US 20200241781A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2020/0241781 Al

Patel et al. 43) Pub. Date: Jul. 30, 2020
(54) METHOD AND SYSTEM FOR INLINE (52) US. CL
DEDUPLICATION USING ERASURE CPC ... GO6F 3/0641 (2013.01); GOGF 3/0608
CODING (2013.01); GO6F 11/1076 (2013.01); GO6F
)) 3/065 (2013.01); GOGF 3/0673 (2013.01);
(71) Applicant: g%l)Products L.P., Hopkinton, MA GO6F 3/0619 (2013.01)
(72) Inventors: Dharmesh M. Patel, Round Rock, TX
(US); Rizwan Ali, Cedar Park, TX (57 ABSTRACT
(US); Ravikanth Chaganti, Bangalore
(IN)
(21) Appl. No.: 16/260,734 A method for storing data includes obtaining data, applying
an erasure coding procedure to the data to obtain a plurality
(22) Filed: Jan. 29, 2019 of data chunks and a parity chunk, deduplicating the plu-
L . . rality of data chunks to obtain a plurality of deduplicated
Publication Classification data chunks, storing, across a plurality of nodes, the plurality
(51) Int. CL of deduplicated data chunks and the parity chunk, and
GO6F 3/06 (2006.01) tracking location information for each of the plurality of
GOG6F 11/10 (2006.01) deduplicated data chunks and the parity chunk.
Host
100
Data Cluster

110

Patent Application Publication Jul. 30, 2020 Sheet 1 of 7 US 2020/0241781 A1

o

Host
100
J
v
Data Cluster
1
FIG. 1A

Patent Application Publication Jul. 30, 2020 Sheet 2 of 7 US 2020/0241781 A1

Data Cluster 120

Accelerator Pool 130

Deduplicator 132

Data Node A Data Node B
Non-Accelerator Pool 150
Data Node C Data Node D
154 156

FIG. 1B

Patent Application Publication Jul. 30, 2020 Sheet 3 of 7 US 2020/0241781 A1

L Step 200
Obtain data from a host and store in /

accelerator pool

/— Step 202

Send confirmation to host

Step 204
Perform an erasure coding procedure on /

the data to generate data chunks and
parity chunks

Step 206
Perform a deduplication operation to the P
idata chunks in the accelerator pool using

a deduplicator to obtain deduplicated
data chunks

Step 208
Distribute the deduplicated data chunks /

and parity chunks across data nodes in a
non-accelerator pool

FIG. 2

US 2020/0241781 A1l

Jul. 30, 2020 Sheet 4 of 7

Patent Application Publication

V¢ DIA
91¢ ¥i¢ 4K
€V Juny) ereq [V Juny) ereq 0V Juny) ereq
01¢ (z=1®) wreq g 1504
90¢ +0¢ 20¢€
7V yuny) eieq [V Juny) ereq 0V Juny) ereq

00¢ (1=1 @) v1eq V 1SOH

US 2020/0241781 A1l

Jul. 30, 2020 Sheet 5 of 7

Patent Application Publication

d¢ Old

D€ [00d JOIRID[RIIVY-UON

dcce JCCE (S 443 Ve
IdV v uny) vieq [V Junyy ereq OV Junyy vieq
yuny)) Ared paresrdnpaq paresrdnpag paresrdnpaq
8¢C A 9PPON 9¢€ D °pPoN vE€€ € 9PON CEE V 9pON
3 X 4 P
| \ /
m N / ’
A}
: \ / - -
m A / -
N/ P -
N
(443
V e paresrdnpag

07¢ [00d 101RI9[00Y

US 2020/0241781 A1l

Jul. 30, 2020 Sheet 6 of 7

Patent Application Publication

D¢ DIA

OEE [00d I0IBID[OO0Y-UON

azcze
1dv
yuny) Lred

Ve
dv
yuny) Ared

8E€€ d2poN

A\ 4443
0V Junyp ele(
patesridnpag

qrce
v Uy gleq
palesrdnpag
01449 S (443
v qunyy ere(q [V Juny) eieq
pareordnpaq pareardnpaq
9¢€ D 9PON PEE 9 9PON
4

TEE V 9pPON

$
|
|
|
|

{743
g ere(paresrjdnpag

0Z¢€ 100 J0JRIO[O00Y

Patent Application Publication Jul. 30, 2020 Sheet 7 of 7 US 2020/0241781 A1

400

Output
Device
408

i |
i _ E
| Non-Persistent |
Storage
| 404 Processor(s) 5
| — 402 E
| |
i _ E
Persistent Storage
| 406 Communication 5
! T Interface |
; 412 |
| |
Input Device
410

FIG. 4

US 2020/0241781 Al

METHOD AND SYSTEM FOR INLINE
DEDUPLICATION USING ERASURE
CODING

BACKGROUND

[0001] Computing devices may include any number of
internal components such as processors, memory, and per-
sistent storage. Each of the internal components of a com-
puting device may be used to generate data. The process of
generating, storing, and backing-up data may utilize com-
puting resources of the computing devices such as process-
ing and storage. The utilization of the aforementioned com-
puting resources to generate backups may impact the overall
performance of the computing resources.

SUMMARY

[0002] In general, in one aspect, the invention relates to a
method for storing data in accordance with one or more
embodiments of the invention. The method includes obtain-
ing data, applying an erasure coding procedure to the data to
obtain a plurality of data chunks and a parity chunk, dedu-
plicating the plurality of data chunks to obtain a plurality of
deduplicated data chunks, storing, across a plurality of
nodes, the plurality of deduplicated data chunks and the
parity chunk, and tracking location information for each of
the plurality of deduplicated data chunks and the parity
chunk.

[0003] In general, in one aspect, the invention relates to a
non-transitory computer readable medium in accordance
with one or more embodiments of the invention includes
computer readable program code, which when executed by
a computer processor enables the computer processor to
perform a method for storing data. The method includes
obtaining data, applying an erasure coding procedure to the
data to obtain a plurality of data chunks and a parity chunk,
deduplicating the plurality of data chunks to obtain a plu-
rality of deduplicated data chunks, storing, across a plurality
of nodes, the plurality of deduplicated data chunks and the
parity chunk, and tracking location information for each of
the plurality of deduplicated data chunks and the parity
chunk.

[0004] In general, in one aspect, the invention relates to a
data cluster. The data cluster includes a plurality of data
nodes comprising an accelerator pool and a non-accelerator
pool, wherein the accelerator pool comprises a data node,
and the non-accelerator pool comprises a plurality of data
nodes; wherein the data node of the plurality node is
programmed to: obtain data, apply an erasure coding pro-
cedure to the data to obtain a plurality of data chunks and a
parity chunk, deduplicate the plurality of data chunks to
obtain a plurality of deduplicated data chunks, store, across
a plurality of nodes, the plurality of deduplicated data
chunks and the parity chunk, and track location information
for each of the plurality of deduplicated data chunks and the
parity chunk.

BRIEF DESCRIPTION OF DRAWINGS

[0005] Certain embodiments of the invention will be
described with reference to the accompanying drawings.
However, the accompanying drawings illustrate only certain
aspects or implementations of the invention by way of
example and are not meant to limit the scope of the claims.

Jul. 30, 2020

[0006] FIG. 1A shows a diagram of a system in accor-
dance with one or more embodiments of the invention.
[0007] FIG. 1B shows a diagram of a data cluster in
accordance with one or more embodiments of the invention.
[0008] FIG. 2 shows a flowchart for storing data in a data
cluster in accordance with one or more embodiments of the
invention.

[0009] FIGS. 3A-3C show an example in accordance with
one or more embodiments of the invention.

[0010] FIG. 4 shows a diagram of a computing device in
accordance with one or more embodiments of the invention.

DETAILED DESCRIPTION

[0011] Specific embodiments will now be described with
reference to the accompanying figures. In the following
description, numerous details are set forth as examples of the
invention. It will be understood by those skilled in the art
that one or more embodiments of the present invention may
be practiced without these specific details and that numerous
variations or modifications may be possible without depart-
ing from the scope of the invention. Certain details known
to those of ordinary skill in the art are omitted to avoid
obscuring the description.

[0012] In the following description of the figures, any
component described with regard to a figure, in various
embodiments of the invention, may be equivalent to one or
more like-named components described with regard to any
other figure. For brevity, descriptions of these components
will not be repeated with regard to each figure. Thus, each
and every embodiment of the components of each figure is
incorporated by reference and assumed to be optionally
present within every other figure having one or more like-
named components. Additionally, in accordance with vari-
ous embodiments of the invention, any description of the
components of a figure is to be interpreted as an optional
embodiment, which may be implemented in addition to, in
conjunction with, or in place of the embodiments described
with regard to a corresponding like-named component in
any other figure.

[0013] Throughout this application, elements of figures
may be labeled as A to N. As used herein, the aforemen-
tioned labeling means that the element may include any
number of items and does not require that the element
include the same number of elements as any other item
labeled as A to N. For example, a data structure may include
a first element labeled as A and a second element labeled as
N. This labeling convention means that the data structure
may include any number of the elements. A second data
structure, also labeled as A to N, may also include any
number of elements. The number of elements of the first data
structure and the number of elements of the second data
structure may be the same or different.

[0014] In general, embodiments of the invention relate to
a method and system for storing data in a data cluster.
Embodiments of the invention may utilize a deduplicator,
operating in an accelerator pool, which applies an erasure
coding procedure on data obtained from a host to divide the
data into data chunks and to generate parity chunks using the
data chunks. The deduplicator may then perform dedupli-
cation on the data chunks to generate deduplicated data that
includes deduplicated data chunks. The deduplicated data
chunks and the parity chunks are subsequently distributed to
nodes in the data cluster in accordance with an erasure
coding procedure.

US 2020/0241781 Al

[0015] In one or more embodiments of the invention, the
deduplicator stores storage information that specifies the
nodes in which each data chunk and parity chunk is stored.
In this manner, if the accelerator pool obtains data that
include modifications to previously stored data chunks, the
modified data chunks may be sent to the appropriate nodes
(i.e., the nodes on which prior versions of the specific data
chunk or parity chunk are stored). In this manner, embodi-
ments of the invention minimize the number of read and
write operations that are required to write erasure coded
deduplicated data to the non-accelerator pool. Said another
way, by tracking to which node each data chunk and parity
chunk is written to in the non-accelerator pool, one or more
embodiments of the invention enable only portions of a
stripe (i.e., a set of data chunks and parity chunks) to be
written to the non-accelerator pool when a portion of the
stripe is modified. These results in fewer read and write
operations being performed as none of the prior stored data
chunks need to be read from or re-written to the non-
accelerator pool.

[0016] FIG. 1A shows an example system in accordance
with one or more embodiments of the invention. The system
includes a host (100) and a data cluster (110). The host (100)
is operably connected to the data cluster (110) via any
combination of wired and/or wireless connections.

[0017] In one or more embodiments of the invention, the
host (100) utilizes the data cluster (110) to store data. The
data stored may be backups of databases, files, applications,
and/or other types of data without departing from the
invention.

[0018] In one or more embodiments of the invention, the
host (100) is implemented as a computing device (see e.g.,
FIG. 4). The computing device may be, for example, a
laptop computer, a desktop computer, a server, a distributed
computing system, or a cloud resource (e.g., a third-party
storage system accessible via a wired or wireless connec-
tion). The computing device may include one or more
processors, memory (e.g., random access memory), and
persistent storage (e.g., disk drives, solid state drives, etc.).
The computing device may include instructions, stored on
the persistent storage, that when executed by the processor
(s) of the computing device cause the computing device to
perform the functionality of the host (100) described
throughout this application.

[0019] In one or more embodiments of the invention, the
host (100) is implemented as a logical device. The logical
device may utilize the computing resources of any number
of computing devices and thereby provide the functionality
of the host (100) described throughout this application.
[0020] In one or more embodiments of the invention, the
data cluster (110) stores data and/or backups of data gener-
ated by the host (100). The data and/or backups may be
deduplicated versions of data obtained from the host. The
data cluster may, via an erasure coding procedure, store
portions of the deduplicated data across the nodes operating
in the data cluster (110).

[0021] As used herein, deduplication refers to methods of
storing only portions of files (also referred to as file seg-
ments or segments) that are not already stored in persistent
storage. For example, when multiple versions of a large file,
having only minimal differences between each of the ver-
sions, are stored without deduplication, storing each version
will require approximately the same amount of storage space
of a persistent storage. In contrast, when the multiple

Jul. 30, 2020

versions of the large file are stored with deduplication, only
the first version of the multiple versions stored will require
a substantial amount of storage. Once the first version is
stored in the persistent storage, the subsequent versions of
the large file subsequently stored will be de-duplicated
before being stored in the persistent storage resulting in
much less storage space of the persistent storage being
required to store the subsequently stored versions when
compared to the amount of storage space of the persistent
storage required to store the first stored version.

[0022] Continuing with the discussion of FIG. 1A, the data
cluster (110) may include nodes that each store any number
of portions of data. The portions of data may be obtained by
other nodes or obtained from the host (100). For additional
details regarding the data cluster (110), see, e.g., FIG. 1B.
[0023] FIG. 1B shows a diagram of a data cluster (120) in
accordance with one or more embodiments of the invention.
The data cluster (120) may be an embodiment of the data
cluster (110, FIG. 1A) discussed above. The data cluster
(120) may include an accelerator pool (130) and a non-
accelerator pool (150). The accelerator pool (130) may
include a deduplicator(s) (132) and any number of data
nodes (134, 136). Similarly, the non-accelerator pool (150)
includes any number of data nodes (154, 156). The compo-
nents of the data cluster (120) may be operably connected
via any combination of wired and/or wireless connections.
Each of the aforementioned components is discussed below.
[0024] In one or more embodiments of the invention, the
deduplicator(s) (132) is a device that includes functionality
to perform deduplication on data obtained from a host (e.g.,
100, FIG. 1A). The deduplicator (132) may store informa-
tion useful to perform the aforementioned functionality. The
information may include deduplication identifiers (D-IDs).
A D-ID is a unique identifier that identifies portions of the
data (also referred to as data chunks) that are stored in the
data cluster (120). The D-ID may be used to determine
whether a data chunk of the obtained data is already present
elsewhere in the accelerator pool (140) or the non-accelera-
tor pool (150). The deduplicator (132) may use the infor-
mation to perform the deduplication and generate dedupli-
cated data (or a deduplicated backup). After deduplication,
an erasure coding procedure may be performed on the
deduplicated data in order to generate parity chunks. The
deduplicator (132) may perform the deduplication and era-
sure coding procedure via the method illustrated in FIG. 2
[0025] In one or more of embodiments of the invention,
the deduplicator (132) is implemented as computer instruc-
tions, e.g., computer code, stored on a persistent storage that
when executed by a processor of a data node (e.g., 134, 136)
of the accelerator pool (140) cause the data node to provide
the aforementioned functionality of the deduplicator (132)
described throughout this application and/or all, or a portion
thereof, of the method illustrated in FIG. 2.

[0026] In one or more embodiments of the invention, the
deduplicator (132) is implemented as a computing device
(see e.g., FIG. 4). The computing device may be, for
example, a laptop computer, a desktop computer, a server, a
distributed computing system, or a cloud resource (e.g., a
third-party storage system accessible via a wired or wireless
connection). The computing device may include one or more
processors, memory (e.g., random access memory), and
persistent storage (e.g., disk drives, solid state drives, etc.).
The computing device may include instructions, stored on
the persistent storage, that when executed by the processor

US 2020/0241781 Al

(s) of the computing device cause the computing device to
perform the functionality of the deduplicator (132) described
throughout this application and/or all, or a portion thereof, of
the method illustrated in FIG. 2.

[0027] In one or more embodiments of the invention, the
deduplicator (132) is implemented as a logical device. The
logical device may utilize the computing resources of any
number of computing devices and thereby provide the
functionality of the deduplicator (132) described throughout
this application and/or all, or a portion thereof, of the method
illustrated in FIG. 2.

[0028] Continuing with the discussion of FIG. 1B, differ-
ent data nodes in the cluster may include different quantities
and/or types of computing resources, e.g., processors pro-
viding processing resources, memory providing memory
resources, storages providing storage resources, communi-
cators providing communications resources. Thus, the sys-
tem may include a heterogeneous population of nodes.

[0029] The heterogeneous population of nodes may be
logically divided into an accelerator pool (130) including
nodes that have more computing resources, e.g., high per-
formance nodes (134, 136) than other nodes and a non-
accelerator pool (150) including nodes that have fewer
computing resources, e.g., low performance nodes (154,
156) than the nodes in the accelerator pool (130). For
example, nodes of the accelerator pool (130) may include
enterprise class solid state storage resources that provide
very high storage bandwidth, low latency, and high input-
outputs per second (IOPS). In contrast, the nodes of the
non-accelerator pool (150) may include hard disk drives that
provide lower storage performance. While illustrated in FIG.
1B as being divided into two groups, the nodes may be
divided into any number of groupings based on the relative
performance level of each node without departing from the
invention.

[0030] In one or more embodiments of the invention, the
data nodes (134, 136, 154, 156) store data chunks and parity
chunks. The data nodes (134, 136, 154, 156) may include
persistent storage that may be used to store the data chunks
and parity chunks. The generation of the data chunks and
parity chunks is described below with respect to FIG. 2.

[0031] In one or more embodiments of the invention, the
non-accelerator pool (150) includes any number of fault
domains. In one or more embodiments of the invention, a
fault domain is a logical grouping of nodes (e.g., data nodes)
that, when one node of the logical grouping of nodes goes
offline and/or otherwise becomes inaccessible, the other
nodes in the logical grouping of nodes are directly affected.
The effect of the node going offline to the other nodes may
include the other nodes also going offline and/or otherwise
inaccessible. The non-accelerator pool (150) may include
multiple fault domains. In this manner, the events of one
fault domain in the non-accelerator pool (150) may have no
effect to other fault domains in the non-accelerator pool
(150).

[0032] For example, two data nodes may be in a first fault
domain. If one of these data nodes in the first fault domain
experiences an unexpected shutdown, other nodes in the first
fault domain may be affected. In contrast, another data node
in the second fault domain may not be affected by the
unexpected shutdown of a data node in the first fault domain.
In one or more embodiments of the invention, the unex-
pected shutdown of one fault domain does not affect the

Jul. 30, 2020

nodes of other fault domains. In this manner, data may be
replicated and stored across multiple fault domains to allow
high availability of the data.

[0033] In one or more embodiments of the invention, each
data node (134, 136, 154, 156) is implemented as a com-
puting device (see e.g., FIG. 4). The computing device may
be, for example, a laptop computer, a desktop computer, a
server, a distributed computing system, or a cloud resource
(e.g., a third-party storage system accessible via a wired or
wireless connection). The computing device may include
one or more processors, memory (e.g., random access
memory), and persistent storage (e.g., disk drives, solid state
drives, etc.). The computing device may include instruc-
tions, stored on the persistent storage, that when executed by
the processor(s) of the computing device cause the comput-
ing device to perform the functionality of the data node (134,
136, 154, 156) described throughout this application and/or
all, or a portion thereof, of the method illustrated in FIG. 2.
[0034] In one or more embodiments of the invention, the
data nodes (134, 136, 154, 156) are implemented as a logical
device. The logical device may utilize the computing
resources of any number of computing devices and thereby
provide the functionality of the data nodes (134, 136, 154,
156) described throughout this application and/or all, or a
portion thereof, of the method illustrated in FIG. 2.

[0035] FIG. 2 shows a flowchart for storing data in a data
cluster in accordance with one or more embodiments of the
invention. The method shown in FIG. 2 may be performed
by, for example, a deduplicator (132, FIG. 1B). Other
components of the system illustrated in FIG. 1B may per-
form the method of FIG. 2 without departing from the
invention. While the various steps in the flowchart are
presented and described sequentially, one of ordinary skill in
the relevant art will appreciate that some or all of the steps
may be executed in different orders, may be combined or
omitted, and some or all steps may be executed in parallel.
[0036] In step 200, data is obtained from a host. The data
may be a file, a file segment, a collection of files, or any other
type of data without departing from the invention. data
cluster. The data may be obtained in response to a request to
store data and/or backup the data. Other requests may be
used to initiate the method without departing from the
invention.

[0037] In step 202, confirmation is sent to the host. In one
or more embodiments of the invention, the confirmation is
an acknowledgement (ACK) that confirms receipt of the
data by the data cluster. At this stage, from the perspective
of the host, the data has been backed up. This is the case
even though data cluster is still performing the method
shown in FIG. 2.

[0038] In step 204, an erasure coding procedure is per-
formed on the data to generate data chunks and parity
chunks. In one or more embodiments of the invention, the
erasure coding procedure includes dividing the obtained data
into portions, referred to as data chunks. Each data chunk
may include any number of data segments associated with
the obtained data. The individual data chunks may then be
combined (or otherwise grouped) into stripes (also referred
to as Redundant Array of Independent Disks (RAID)
stripes). One or more parity values are then calculated for
each of the aforementioned stripes. The number of parity
stripes may vary based on the erasure coding algorithm that
is being used as part of the erasure coding procedure.
Non-limiting examples of erasure coding algorithms are

US 2020/0241781 Al

RAID-4, RAID-5, and RAID-6. Other erasing coding algo-
rithms may be used without departing from the invention.
Continuing with the above discussion, if the erasing code
procedure is implementing RAID 4, then a single parity
value is calculated. The resulting parity value is then stored
in a parity chunk. If erasure coding procedure algorithm
requires multiple parity values to be calculated, then the
multiple parity values are calculated with each parity value
being stored in a separate data chunk.

[0039] As discussed above, the data chunks are used to
generate parity chunks in accordance with the erasure cod-
ing procedure. More specifically, the parity chunks may be
generated by applying a predetermined function (e.g., P
Parity function, Q Parity Function), operation, or calculation
to at least one of the data chunks. Depending on the erasure
coding procedure used, the parity chunks may include, but
are not limited to, P parity values and/or Q parity values.
[0040] In one embodiment of the invention, the P parity
value is a Reed-Solomon syndrome and, as such, the P Parity
function may correspond to any function that can generate a
Reed-Solomon syndrome. In one embodiment of the inven-
tion, the P parity function is an XOR function.

[0041] In one embodiment of the invention, the Q parity
value is a Reed-Solomon syndrome and, as such, the Q
Parity function may correspond to any function that can
generate a Reed-Solomon syndrome. In one embodiment of
the invention, a Q parity value is a Reed-Solomon code. In
one embodiment of the invention, Q=g, Dy+g, "D, +g,D,+ .
.. +g, ;'D,_,, where Q corresponds to the Q parity, g is a
generator of the field, and the value of D corresponds to the
data in the data chunks.

[0042] In one or more embodiments of the invention, the
number of data chunks and parity chunks generated is
determined by the erasure coding procedure, which may be
specified by the host, by the data cluster, and/or by another
entity.

[0043] In step 206, deduplication is performed on the data
chunks to obtain deduplicated data chunks. In one or more
embodiments of the invention, the deduplication is per-
formed in the accelerator pool by identifying the data chunks
of the obtained data and assigning a fingerprint to each data
chunk. A fingerprint is a unique identifier (e.g., a D-ID) that
may be stored in metadata of the data chunk. The dedupli-
cator performing the deduplication may generate a finger-
print for a data chunk and identify whether the fingerprint
matches an existing fingerprint stored in the deduplicator. If
the fingerprint matches an existing fingerprint, the data
chunk may be deleted, as it is already stored in the data
cluster. If the fingerprint does not match any existing fin-
gerprints, the data chunk may be stored as a deduplicated
data chunk. Additionally, the fingerprint is stored in the
deduplicator for deduplication purposes of future obtained
data.

[0044] In one or more embodiments of the invention, the
deduplicated data chunks collectively make up the dedupli-
cated data. In one or more embodiments of the invention, the
deduplicated data chunks are the data chunks that were not
deleted during deduplication.

[0045] In step 208, the deduplicated data chunks and
parity chunks are stored across data nodes in different fault
domains in a non-accelerator pool. As discussed above, the
deduplicated data chunks and the parity chunks are stored in
a manner that minimizes reads and writes from the non-
accelerator pool. In one embodiment of the invention, this

Jul. 30, 2020

minimization is achieved by storing data chunks and parity
chunks, which are collectively referred to as a stripe, in the
same manner as a prior version of the stripe. The dedupli-
cator may use, as appropriate, location information for the
previously stored data chunks and parity chunks to deter-
mine where to store the data chunks and parity chunks in
step 208.

[0046] More specifically, in one embodiment of the inven-
tion, if the deduplicated data chunks and parity chunks are
the first version of a stripe (as opposed to a modification to
an existing/previously stored stripe), then the deduplicated
data chunks and parity chunks may be stored across the
nodes (each in a different fault domain) in the non-accel-
erator pool. The location (or in this case the specific node)
in which the data chunk or parity chunk is stored is tracked
by the deduplicator. The scenario does not require the
deduplicator to use location information for previously
stored data chunks and parity chunks.

[0047] However, if the deduplicated data chunks and
parity chunks are the second version of a stripe (e.g., a
modification to a previously stored stripe), then the dedu-
plicated data chunks and parity chunks are stored across the
nodes (each in a different fault domain) in the non-accel-
erator pool using prior stored location information. The
location (or in this case the specific node and/or fault
domain) in which the data chunk or parity chunk is stored is
tracked by the deduplicator.

[0048] For example, consider a scenario in which the first
version of the stripe includes three data chunks (D1, D2, D3)
and one parity chunk (P1) and that they were stored as
follows: Node 1 stores D1, Node 2 stores D2, Node 3 stores
D3, and Node 4 stores P1. Further, in this example, a second
version of the stripe is received that includes three data
chunks (D1, D2', D3) and one newly calculated parity chunk
(P1"). After deduplication only D2' and P1' need to be stored.
Based on the prior storage locations (also referred to as
locations) of the data chunks (D1, D2, and D3) and parity
chunks (P1) for the first version of the stripe, D2' is stored
on Node 2 and P1' is stored on Node 4. By storing the D2'
on Node 2 and P1' on Node 4 the data chunks and parity
chunks associated with the second stripe satisfy the condi-
tion that all data chunks and parity chunks for the second
version of the stripe are being stored in separate fault
domains. If the location information was not taken into
account, then the entire stripe (i.e., D1, D2', D3, and P1")
would need to be stored in order to guarantee that the
requirement that all data chunks and parity chunks for the
second version of the stripe are being stored in separate fault
domains is satisfied.

[0049] Inone or more embodiments of the invention, if the
data node that obtains the deduplicated data chunk, which is
a modified version of a prior stored deduplicated data chunk,
then the data node may: (i) store the modified version of the
deduplicated data chunk (i.e., the data node would include
two versions of the data chunk) or (ii) store the modified
version of the deduplicated data chunk and delete the prior
version of the deduplicated data chunk.

[0050] In one embodiment of the invention, the dedupli-
cator includes functionality to determine whether a given
data chunk is a modified version of a previously stored data
chunk. Said another way, after the data is received from a
host divided into data chunks and grouped into stripes, the
deduplicator includes functionality to determine whether a
stripe is a modified version of a prior stored stripe. The

US 2020/0241781 Al

deduplicator may use the fingerprints of the data chunks
within the stripe to determine whether the stripe is a modi-
fied version of a prior stored stripe. Other methods for
determining whether a data chunk is a modified version of
a prior stored data chunk and/or whether a stripe is a
modified version of a prior stripe without departing from the
invention.

[0051] In step 210, location information in the deduplica-
tor is updated using the location of the deduplicated data
chunks and parity chunks. The location (or location) may be
specified using a node identifier, a fault domain identifier
(i.e., the fault domain in which the node storing the data
chunk or parity chunk is located), or any other type of
identifying information. The location information may be
stored along with other chunk metadata, which may include,
but is not limited to, a chunk type (e.g., data chunk or parity
chunk), a deduplicated data chunk identifier (e.g., a D-ID) or
parity chunk identifier (which may be generated for a parity
chunk in the same manner as a D-ID for a data chunk), and
the erasure coding information (e.g., information about the
erasure code procedure, e.g., the erasure coding algorithm)
[0052] As discussed above, the data chunks and parity
chunks may be stored in different fault domains. Storing the
data chunks and parity chunks in multiple fault domains may
be for recovery purposes. In the event that one or more fault
domains storing data chunks or parity chunks become inac-
cessible, the data chunks and/or parity chunks stored in the
remaining fault domains may be used to recreate the inac-
cessible data. In one embodiment of the invention, as part of
(or in addition to) the chunk metadata, the deduplicator (or
other computing device or logical device) tracks the mem-
bers of each stripe (i.e., which data chunks and which parity
chunks are part of a stripe). This information may be used to
aid in any recover operation that is required to be performed
on the data stored in the data cluster.

[0053] In one embodiment of the invention, the data that
is originally obtained in step 200 and/or the deduplicated
chunks obtained in step 206 may be: (i) stored on a node in
the accelerator pool for a finite period of time (e.g., until it
is determined that this data is no longer required in the
accelerator pool, where this determination may be made
based on a policy); (i) stored on a node in the accelerator
pool until the end of the step 208 and then deleted from the
accelerator pool.

EXAMPLE

[0054] The following section describes an example. The
example is not intended to limit the invention. The example
is illustrated in FIGS. 3A-3C. Turning to the example,
consider a scenario in which a data cluster obtains two
backups from a single host at two points in time. The host
may request the backups be stored in the data cluster in a 3:1
erasure coding scheme. FIG. 3A shows a diagram of the two
backups at the two points in time. Backup A (300) may be
obtained at a point in time T=1. Backup A (300) includes
data that may be divided into data chunks A0 (302), Al
(304), and A2 (306). At a second point in time T=2, the data
cluster obtains a second backup (310) that includes data that
may be divided into data chunks A0 (312), A1' (314), and A3
(316).

[0055] In this example, Backup B is a modified version of
Backup A. Accordingly, assume that the data associated with
data chunk A0 (312) of backup B (310) is identical to the
data associated with data chunk A0 (302) of backup A (300).

Jul. 30, 2020

Similarly, the data associated with data chunk A2 (316) of
backup B (310) is identical to the data associated with data
chunk A2 (306) of backup A (300). In contrast, the data
associated with data chunk Al' (314) of backup B (310) is
an update of data chunk A1 (304) of backup A (300). Finally,
in this example, assume that the erasure coding process
includes implementing RAID 4.

[0056] FIG. 3B shows the data cluster after backup A
(300) is processed in accordance with FIG. 2. The data
cluster may include an accelerator pool (320) that performs
the method of FIG. 2 to generate deduplicated backup A
(322) using backup A (300). The method may include
dividing the backup into data chunks A0, A1, and A2, where
these data chunks are associated with a first stripe. The
aforementioned data chunks are then used to generate a
parity chunk AP1 using RAID 3.

[0057] Because the deduplicated backup A (322) is the
first backup stored in the data cluster, all three data chunks
are distributed across nodes in the non-accelerator pool
(330) as deduplicated data chunks (322A, 322B, 3220).
Deduplicated data chunk A0 (322A) may be stored in a node
A (332), deduplicated data chunk Al (322B) may be stored
in a node B (334), deduplicated data chunk A2 (322C) may
be stored in a node C (336), and parity chunk AP1 (322D)
may be stored in a node D (338). Each node (332, 334, 336,
338) may be a node in a unique fault domain. In this manner,
each chunk (322A, 322B, 322C, 322D) is stored in a
different fault domain.

[0058] The location of each deduplicated data chunk
(322A, 322B, 322C) and parity chunk (322D) is stored in the
deduplicator of the accelerator pool (320) as location infor-
mation. The location information may include entries that
each specify a deduplicated data chunk (322A, 322B, 322C)
or the parity chunk AP1 (322D) and the data node (332, 334,
336, 338) storing the respective chunk.

[0059] At the second point in time T=2, backup B (310) is
obtained by the accelerator pool (320). The backup B (310)
may be divided into data chunks A0, Al', and A2, where
these data chunks are associated with a second stripe that is
a modified version of the first stripe. The data chunks (AO,
Al'; A2) may be used to generate a parity chunk AP1'. The
data chunks in the second stripe are then deduplicated by the
deduplicator. The result of the deduplication of the second
stripe is that data chunks A0 and A2 exist in the non-
accelerator pool and thus are deleted from the backup B.

[0060] The remaining chunks associated with the dedu-
plicated backup B (324) may be stored in nodes of the
non-accelerator pool (330) as deduplicated data chunks A1’
(324A) and AP1' (324B). The accelerator pool (320) may
use the location information, which specifies the location
information of deduplicated data chunks (322A, 322B,
322C) and parity chunk (322D) of deduplicated backup A
(322), to determine where to store the deduplicated data
chunk (324A) and parity chunk (324B) of deduplicated
backup B (324).

[0061] Using the location information, deduplicated data
chunk A1' (324A) is stored in node B (334), where dedu-
plicated data chunk Al (322B) is stored. Subsequently,
deduplicated data chunk Al (322B) may be deleted from
node B (334). Similarly, parity chunk AP1' (324B) is stored
in node D (338). Further, parity chunk AP1 (322D) may be
deleted from node D (338).

US 2020/0241781 Al

End of Example

[0062] As discussed above, embodiments of the invention
may be implemented using computing devices. FIG. 4
shows a diagram of a computing device in accordance with
one or more embodiments of the invention. The computing
device (400) may include one or more computer processors
(402), non-persistent storage (404) (e.g., volatile memory,
such as random access memory (RAM), cache memory),
persistent storage (406) (e.g., a hard disk, an optical drive
such as a compact disk (CD) drive or digital versatile disk
(DVD) drive, a flash memory, etc.), a communication inter-
face (412) (e.g., Bluetooth interface, infrared interface,
network interface, optical interface, etc.), input devices
(410), output devices (408), and numerous other elements
(not shown) and functionalities. Each of these components
is described below.

[0063] In one embodiment of the invention, the computer
processor(s) (402) may be an integrated circuit for process-
ing instructions. For example, the computer processor(s)
may be one or more cores or micro-cores of a processor. The
computing device (400) may also include one or more input
devices (410), such as a touchscreen, keyboard, mouse,
microphone, touchpad, electronic pen, or any other type of
input device. Further, the communication interface (412)
may include an integrated circuit for connecting the com-
puting device (400) to a network (not shown) (e.g., a local
area network (LAN), a wide area network (WAN) such as
the Internet, mobile network, or any other type of network)
and/or to another device, such as another computing device.

[0064] Inone embodiment of the invention, the computing
device (400) may include one or more output devices (408),
such as a screen (e.g., a liquid crystal display (LCD), a
plasma display, touchscreen, cathode ray tube (CRT) moni-
tor, projector, or other display device), a printer, external
storage, or any other output device. One or more of the
output devices may be the same or different from the input
device(s). The input and output device(s) may be locally or
remotely connected to the computer processor(s) (402),
non-persistent storage (404), and persistent storage (406).
Many different types of computing devices exist, and the
aforementioned input and output device(s) may take other
forms.

[0065] One or more embodiments of the invention may be
implemented using instructions executed by one or more
processors of the data management device. Further, such
instructions may correspond to computer readable instruc-
tions that are stored on one or more non-transitory computer
readable mediums.

[0066] One or more embodiments of the invention may
improve the operation of one or more computing devices.
More specifically, embodiments of the invention improve
the efficiency of performing storage operations in a data
cluster. The efficiency is improved by implementing erasure
coding procedures and performing deduplication on data.
The erasure coding procedure includes generating additional
portions of data associated with the data. The deduplicated
data and the additional portions of data may be stored across
multiple fault domains. In this manner, if any number of
fault domains become inaccessible prior to recovery of data,
the data stored in the remaining fault domains may be used
to recreate the data. This method may replace the need to
store multiple copies of the same data across the fault

Jul. 30, 2020

domains, thus reducing the amount of storage used for
storing data while maintaining policies in the event of fault
domain failures.
[0067] Further, embodiments of the invention improve the
storage and recovery operations by tracking the location of
each portion of data (e.g., data chunks and parity chunks)
stored in the data cluster. By monitoring tracking the loca-
tion, embodiments of the invention may be used to send
deduplicated data chunks and/or parity chunks to appropri-
ate data nodes.
[0068] Thus, embodiments of the invention may address
the problem of inefficient use of computing resources. This
problem arises due to the technological nature of the envi-
ronment in which data storage operations are performed.
[0069] The problems discussed above should be under-
stood as being examples of problems solved by embodi-
ments of the invention disclosed herein and the invention
should not be limited to solving the same/similar problems.
The disclosed invention is broadly applicable to address a
range of problems beyond those discussed herein.
[0070] While the invention has been described above with
respect to a limited number of embodiments, those skilled in
the art, having the benefit of this disclosure, will appreciate
that other embodiments can be devised which do not depart
from the scope of the invention as disclosed herein. Accord-
ingly, the scope of the invention should be limited only by
the attached claims.
What is claimed is:
1. A method for storing data, the method comprising:
obtaining data;
applying an erasure coding procedure to the data to obtain
a plurality of data chunks and a parity chunk;
deduplicating the plurality of data chunks to obtain a
plurality of deduplicated data chunks;
storing, across a plurality of nodes, the plurality of
deduplicated data chunks and the parity chunk; and
tracking location information for each of the plurality of
deduplicated data chunks and the parity chunk.
2. The method of claim 1, further comprising:
obtaining second data;
applying the erasure coding procedure to the second data
to obtain a second plurality of data chunks and a second
parity chunk;
deduplicating the second plurality of data chunks to
obtain a second plurality of deduplicated data chunks;
storing, across the plurality of nodes and using the loca-
tion information for at least one of the plurality of
deduplicated data chunks, the second plurality of dedu-
plicated data chunks and the second parity chunk.
3. The method of claim 2,
wherein a first deduplicated data chunk of the first plu-
rality of deduplicated data chunks is stored in a node of
the plurality of nodes,
wherein a second deduplicated data chunk of the second
plurality of deduplicated data chunks is a modified
version of the first deduplicated data chunk, and
wherein storing, across the plurality of nodes and using
the location information for at least one of the plurality
of deduplicated data chunks, the second plurality of
deduplicated data chunks and the second parity chunk
comprises storing the second deduplicated data chunk
on the node of the plurality of nodes.

US 2020/0241781 Al

4. The method of claim 3,

wherein the plurality of data chunks and the parity chunk

are associated with a first stripe;

wherein the second plurality of data chunks and the

second parity chunk is associated with a second stripe,
wherein the second stripe is a modified version of the
first stripe,

wherein storing, across the plurality of nodes and using

the location information for at least one of the plurality
of deduplicated data chunks, the second plurality of
deduplicated data chunks and the second parity chunk
further comprises storing the parity chunk and the
second parity chunk on a second node of the plurality
of nodes.

5. The method of claim 1, wherein the erasure coding
procedure is applied by a deduplicator executing on a node
in an accelerator pool, wherein the plurality of nodes is
located is a non-accelerator pool, and wherein a data cluster
comprises the accelerator pool and the non-accelerator pool.

6. The method of claim 1, wherein applying the erasure
coding procedure comprises:

dividing the data into data chunks;

selecting, from the data chunks, the plurality of data

chunks; and

generating the parity chunk using the plurality of data

chunks.

7. The method of claim 1, wherein the parity chunk
comprises a P parity value.

8. The method of claim 1, wherein each of the plurality of
nodes is in a separate fault domain.

9. The method of claim 1, wherein deduplicating the
plurality of data chunks to obtain the plurality of dedupli-
cated data chunks is performed after a parity value for the
plurality of data chunks is calculated.

10. A non-transitory computer readable medium compris-
ing computer readable program code, which when executed
by a computer processor enables the computer processor to
perform a method for storing data, the method comprising:

obtaining data;

applying an erasure coding procedure to the data to obtain

a plurality of data chunks and a parity chunk;

deduplicating the plurality of data chunks to obtain a

plurality of deduplicated data chunks;

storing, across a plurality of nodes, the plurality of

deduplicated data chunks and the parity chunk; and
tracking location information for each of the plurality of
deduplicated data chunks and the parity chunk.

11. The non-transitory computer readable medium of
claim 10, the method further comprising:

obtaining second data;

applying the erasure coding procedure to the data to

obtain a second plurality of data chunks and a second
parity chunk;

deduplicating the second plurality of data chunks to

obtain a second plurality of deduplicated data chunks;
storing, across the plurality of nodes and using the loca-
tion information for at least one of the plurality of
deduplicated data chunks, the second plurality of dedu-
plicated data chunks and the second parity chunk.

12. The non-transitory computer readable medium of
claim 11,

wherein a first deduplicated data chunk of the first plu-

rality of deduplicated data chunks is stored in a node of
the plurality of nodes,

Jul. 30, 2020

wherein a second deduplicated data chunk of the second
plurality of deduplicated data chunks is a modified
version of the first deduplicated data chunk, and

wherein storing, across the plurality of nodes and using
the location information for at least one of the plurality
of deduplicated data chunks, the second plurality of
deduplicated data chunks and the second parity chunk
comprises storing the second deduplicated data chunk
on the node of the plurality of nodes.

13. The non-transitory computer readable medium of

claim 12,

wherein the plurality of data chunks and the parity chunk
are associated with a first stripe;

wherein the second plurality of data chunks and the
second parity chunk is associated with a second stripe,
wherein the second stripe is a modified version of the
first stripe,

wherein storing, across the plurality of nodes and using
the location information for at least one of the plurality
of deduplicated data chunks, the second plurality of
deduplicated data chunks and the second parity chunk
further comprises storing the parity chunk and the
second parity chunk on a second node of the plurality
of nodes.

14. The non-transitory computer readable medium of
claim 10, wherein the erasure coding procedure is applied by
a deduplicator executing on a node in an accelerator pool,
wherein the plurality of nodes is located is a non-accelerator
pool, and wherein a data cluster comprises the accelerator
pool and the non-accelerator pool.

15. The non-transitory computer readable medium of
claim 10, wherein applying the erasure coding procedure
comprises:

dividing the data into data chunks;

selecting, from the data chunks, the plurality of data
chunks; and

generating the parity chunk using the plurality of data
chunks.

16. The non-transitory computer readable medium of
claim 10, wherein the parity chunk comprises a P parity
value.

17. The non-transitory computer readable medium of
claim 10, wherein each of the plurality of nodes is in a
separate fault domain.

18. The non-transitory computer readable medium of
claim 10, wherein deduplicating the plurality of data chunks
to obtain the plurality of deduplicated data chunks is per-
formed after a parity value for the plurality of data chunks
is calculated.

19. A data cluster, comprising:

a plurality of data nodes comprising an accelerator pool
and a non-accelerator pool, wherein the accelerator
pool comprises a data node, and the non-accelerator
pool comprises a plurality of data nodes;

wherein the data node of the plurality node is pro-
grammed to:
obtain data;
apply an erasure coding procedure to the data to obtain

a plurality of data chunks and a parity chunk;
deduplicate the plurality of data chunks to obtain a
plurality of deduplicated data chunks;
store, across a plurality of nodes, the plurality of
deduplicated data chunks and the parity chunk; and

US 2020/0241781 Al

track location information for each of the plurality of
deduplicated data chunks and the parity chunk.
20. The data cluster of claim 19, wherein the node is
further programmed to:

obtain second data;

apply the erasure coding procedure to the second data to
obtain a second plurality of data chunks and a second
parity chunk;

deduplicate the second plurality of data chunks to obtain
a second plurality of deduplicated data chunks; and

storing, across the plurality of nodes and using the loca-
tion information for at least one of the plurality of
deduplicated data chunks, the second plurality of dedu-
plicated data chunks and the second parity chunk.

#* #* #* #* #*

Jul. 30, 2020

