| User Space 104 :
|

|
: Client Process 110+ Server Process 118 Client Process 110, |

|
: .
| |
| F—————— '
| | ‘ '
I i Cache | |
| | 122 | |
| I l |
R I - |
| |
] |
| |
| |
\ _
(emelSpaceto2 \'
|
| /O Stack 106 :
' |
' [
' |
l |
l I
N e e o e o = — o — — — — — — — — — o — — — — — o o — — — -
Memory 112 CPU 114 Storage 108

Cache
122
FIG. 1

{Prior Art)

Patent Application Publication Jul. 30,2020 Sheet 2 of 3 US 2020/0241939 A1

200

/

202
N\

Obtain memory handle
from a second process

204~ ‘

Divide handle into
sections

206~ +

Receive I/0 request
from the second
process

208~ ‘

Determine which
section(s) pertains to
the 1/0 request

210~ *

Map section into
cache of memory

212N *

Perform I/O operation

End

FIG. 2

Patent Application Publication Jul. 30,2020 Sheet 3 of 3 US 2020/0241939 A1
Address Space of Memory Handle 304
Client Process 110+ x
/ : . . . :
1 302¢ I 302p I 302¢ I 302F
1 i l |
| | | |
| | | |
| | | I
/ /
e 7
7 yd
/ /7
e 7
/ /
] | |]
302¢ I 302 | I I
7 L L		
Cache 122 \ \		
AN N\		
Address Space of N\ N\		
Server Process 118 N\ \		
N\ N\		
N\ N\		
l . 3 3 .		
I 302y	302w I 302x	302y I 3027
i	I	
	1	
	l	I
Address Space of Memory Handle 304,

Client Process 110

FIG. 3

US 2020/0241939 Al

SYSTEM AND METHODS OF ZERO-COPY
DATA PATH AMONG USER LEVEL
PROCESSES

RELATED APPLICATIONS

[0001] This application is related to U.S. Application No.
(Attorney Docket No. E257), titled “CPU-EFFI-
CIENT CACHE REPLACEMENT WITH TWO-PHASE
EVICTION,” filed on the same day as the present applica-
tion, the entire contents of which is hereby incorporated by

reference herein.

BACKGROUND

[0002] A computing device usually has multiple processes
running on it, some of the processes being in kernel space
and some in user space. Sometimes two user processes need
to pass data between each other. However, the two user
processes do not have access to one another’s address space.
One way to pass data between two user processes is for a
kernel process to copy data of a first user process into the
kernel process address space. The kernel process can then
make a second copy of the kernel address space copy into
the second user process. However, such data transfer from
one user process to a second user process requires the
creation of two additional copies of the data. Such “two-
copy” data transfer uses a lot of resources of a computing
device, and takes a significant amount of time to complete.

SUMMARY

[0003] Embodiments provide a method of performing an
operation by a first process on behalf of a second process, the
method comprising: obtaining, by the first process, a
memory handle from the second process, wherein the
memory handle allows access, by the first process, to at least
some of the address space of the second process; dividing
the address space of the memory handle into a plurality of
sections; receiving, by the first process, a request from the
second process to perform an operation; determining, by the
first process, a section of the plurality of sections that is to
be mapped from the address space of the memory handle to
the address space of the first process for the performance of
the operation by the first process; mapping the section from
the address space of the memory handle to the address space
of' the first process; and performing the operation by the first
process on behalf of the second process.

[0004] Further embodiments include a non-transitory
computer-readable storage medium storing instructions that,
when executed by a computer system, cause the computer
system to perform the method set forth above, and a com-
puter system programmed to carry out the method set forth
above.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 depicts a block diagram of a computer
system in which one or more embodiments of the present
invention may be implemented.

[0006] FIG. 2 depicts a flow diagram of a method of
performing a zero-copy 1/O operation by a server process on
behalf of a client process, according to an embodiment.
[0007] FIG. 3 depicts a block diagram of a mapping
between (a) a section of an address space of a client process
and (b) the address space of a server process, according to
an embodiment.

Jul. 30, 2020

[0008] To facilitate understanding, identical reference
numerals have been used, where possible, to designate
identical elements that are common to the figures. It is
contemplated that elements disclosed in one embodiment
may be beneficially utilized on other embodiments without
specific recitation.

DETAILED DESCRIPTION

[0009] The present disclosure provides an approach for
exchanging data between two or more user-level processes
without the need of creating a copy of that data, and without
the need to use an intermediary kernel-level process to
transmit data between the two or more user-level processes.
The techniques described herein improve the functioning of
the computer itself because increasing the speed of data
exchange between components or processes of a computer
improves the speed of execution of software in general on
the computer.

[0010] FIG. 1 depicts a block diagram of a computer
system 100 in which one or more embodiments of the
present invention may be implemented. Computer system
100 includes a computing device 124.

[0011] Computing device 124 includes a memory 112, one
or more processors (CPUs) 114, a storage 108, a user
“space” or “level” 104, and a kernel “space” or “level” 102.
[0012] Storage 108 represents persistent storage devices
(e.g., one or more hard disks, flash memory modules, solid
state disks, and/or optical disks). Storage 108 may be
internal to computing device 124, or may be external to
computing device 124 and coupled via a host bus adapter
(HBA) or network interface card (NIC) of computing device
124, such as over a network.

[0013] Memory 112 is hardware allowing information,
such as executable instructions, configurations, and other
data, to be stored and retrieved. Memory 110 is where
programs and data are kept when CPU 108 is actively using
them. Memory 110 may be volatile memory or non-volatile
memory.

[0014] Kernel space 102 comprises software components
and address spaces of those components that are part of a
privileged operating system (OS) kernel of computing
device 124. The address spaces may be virtual or physical,
and correspond to addresses in memory 112. As known in
the art, virtual memory is an abstraction of physical memory
that gives a process 110/118 the illusion of having large or
infinite memory available. Virtual memory addresses are
mapped to physical memory addresses by page tables stored
in memory 112.

[0015] In an embodiment, the OS kernel running on com-
puting device 124 can be part of a conventional desktop OS,
like Microsoft Windows, Mac OS, or Linux. In other
embodiments, the OS kernel running on computing device
124 can be part of a native, or “bare metal,” virtualization
hypervisor, like VMware’s ESX Hypervisor.

[0016] Kernel space 102 includes a kernel-level input/
output (I/O) stack 106 that is configured to perform 1/O with
respect to a storage 108. Kernel space 102 can include
components that are not shown, such as a memory manage-
ment subsystem, a process scheduling subsystem, privileged
device drivers, etc.

[0017] User space 104 comprises a plurality of user pro-
cesses, such as 110,, 110,, and 118 that run outside of the OS
kernel. Examples of such user processes include application
programs, shared libraries, virtual machines (VMs), etc. In

US 2020/0241939 Al

an embodiment, rather than connecting to hardware of
computer system 100 through I/O stack 106, user processes
110/118 may connect to hardware of computer system 100
through single root input/output virtualization (SR-IOV)
technology. Processes 110 and 118, as well as any kernel
level processes, execute on the one or more processors 114.
[0018] InFIG. 1, three user processes 110,, 110,, and 118
are shown, although any number of user processes may run
concurrently. At least one of the user processes may be a
server process 118, and one or more other processes may be
client processes 110, and 110,. Server process 118 com-
prises a cache 122, which is a portion of memory 112
corresponding to a portion of the virtual or physical memory
address space of server process 118, as shown by the dotted
lines of cache 122 within server process 118, and by the solid
lines of cache 122 within memory 122. Cache 122 is
discussed in more detail with reference to FIGS. 2 and 3,
below.

[0019] In an embodiment, server processes 118 of com-
puting device 124 are the only user processes with permis-
sion to perform /O operations on storage 108, such as
through /O stack 106. In an embodiment, server process 118
has more privileges within computer system 100 than client
processes 110, or 110,. The privileges of server process 118
may arise from an administrative account that is associated
with server process 118. The privileges of server process 118
may allow server process 118 to perform certain operations
that client processes 110 may not have permission to do,
such as 1/O operations on storage 108 through I/O stack 106.
Operations that server process 118 may have permission to
perform, but a client process may not have permission to
perform, may include some or all of the following: data read,
data write, data compression, hash computation, deduplica-
tion, encryption, and checksum calculation.

[0020] Aside from permissions and privileges of user
processes, it may be advantageous for server process 118 to
perform the above operations rather than for a client process
110, because performing the above operations centrally
allows for running of central algorithms, and the central
algorithms may execute from a central location, such as
server process 118. A central algorithm, as opposed to a
distributed algorithm running on several processes such as
client processes 110, is easier to create and is less error
prone, resulting in an overall better-performing computer
system 100.

[0021] In order for client process 110 to perform an I/O
operation on storage 108 through server process 118, server
process 118 needs to be able to obtain data from client
process 110 and/or to be able to provide data to client
process 110. Generally, each user process in user space 104
has its own memory space that is not directly accessible by
other user processes. This feature, known as memory isola-
tion, increases the stability and security of computing device
124, because a malicious or buggy user process cannot
tamper with the memory (and/or other resources) owned by
other user processes, or the OS itself.

[0022] As discussed in the Background section, one way
for server process 118 to obtain/provide data to/from client
process 110 is for a kernel process to act as an intermediary
in transmitting data between user level processes. However,
such transmission involves creating one or more copies of
the data, which is inefficient. An improved method for server
process 118 to exchange data with client process 110 is
discussed with reference to FIGS. 2 and 3, below.

Jul. 30, 2020

[0023] FIG. 2 depicts a flow diagram of a method 200 of
performing a zero-copy I/O operation by a server process
118 on behalf of a client process 110, according to an
embodiment. Certain blocks of FIG. 2 are discussed with
reference to FIG. 3. Method 200 may be performed by server
process 118, optionally in conjunction with other compo-
nents of computer system 100.

[0024] At block 202, server process 118 obtains a memory
handle 304 (see FIG. 3) from a client process 110. Memory
handle 304 may be obtained by server process 118 from
client process 110 through the method described in FIG. 2 of
U.S. Pat. No. 9,542,112, issued Jan. 10, 2017, the entire
contents of which is incorporated by reference herein. As
described in U.S. Pat. No. 9,542,112, memory handle 304
may be a file handle. Memory handle 304 represents some
or all of the virtual or physical address space of a client
process 110. Memory handle 304 allows server process 118
to interact with a portion of memory 112 corresponding to
the address space of client process 110 as though that portion
of memory 112 corresponding to the portion of address
space of client process 110 were a file located within
memory or storage of computing device 124. That is, a
portion of memory 112 allocated to one user level process
110/118 is usually inaccessible to another user level process,
for security purposes, but memory handle 304 allows one
user level process 110/118 to access a portion of memory
112 allocated to another user level process 110/118 as
though that portion were a file object, communicable using
a file object interface.

[0025] Access to another user process’s address space
through a memory handle typically requires the use of
buffers, which means that one or more copies of data are
created during operations directed at the memory handle. In
order to accomplish zero-copy memory sharing between
user-level processes, some or all of the memory handle
should be memory mapped onto the address space of the
process that obtained the memory handle (e.g., onto the
address space of server process 118). Because memory
handle 304 might represent all or a large portion of the
address space of client process 110, and because server
process 118 may have obtained multiple memory handles
304 from multiple client processes 110, mapping the entire
address space represented by every obtained memory handle
304 onto the virtual or physical address space of server
process 118 may be infeasible or inefficient. Thus, the
address space represented by memory handle 304 may be
divided into sections 302 (see FIG. 3), each of which may be
mapped separately, as described below.

[0026] At block 204, server process 118 divides the
address space represented by the memory handle obtained at
block 202 into sections 302. Exemplary sections 302 are
shown in FIG. 3.

[0027] FIG. 3 depicts a block diagram of one or more
mappings between (a) sections 302 of address space of client
processes 110 and (b) the address space of server process
118, according to an embodiment. The address space of
client processes 110 and server process 118 may be a virtual
address space or a physical address space. The portion of the
address space of client process 110, that is divided into
sections 302 .-302. is encompassed by exemplary memory
handle 304,. The portion of the address space of client
process 110, that is divided into sections 302,-302, is
encompassed by exemplary memory handle 304,. As shown,
one or more of sections 302 of each client process 110 is

US 2020/0241939 Al

mapped onto cache 122. As described above, cache 122 is a
portion of the address space of server process 118. Each
section 302 may be of the same size, or the sizes of sections
302 may vary. A section 302 may be, for example, 100 MB,
500 MB, 1 GB, 2 GB, or 5 GB in size.

[0028] Returning to FIG. 2, at block 206, server process
118 receives an /O operation request, such as an 1/O
operation directed at storage 108 or memory 112, from client
process 110. Although block 206 is shown as occurring after
blocks 202 and 204, block 204 may occur before one of or
both blocks 202 and/or 204, or in parallel with block 202 or
204. For example, block 206 may be the first block of
method 200, and may be the trigger for the initiation of
method 200 and the execution of rest of the blocks of
method 200. The 1/O operation received at block 206 by
server process 118 from client process 110 may be, for
example, a read or write operation.

[0029] Atblock 208, server process 118 determines which
section(s) 302 of memory handle 304 pertains to the 1/O
operation of block 206. For example, if the 1/O operation is
a write operation, then server process 118 determines which
section 302 of memory handle 304 contains data that is to be
written to the destination of the write operation. For another
example, if the I/O operation is a read operation, then server
process 118 determines into which section 302 of memory
handle 304 the read data is to be written, and maps that part
of memory from the client process into the address space of
the server process. Usually, the server process 118 starts an
1/0O operation so that a storage controller of storage 108 or
a remote storage directly puts data into section 302 of
memory 112, the specific section 302 being indicated by
server process 118. Because section 302 of memory 112 has
been mapped from client process 110 to server process 118
through memory handle 304, the data read appears in the
address space of client process 110 at the same time, without
an additional copy of data being created within memory 112
reserved for client process 110. The session may be a Direct
Memory Access (DMA) session or a Remote Direct
Memory Access (RDMA) session, created through a net-
work for remote storage. Functions of a storage controller
may be performed by an RDMA card. An example of an
intermediate copy is a copy created within a memory buffer,
such as a read or write buffer.

[0030] At block 210, server process 118 maps (a) the one
or more section(s) 302 determined to pertain (e.g., to contain
data) to the I/O operation of block 206, and (b) the address
space of server process 118. Specifically, server process 118
maps the section(s) 302 of memory handle 304 to cache 122
of'the address space of server process 118. The mapping may
be accomplished by, for example, the mmap call, which is a
Portable Operating System Interface (POSIX)-compliant
Unix system call. The mapping of a portion of client process
110 virtual address space to a portion of a server process 118
virtual address space, the client portion defined by memory
handle 304, may be accomplished, for example, as follows.
The mapping may be accomplished by mapping each virtual
address in section 302 of the client process into server
process 118 by making a portion (e.g., one or more page
table entries) of the page table of server process 118 point to
the portion of memory pages of client process 110 that is to
be mapped to server process 118.

[0031] Mapping one or more sections 302 into the address
space of server process 118 allows server process 118 to read
or write data to/from mapped section 302 as though the

Jul. 30, 2020

mapped section 302 were part of the address space of server
process 118. In this way, no intermediate copies, such as
buffer copies, are created and/or needed when server process
118 performs an I/O operation on behalf of client process
110.

[0032] FIG. 3 shows an exemplary mapping between (a)
cache 122 of server process 118 and (b) memory handles
304, and 304,. FIG. 3 shows that section 302 of address
space of client process 110, has been mapped into a first
portion of cache 122, and that section 302, of address space
of client process 110, has been mapped into a second portion
of cache 122. FIG. 3 assumes that more than one memory
handle 304 has been obtained by server process 118, and
server process 118 is performing I/O operations on behalf of
more than one client process 110.

[0033] Cache 122 may utilize a standard cache algorithm
for unmapping (i.e., evicting) mappings between sections
302 and cache 122, once cache 122 becomes full. The cache
algorithm may be, for example, first-in-first-out, last-in-first-
out, least recently used, most recently used, random replace-
ment, or another cache algorithm. In an embodiment, the
cache algorithm used is the clock algorithm described in
U.S. Pat. No. 9,760,493, issued Sep. 12, 2017, the entirety
of which is hereby incorporated herein. In another embodi-
ment, the cache algorithm is the algorithm described in U.S.
Application No. (Attorney Docket No. E257), titled “CPU-
EFFICIENT CACHE REPLACEMENT WITH TWO-
PHASE EVICTION,” incorporated by reference above. For
the evicting or unmapping, server process 118 may use, for
example, the munmap call, which is a POSIX-compliant
Unix system call.

[0034] It should be noted that establishing a mapping from
one address space to another is expensive in terms of
resources of computing device 124, so it is useful for the
mappings to be as long-lived as possible. This is the reason
that cache 122 is utilized. If mapping of address spaces were
not expensive, then rather than utilizing a cache, server
process 118 could map section 302 of client process 110 into
the server address space before performing an I/O operation,
and then unmap after completion of the /O operation
without attempting to preserve the mapping.

[0035] At block 212, server process 118 performs the /O
operation received at block 206, the operation being per-
formed by server process 118 on behalf of requesting client
process 110. For example, in response to a read operation,
server process 118 may read data from storage 108 and then
write that data into the mapped section 302 for the use of
client process 110.

[0036] It should be understood that, for any method
described herein, there may be additional or fewer steps
performed in similar or alternative orders, or in parallel,
within the scope of the various embodiments, consistent
with the teachings herein, unless otherwise stated.

[0037] The various embodiments described herein may
employ various computer-implemented operations involv-
ing data stored in computer systems. For example, these
operations may require physical manipulation of physical
quantities—usually, though not necessarily, these quantities
may take the form of electrical or magnetic signals, where
they or representations of them are capable of being stored,
transferred, combined, compared, or otherwise manipulated.
Further, such manipulations are often referred to in terms,
such as producing, identifying, determining, or comparing.
Any operations described herein that form part of one or

US 2020/0241939 Al

more embodiments of the invention may be useful machine
operations. In addition, one or more embodiments of the
invention also relate to a device or an apparatus for per-
forming these operations. The apparatus may be specially
constructed for specific required purposes, or it may be a
general purpose computer selectively activated or config-
ured by a computer program stored in the computer. In
particular, various general purpose machines may be used
with computer programs written in accordance with the
teachings herein, or it may be more convenient to construct
a more specialized apparatus to perform the required opera-
tions.

[0038] The various embodiments described herein may be
practiced with other computer system configurations includ-
ing hand-held devices, microprocessor systems, micropro-
cessor-based or programmable consumer electronics, mini-
computers, mainframe computers, and the like.

[0039] One or more embodiments of the present invention
may be implemented as one or more computer programs or
as one or more computer program modules embodied in one
or more computer readable media. The term computer
readable medium refers to any data storage device that can
store data which can thereafter be input to a computer
system—computer readable media may be based on any
existing or subsequently developed technology for embody-
ing computer programs in a manner that enables them to be
read by a computer. Examples of a computer readable
medium include a hard drive, network attached storage
(NAS), read-only memory, random-access memory, persis-
tent memory, solid state disk (e.g., a flash memory device),
NVMe device, a CD (Compact Discs) —CD-ROM, a CD-R,
or a CD-RW, a DVD (Digital Versatile Disc), a magnetic
tape, and other optical and non-optical data storage devices.
The computer readable medium can also be distributed over
a network coupled computer system so that the computer
readable code is stored and executed in a distributed fashion.
[0040] Although one or more embodiments of the present
invention have been described in some detail for clarity of
understanding, it will be apparent that certain changes and
modifications may be made within the scope of the claims.
Accordingly, the described embodiments are to be consid-
ered as illustrative and not restrictive, and the scope of the
claims is not to be limited to details given herein, but may
be modified within the scope and equivalents of the claims.
In the claims, elements and/or steps do not imply any
particular order of operation, unless explicitly stated in the
claims.

[0041] Virtualization systems in accordance with the vari-
ous embodiments may be implemented as hosted embodi-
ments, non-hosted embodiments or as embodiments that
tend to blur distinctions between the two, are all envisioned.
Furthermore, various virtualization operations may be
wholly or partially implemented in hardware. For example,
a hardware implementation may employ a look-up table for
modification of storage access requests to secure non-disk
data.

[0042] Certain embodiments as described above involve a
hardware abstraction layer on top of a host computer. The
hardware abstraction layer allows multiple contexts to share
the hardware resource. In one embodiment, these contexts
are isolated from each other, each having at least a user
application running therein. The hardware abstraction layer
thus provides benefits of resource isolation and allocation
among the contexts. In the foregoing embodiments, virtual

Jul. 30, 2020

machines are used as an example for the contexts and
hypervisors as an example for the hardware abstraction
layer. As described above, each virtual machine includes a
guest operating system in which at least one application
runs. It should be noted that these embodiments may also
apply to other examples of contexts, such as containers not
including a guest operating system, referred to herein as
“OS-less containers” (see, e.g., www.docker.com). OS-less
containers implement operating system—Ilevel virtualiza-
tion, wherein an abstraction layer is provided on top of the
kernel of an operating system on a host computer. The
abstraction layer supports multiple OS-less containers each
including an application and its dependencies. Each OS-less
container runs as an isolated process in userspace on the host
operating system and shares the kernel with other contain-
ers. The OS-less container relies on the kernel’s function-
ality to make use of resource isolation (CPU, memory, block
1/0O, network, etc.) and separate namespaces and to com-
pletely isolate the application’s view of the operating envi-
ronments. By using OS-less containers, resources can be
isolated, services restricted, and processes provisioned to
have a private view of the operating system with their own
process 1D space, file system structure, and network inter-
faces. Multiple containers can share the same kernel, but
each container can be constrained to only use a defined
amount of resources such as CPU, memory and 1/O. The
term “virtualized computing instance” as used herein is
meant to encompass both VMs and OS-less containers.
[0043] Many variations, modifications, additions, and
improvements are possible, regardless the degree of virtu-
alization. The virtualization software can therefore include
components of a host, console, or guest operating system
that performs virtualization functions. Plural instances may
be provided for components, operations or structures
described herein as a single instance. Boundaries between
various components, operations and data stores are some-
what arbitrary, and particular operations are illustrated in the
context of specific illustrative configurations. Other alloca-
tions of functionality are envisioned and may fall within the
scope of the invention(s). In general, structures and func-
tionality presented as separate components in exemplary
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements may fall within the scope
of the appended claim(s).

1. A method of performing an operation by a first process
on behalf of a second process, each of the first and second
processes having an address space, the method comprising:

obtaining, by the first process, a memory handle from the

second process, the memory handle comprising an
address space that represents at least a portion of the
address space of the second process;

dividing the address space of the memory handle into a

plurality of sections;

receiving, by the first process, a request from the second

process to perform an operation;

determining, by the first process, a section of the plurality

of sections that is to be mapped from the address space
of the memory handle to the address space of the first
process for performing the operation by the first pro-
cess;

US 2020/0241939 Al

mapping the section from the address space of the
memory handle to the address space of the first process;
and

performing the operation by the first process on behalf of

the second process.

2. The method of claim 1, wherein the first process is a
server process and the second process is a client process
residing in a user-level space of a computing device.

3. The method of claim 1, wherein each of the address
spaces of the first and second processes is one of a virtual
memory address space or a physical memory address space.

4. The method of claim 1, wherein the address space of the
first process comprises a cache portion of a memory of a
computing device, wherein mapping the section comprises
mapping the section to the cache portion.

5. The method of claim 4, wherein a cache algorithm used
for the mapping is one of first-in-first-out, last-in-first-out,
least recently used, most recently used, random replacement,
or clock algorithm.

6. The method of claim 1, wherein the operation is one of
a read or a write operation.

7. The method of claim 1, wherein the mapping is
performed using a system call of the an operating system.

8. A non-transitory computer readable medium compris-
ing instructions to be executed in a processor of a computer
system, the instructions when executed in the processor
cause the computer system to carry out a method of per-
forming an operation by a first process on behalf of a second
process, each of the first and second processes having an
address space, the method comprising:

obtaining, by the first process, a memory handle from the

second process, the memory handle comprising an
address space that represents at least a portion of the
address space of the second process;

dividing the address space of the memory handle into a

plurality of sections;

receiving, by the first process, a request from the second

process to perform an operation;

determining, by the first process, a section of the plurality

of sections that is to be mapped from the address space
of the memory handle to the address space of the first
process for performing the operation by the first pro-
cess;

mapping the section from the address space of the

memory handle to the address space of the first process;
and

performing the operation by the first process on behalf of

the second process.

9. The non-transitory computer readable medium of claim
8, wherein the first process is a server process and the second
process is a client process residing in a user-level space of
a computing device.

10. The non-transitory computer readable medium of
claim 8, wherein each of the address spaces of the first and
second processes is one of a virtual memory address space
or a physical memory address space.

11. The non-transitory computer readable medium of
claim 8, wherein the address space of the first process
comprises a cache portion of a memory of a computing
device, wherein mapping the section comprises mapping the
section to the cache portion.

Jul. 30, 2020

12. The non-transitory computer readable medium of
claim 11, wherein a cache algorithm used for the mapping is
one of first-in-first-out, last-in-first-out, least recently used,
most recently used, random replacement, or clock algorithm.

13. The non-transitory computer readable medium of
claim 8, wherein the operation is one of a read or a write
operation.

14. The non-transitory computer readable medium of
claim 8, wherein the mapping is performed using a system
call of an operating system.

15. A computer system comprising:

a computing device;

a memory of the computing device;

a first process running on the computing device and

having a first address space;

a second process running on the computing device and

having a second address space; and

a processor, wherein the processor is programmed to carry

out a method of performing an operation by the first

process on behalf of the second process, the method

comprising:

obtaining, by the first process, a memory handle from
the second process, the memory handle comprising
an address space that represents at least a portion of
the second address space of the second process;

dividing the address space of the memory handle into
a plurality of sections;

receiving, by the first process, a request from the
second process to perform an operation;

determining, by the first process, a section of the
plurality of sections that is to be mapped from the
address space of the memory handle to the first
address space of the first process for performing the
operation by the first process;

mapping the section from the address space of the
memory handle to the first address space of the first
process; and

performing the operation by the first process on behalf
of the second process.

16. The computer system of claim 15, wherein the first
process is a server process and the second process is a client
process residing in a user-level space of a computing device.

17. The computer system of claim 15, wherein each of the
first address space of the first and the second address space
of the second process is one of a virtual memory address
space or a physical memory address space.

18. The computer system of claim 15, wherein the first
address space of the first process comprises a cache portion
of a memory of a computing device, wherein mapping the
section comprises mapping the section to the cache portion.

19. The computer system of claim 18, wherein a cache
algorithm used for the mapping is one of first-in-first-out,
last-in-first-out, least recently used, most recently used,
random replacement, or clock algorithm.

20. The computer system of claim 15, wherein the map-
ping is performed using a system call of an operating
system.

