US 20200228513A1

a9 United States
a2y Patent Application Publication o) Pub. No.: US 2020/0228513 A1

Chen et al. 43) Pub. Date: Jul. 16, 2020
(54) STATELESS SESSION SYNCHRONIZATION HO4L 29/08 (2006.01)
BETWEEN SECURE COMMUNICATION HO4L 9/12 (2006.01)
INTERCEPTORS (52) US. CL
(71) Applicant: International Business Machines CPC ... HO4L 63/067 (2013.01); HO4L 9/0861
Corporation, Armonk, NY (US) (2013.01); HO4L 67/141 (2013.01); HO4L 9/30
(2013.01); HO4L 9/12 (2013.01); HO4L 9/0841
(72) Inventors: Kuo-Chun Chen, New Taipei City (2013.01); HO4L 9/0825 (2013.01)
(TW); Wei-Hsiang Hsiung, Taipei
(TW); Cheng-ta Lee, Taipei City (TW);
Wei-Shiau Suen, Taichung City (TW); (57) ABSTRACT
Ming Hsun Wu, New Taipei City (TW)
(21) Appl. No.: 16/834,529
Embodiments provide a system and method for stateless
(22) Filed: Mar. 30, 2020 session synchronization between inspectors for high avail-
L. ability deployments. Man in the Middle inspectors of a
Related U.S. Application Data communication session between a client and server
(63) Continuation of application No. 15/832,168, filed on exchange a shared key that is used as a common seed value
Dec. 5, 2017, now Pat. No. 10,652,224. in a mapping function algorithm. Each inspector generates
identical key-pairs using the common mapping function
Publication Classification algorithm, and the inspectors generate the session keys from
(51) Int. CL the key-pairs. Inspectors use the session keys to decrypt and
HO4L 29/06 (2006.01) either actively or passively inspect data transferred in a
HO4L 9/08 (2006.01) session between a client and server.
300
Client 301 Server 302

Clie ello 306

ol .
‘L Server Cert /

KeyExchange 307

303
(Server Cert /
_ KeyExchange)' 308 \
Inspectors
Client KeyExchange 309, /
304
|| (Client KeyExchange)' 310

Server Finish 311

A

Client Finish 312

v

B (Data Transmission) 313~

- »

305 Inspector
[Do Inspection] 314

P (Data Transmission) 315

|

Patent Application Publication Jul. 16,2020 Sheet 1 of 6 US 2020/0228513 A1

100
Client 101 Server102

Client Hello 103
Server Hello(server Certs) 104

<
Client Key Exchange 105 .
Client Finish 106
Server Finish 107

4

< (Data Transmission) 108

v v

FIG. 1

Patent Application Publication Jul. 16,2020 Sheet 2 of 6 US 2020/0228513 A1

200
Client 201 Server 202
Client Hello 204
(Client Hello)" 205
(Server Cert /
KeyExchange)' 207 Server Cert /
« KeyExchange 206
<

Client KeyExchange 208>

(Client KeyExchange)' 209 >

Client Finish 210

> (Client Finish)’ 211

>

(Server Finish)' 213

Server Finish 212

(Data Transmission) 214>

203 Inspector

(Data Transmission) 215>

FIG. 2

Patent Application Publication Jul. 16,2020 Sheet 3 of 6 US 2020/0228513 A1

300

Client 301 Server 302
Cliemj Hello 306

—>

Server Cert /
KeyExchange 307

303
(Server Cert /
KeyExchange)' 308 \
Inspectors
Client KeyExchange 309' /
304

(Client KeyExchange)' 310>

Server Finish 311

Client Finish 312

(Data Transmission) 313

305 Inspector
[Do Inspection] 314

(Data Transmission) 315

FIG. 3

US 2020/0228513 Al

Jul. 16, 2020 Sheet 4 of 6

Patent Application Publication

VADIE
0Tr 60F 30% vT €TY 90¥ aar ITv
3SNOIN S921A2(S140d J210epy AL
NOY || wepon 1| rpieoghey | | ai0d/ind | | soyso/asn | | siomian || reanao || 99H
) 9T sng !
cov| HDI/as
J , 114) SOv
Ja10epy AJOWB|N 10SS920.d
STy| OIS LOV| oipny uepy [HOW/EN [ouderg
N
(s)un
00V €07 | guissanoud Loy

Patent Application Publication Jul. 16,2020 Sheet 5 of 6 US 2020/0228513 A1

SSL/TLS cacheless key syncing

501 503 502
Client Inspector Server
T
ClientHello (DHE, cr’
entHello () 504 >

< ServerHello (DHE, sr) 505
< ServerCert(SC) 506

Pick DH group (p, g) Q07
Generate key pair
(Ks, Ps = g"Ks mod p)

< ServerCert(SC) 509

508
ServerKeyExchange(p, g, Ps)

Generate new key pairj151 0

(Ks' =M(Ps)

(Ps’ = g"Ks' mod p)

511
< ServerKeyExchange' (p, g, Ps') |
< ServerHelloDone 512
Generate key pair v13
(Ke, Pc = g*Ke mod p)

ClientKeyExchange(p, g, Pc) 5&

Generate new key pair Q13
)

Ke' = M(Pc)
(Ke', Pc' = g*Ke' mod p

516
ClientKeyExchange' (p, g, Pc') >

Client side pms1 = (@Ko Ps) N
Inspector side pms1 = (g"Ks' Pc)

Inspector side pms2 = (g*Kc' Ps) o18
Server side pms2 = (g"Ks'Pc')

et

ClientChangeCipherSpec

ClientFinished 519

g
ServerChangeCipherSpec
ServerFinished 520
<
521
s1=(pms1,cr, sr) \
N522
s2 = (pms2, cr, sr)]
]]
Client Inspector Server

FIG. 5

Patent Application Publication Jul. 16,2020 Sheet 6 of 6 US 2020/0228513 A1
SSL/TLS cacheless key syncing
501 603 502
. Secondary
Client Inspector Server
ClientHello (DHE) 604 >

<

< ServerHello (DHE) 605 1

ServerCert(SC) 606

(Ks,

607
Pick DH group (p, 9) N
Generate key pair

Ps = g"Ks mod p)

608

ServerKeyExchange(p, g, Ps, cr, sr

(Ks'=M(Ps)

Generate new key pair

(Ps" = g"Ks'mod p)

T

611
Generate key pair
(Ke, Pc = g"Ke mod p)

< ServerHelloDone 610

612

ClientKeyExchange(p, g, Pc, cr, sg

Ke' = M(Pc

- 613
Generate new key pair
(Pc)
(Ke',Pc’ = g"Ke' mod p)

(@]

Inspector side pms1 = (g"Ks") 'Pc

14
lient side pms1 = (g"Ke ' Ps") ﬁ
"Pg)

Server side pms2 = (g"Ks'Pc')

Inspector side pms2 = (g*Kc') Ps)

ﬁﬂS

ClientChangeCipherSpec

ClientFinished 616

g
ServerChangeCipherSpec
ServerFinished
<
618
s1=(pms1,cr, sr) \
\[619
s2 = (pms2, cr, s1)]
|]
Client Secondary
Inspector Server

FIG. 6

US 2020/0228513 Al

STATELESS SESSION SYNCHRONIZATION
BETWEEN SECURE COMMUNICATION
INTERCEPTORS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 15/832,168, filed on Dec. 5, 2017,
entitled “Stateless Session Synchronization Between Secure
Communication Interceptors,” the entire contents of which
are hereby incorporated by reference herein.

BACKGROUND

[0002] The present application relates generally to secu-
rity in computer networks and computing systems, and more
particularly, but not exclusively, to the inspection of
encrypted data in high availability deployments.

[0003] An increasing number of computer applications
use a secure connection between clients and servers on
computer networks, such as the Internet. Numerous com-
munication protocols exist to provide secure connections.
For example, Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) can provide secure communications.
The Institute of Electrical and Electronics Engineers (IEEE)
deprecated SSL in favor of TLS.

[0004] TLS provides a secure connection because it
encrypts the data being sent between the client and the server
during a communication session. Although the connection
may be secure, if the connection is to a malicious server,
then the network could be exposed to dangerous viruses,
trojans, or network attacks hidden in the encrypted data.
Therefore, enterprises need to perform network inspection
or monitoring of the encrypted traffic on the secure links to
inspect for malicious data. To inspect encrypted traffic, there
needs to be a means to decrypt the data payload, such as
obtaining the private key used for encryption/decryption by
the sender/receiver. For example, with TLS connections
prior to TLS release 1.3, servers often used RSA certificates
to perform key exchanges with the client, and “inspectors”
used the private key from the server’s RSA certificate to
decrypt the payload data for inspection. As used herein, an
“inspector” refers to software, hardware, and/or a combina-
tion of hardware and software configured to receive data,
decrypt the data, examine the data for malicious content,
extract or neutralize any malicious content in the data,
encrypt non-malevolent data, and transmit encrypted data.

[0005] The use of RSA certificates presents a weakness in
security because if the server’s RSA private key is compro-
mised then all TLS communications to that server can be
decrypted. This includes traffic that may have been captured
in the past. For instance, if a malicious party captured traffic
to a server for three years and at the end of this time obtained
the RSA certificate, then the malicious party could decrypt
all of that traffic.

[0006] To eliminate this weakness, TLS release 1.3 dep-
recates the use of RSA in order for TLS release 1.3 to
provide “Perfect Forward Secrecy” in which each key is
valid only for one session. Because TLS 1.3 does not use
RSA, inspectors require an alternative means for decrypting
the payload. Man-in-the-middle (“MitM”) inspection offers
one such alternative. In MitM inspection, an inspector
intercepts the client’s connection to a server, establishes the

Jul. 16, 2020

connection to the server on the client’s behalf, decrypts the
data, inspects the data, and then re-encrypts the data for
transport to the client.

[0007] In High Availability (“HA”) deployments of net-
work connectivity in which a high level of operational
performance is required, multiple MitM inspectors may be
needed to inspect a single secure communications session.
This becomes problematic because the inspection states
must be synchronized between inspectors so that all inspec-
tors for a given communication session use the same keys
for encrypting/decrypting. This is true whether the deploy-
ment of inspectors is in the active-active or active-passive
inspection format.

[0008] Mechanisms to synchronize the inspection states
between inspectors, including the session data and session
keys are extremely complex, error-prone, and they create
new race conditions between inspectors.

SUMMARY

[0009] Embodiments of the invention provide a computer
implemented method in a data processing system compris-
ing a processor and a memory comprising instructions,
which are executed by the processor to cause the processor
to implement a system for providing stateless synchroniza-
tion, the method receiving, by a first inspector, a first set of
key parameters associated with a communication session;
generating, by the first inspector, a first key-pair using the
first set of key parameters and a shared key; receiving, by the
first inspector, a second set of key parameters associated
with the communication session; and generating, by the first
inspector, a second key-pair using the second set of key
parameters and the shared key.

[0010] Embodiments can further provide a method com-
prising exchanging the shared key between the first inspec-
tor and a second inspector.

[0011] Embodiments can further provide a method com-
prising wherein receiving, by the second inspector, the first
set of key parameters; generating, by the second inspector,
a third key-pair using the first set of key parameters and the
shared key, wherein the first key-pair and the third key-pair
are identical; receiving, by the second inspector, the second
set of key parameters; and generating, by the second inspec-
tor, a fourth key-pair using the second set of key parameters
and the shared key, wherein the second key-pair and the
fourth key-pair are identical.

[0012] Embodiments can further provide a method com-
prising wherein the first inspector generates a private key for
the first key-pair using a first hash function of at least one
received key parameter from the first set of key parameters
and the shared key; wherein the first inspector generates a
private key for the second key-pair using a second hash
function of at least one received key parameter from the
second set of key parameters and the shared key; wherein the
second inspector generates a private key for the third key-
pair using a third hash function of at least one received key
parameter from the first set of key parameters and the shared
key; and wherein the second inspector generates a private
key for the fourth key-pair using a fourth hash function of at
least one received key parameter from the second set of key
parameters and the shared key.

[0013] Embodiments can further provide a method com-
prising wherein the first inspector generates a public key for
the first key-pair; wherein the first inspector generates a
public key for the second key-pair; wherein the second

US 2020/0228513 Al

inspector generates a public key for the third key-pair; and
wherein the second inspector generates a public key for the
fourth key-pair.

[0014] Embodiments can further provide a method com-
prising generating, by the first inspector, a first pre-master-
secret using at least one key from the first key-pair; gener-
ating, by the first inspector, a second pre-master-secret using
at least one key from the second key-pair; generating, by the
second inspector, a third pre-master-secret using at least one
key from the third key-pair, wherein the first and third
pre-master-secrets are identical; and generating, by the sec-
ond inspector, a fourth pre-master-secret using at least one
key from the fourth key-pair, wherein the second and fourth
pre-master-secrets are identical.

[0015] Embodiments can further provide a method com-
prising generating, by the first inspector, a first session key
using the first pre-master-secret; generating, by the first
inspector, a second session key using the second pre-master-
secret; generating, by the second inspector, a third session
key using the third pre-master-secret, wherein the first
session key and the third session key are identical; and
generating, by the second inspector, a fourth session key
using the fourth pre-master-secret, wherein the second ses-
sion key and the fourth session key are identical.

[0016] Embodiments can further provide a method com-
prising wherein the shared key is exchanged between the
first inspector and the second inspector according to a
predefined frequency.

[0017] Embodiments can further provide a method com-
prising wherein the communication session is a Transport
Layer Security (TLS) session between a client and a server.
[0018] Embodiments can further provide a method com-
prising wherein the first, second, third, and fourth key-pairs
are each valid only for the communication session.

[0019] In another illustrative embodiment, a computer
program product comprising a computer usable or readable
medium having a computer readable program is provided.
The computer readable program, when executed on a pro-
cessor, causes the processor to perform various ones of, and
combinations of, the operations outlined above with regard
to the method illustrative embodiment.

[0020] In yet another illustrative embodiment, a system is
provided configured to perform various ones of, and com-
binations of, the operations outlined above with regard to the
method illustrative embodiment.

[0021] Additional features and advantages of this disclo-
sure will be made apparent from the following detailed
description of illustrative embodiments that proceeds with
reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] The foregoing and other aspects of embodiments of
the present invention are best understood from the following
detailed description when read in connection with the
accompanying drawings. For the purpose of illustrating the
invention, there is shown in the drawings embodiments that
are presently preferred, it being understood, however, that
embodiments of the invention are not limited to the specific
instrumentalities disclosed. Included in the drawings are the
following Figures:

[0023] FIG. 1 depicts the TLS handshake process without
an inspector;
[0024] FIG. 2 depicts MitM inspection;

Jul. 16, 2020

[0025] FIG. 3 depicts MitM inspection according to
embodiments described herein;

[0026] FIG. 4 is a block diagram of an example data
processing system in which aspects of the illustrative
embodiments may be implemented;

[0027] FIG. 5 depicts stateless TLS key synchronization
according to embodiments described herein for a first
inspector; and

[0028] FIG. 6 depicts stateless TLS key synchronization
according to embodiments described herein for a second
inspector.

DETAILED DESCRIPTION

[0029] The present description and claims may make use
of the terms “a,” “at least one of,” and “one or more of,” with
regard to particular features and elements of the illustrative
embodiments. It should be appreciated that these terms and
phrases are intended to state that there is at least one of the
particular feature or element present in the particular illus-
trative embodiment, but that more than one can also be
present. That is, these terms/phrases are not intended to limit
the description or claims to a single feature/element being
present or require that a plurality of such features/elements
be present. To the contrary, these terms/phrases only require
at least a single feature/element with the possibility of a
plurality of such features/elements being within in the scope
of the description and claims.

[0030] In addition, it should be appreciated that the fol-
lowing description uses a plurality of various examples for
various elements of the illustrative embodiments to further
illustrate example implementations of the illustrative
embodiments and to aid in the understanding of the mecha-
nisms of the illustrative embodiments. These examples are
intended to be non-limiting and are not exhaustive of the
various possibilities for implementing the mechanisms of
the illustrative embodiments. It will be apparent to those of
ordinary skill in the art in view of the present description that
there are many other alternative implementations for these
various elements that may be utilized in addition to, or in
replacement of, the example provided herein without depart-
ing from the spirit and scope of the present invention.
[0031] Embodiments of the present invention may be a
system, a method, and/or a computer program product. The
computer program product may include a computer readable
storage medium (or media) having computer readable pro-
gram instructions thereon for causing a processor to carry
out aspects of the present invention.

[0032] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a head disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions

US 2020/0228513 Al

recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0033] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network (LAN),
a wide area network (WAN) and/or a wireless network. The
network may comprise copper transmission cables, optical
transmission fibers, wireless transmission, routers, firewalls,
switches, gateway computers, and/or edge servers. A net-
work adapter card or network interface in each computing/
processing device receives computer readable program
instructions from the network and forwards the computer
readable program instructions for storage in a computer
readable storage medium within the respective computing/
processing device.

[0034] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object-
oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer, or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including LAN or WAN, or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

[0035] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0036] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-

Jul. 16, 2020

puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0037] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operations steps to be performed on the computer, other
programmable apparatus, or other device to produce a
computer implemented process, such that the instructions
which execute on the computer, other programmable appa-
ratus, or other device implement the functions/acts specified
in the flowchart and/or block diagram block or blocks.

[0038] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical functions. In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the Figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

[0039] FIG. 1 illustrates an exemplary TLS handshake
process 100 that takes place in a TLS session over a network
between a client device 101, such as a user’s computer, and
a server device 102, such as a bank’s server. It should be
understood that a TLS session may be established between
virtually any network devices enabled to employ the TLS
protocol. Furthermore, a TLS session may employ one or
more underlying network connections. Either a client or a
server may initiate a TLS connection once a TLS session has
been established. Reference to the TLS connection refers to
the physical communication channel(s) used to transport
data. Reference to the TLS session refers to a temporal unit
of context and continuity associated with a communication
between client and server that may be associated with
cryptography parameters. There can be multiple connections
associated with one session. It is not uncommon for brows-
ers to open and use several connections simultaneously in a
session. Furthermore, a connection can be closed, but a
session can be maintained and even stored for subsequent
resumption using another connection. Conversely, a TLS
session can be renegotiated without interrupting the estab-
lished connection.

US 2020/0228513 Al

[0040] Regardless of which device initiates the TLS con-
nection, handshaking between the client 101 and server 102
begins to initiate the TLS session. Handshaking mutually
determines the secret keys used by the client 101 and server
102 in the bulk encryption/decryption of data between them.
The keys are established using public key cryptography,
such as Diffie-Hellman, that allows the client 101 and the
server 102 to share a secret over a non-secure channel.
[0041] In an embodiment, the client 101 sends a client
hello message 103 to the server 102 that lists cryptographic
information such as the TLS version and the encryption
protocols, such as Diffie-Hellman Ephemeral (DHE), sup-
ported by the client 101 for exchanging key information.
The client hello message 103 also contains a random byte
string used in subsequent calculations. Other optional infor-
mation may also be sent by the client 101.

[0042] The server 102 responds with a server hello mes-
sage 104. The server hello message 104 contains the encryp-
tion protocols chosen by the server 102 from the list pro-
vided by the client 101 in the client hello message 103. The
server 102 also includes in the server hello message 104 the
session ID and another random byte string. Other optional
data may also be sent by the server 102, such as the server
certificate.

[0043] The client 101 uses the randomly generated data
exchanged in the client hello 103 and the server hello 104
messages to generate a pre-master-secret for a TLS session.
In step 105, the client 101 sends the server 102 the pre-
master-secret, and in one embodiment, the pre-master-secret
may be encrypted using a public key associated with the
server 102 obtained from the server hello message 104.
From the pre-master-secret, both the client 101 and the
server 102 generate a master secret, which is also known as
a session key. The session key is a symmetric key used for
bulk encryption/decryption by the client 101 and the server
102.

[0044] In step 106, the client 101 sends the server 102 a
finished message, which is encrypted with the session key,
indicating that the client part of the handshake is complete.
In step 107, the server 102 sends the client 101 a finished
message, which is also encrypted with the session key,
indicating that the server part of the handshake is complete.
[0045] In step 108, the client 101 and the server 102 use
their respective instances of the session key(s) to generate
and send messages containing encrypted payloads. The
client 101 and server 102 can exchange encrypted data for
the duration of the session. The client 101 and server 102
also use the session key(s) to decrypt received payloads. Any
subsequent session requires another set of handshaking to
derive a new set of keys.

[0046] FIG. 2 illustrates exemplary Man in the Middle
(MitM) inspection of a TLS connection. The purpose of a
MitM inspection is to separate the session between the client
201 and the server 202 into two sessions: one session
between the inspector 203 and the client 201; and a second
session between the inspector 203 and the server 202. This
enables the inspector 203 to establish a session key with the
server 202 and a session key with the client 201 so that the
inspector 203 can decrypt data from either the server 202 or
the client 201, inspect the data, and then encrypt the data to
pass the data along to its intended destination. The process
will be explained in more detail with respect to FIG. 2
below. If inspector 203 were unable to insert itself in the
session handshaking between the client 201 and the server

Jul. 16, 2020

202, the inspector 203 would not be able to obtain the
session key(s) between the client 201 and server 202 that
would be needed to inspect the payload.

[0047] Referring to FIG. 2, the TLS session handshaking
begins with the client hello message 204. The client 201
sends the client hello message 204 to open a TLS session. In
MitM inspection, the client hello message 204 is received by
the inspector 203 instead of the server 202. The MitM
inspector 203 intercepts the client hello message 204 in
order to establish a first session between the client 201 and
inspector 203. To open a second session between the inspec-
tor 203 and server 202, the inspector 203 sends a “fake”
client hello message 205 to the server 202. The client hello
message 204 and “fake” client hello message 205 include
the cryptographic information described above such as the
TLS version, encryption protocols, a random byte string
used in subsequent calculations, and other optional infor-
mation.

[0048] The server 202 responds with a server hello mes-
sage 206 that is received by the inspector 203 instead of the
client 201. The inspector 203 sends a “fake” server hello
message 207 to the client 201. The server hello message 206
and “fake” server hello message 207 include the selected
encryption protocols, the session 1D, another random byte
string, and any other optional data.

[0049] When the client 201 receives the “fake” server
hello message 207, the client 201 uses the information in the
“fake” server hello message 207 to generate a pre-master-
secret, and the client 201 sends this pre-master-secret to the
inspector 203 in step 208. With the pre-master-secret, the
client 201 and inspector 203 are able to generate a session
key to exchange encrypted data.

[0050] The inspector 203 then sends a pre-master-secret to
the server 202 in step 209. With this pre-master-secret, the
inspector 203 and server 202 can generate a session key to
exchange encrypted data.

[0051] After the key exchanges, the client 201 sends a
client finish message 210 that is received by the inspector
203. The inspector 203 sends a “fake” client finish message
211 to the server 202. The server 202 sends a server finish
message 212 that is received by the inspector 203. The
inspector 203 sends a “fake” server finish message 213 that
is received by the client 201.

[0052] At this point data can be exchanged between the
client 201 and inspector 203 in step 214. The inspector 203
uses the session key created during the handshaking between
the client 201 and inspector 203 to decrypt the data from the
client 201 and inspect the data. After the inspection, all
approved data is encrypted by the inspector 203 with the
session key created during the handshaking with the server
202. The inspector 203 sends the data to the server 202 in
step 215. Likewise, data received by the inspector 203 from
the server 202 is decrypted by the session key generated
through the handshaking between the inspector 203 and
server 202. The inspector 203 inspects this data, and all
approved data is sent to the client 201 after the data is
encrypted with the session key generated through the hand-
shaking between the client 201 and inspector 203.

[0053] FIG. 3 depicts MitM inspection according to
embodiments of a stateless synchronization between TLS
inspectors. Generally, the embodiments provide a means of
providing stateless synchronization of public/private key-
pairs between multiple inspectors and a means of doing
active and passive MitM inspection. The use of key-pairs

US 2020/0228513 Al

comprising of a public key and a private key is typically
referred to as asymmetric encryption. Symmetric encryption
on the other hand refers to the use of a single key for both
encryption and decryption. In contrast, asymmetric encryp-
tion uses a different key (public and private) for encryption
and decryption. When using symmetric encryption, users
need to figure out how to synchronize the key, but asym-
metric encryption works without any pre-shared informa-
tion. The primary disadvantage of using symmetric encryp-
tion is that both parties have access to the secret key, but in
asymmetric encryption, the secret key is known only by the
owner (each party has a secret key). Asymmetric encryption,
therefore, provides for improved security.

[0054] To do stateless synchronization, embodiments of
the invention include inspectors that share a common map-
ping function algorithm, M, enabling each inspector to
generate the session keys needed to perform inspection on
data exchanged between a client and a server. The common
mapping function algorithm enables stateless synchroniza-
tion and obviates the need for synchronizing inspection
states between inspectors. By using a common mapping
function algorithm, each inspector generates an identical
key-pair during the handshaking process (or key exchange).
The common mapping function algorithm used by each
inspector uses a shared key, which is used as the seed to
generate random numbers. Inspectors exchange the shared
key so that each inspector has the same seed. The frequency
with which the shared key needs to be exchanged depends
on the level of security desired, and the frequency can be
predefined by user input, random or pseudo-random control,
or other means. The more frequently the shared key is
changed and exchanged among inspectors, the more secure
the inspection process becomes. The actual means of
exchanging the shared key is varied and may be dependent
on the implementation of the inspectors. For example, in the
embodiment in which each inspector is a separate instance
within a larger software system, the system software can
make the shared key available to each instance. In another
example in which each inspector is part of physically
separate hardware, the shared key can be exchanged through
a variety of communication channels connected with the
hardware. In yet another example, the shared key can be
made available to a central repository accessible, for
example, via the Internet, by each inspector.

[0055] The shared key and common mapping function
algorithm enables the second inspector to do passive MitM
inspection because both the first and second inspectors
generate the same pre-master-secret to derive the session
keys. Passive inspection means that no packet modification
occurs. Other differences between active and passive MitM
inspection include at least the following: (1) passive inspec-
tors do not interfere with the TLS handshaking; and (2)
passive inspectors do not send out any packets. Each inspec-
tor has many ways to identify it if it needs to perform active
or passive inspection. A decision on whether to do active or
passive inspection could be based on the client IP, server IP,
server name, physical port number, and the like. For
example, an inspector may inspect the physical port (e.g.,
ethO, ethl) to determine if it needs to perform active or
passive inspection. Exemplary operation modes for the first
and second inspectors include Active-Active and Active-
Passive.

[0056] The common mapping function algorithm, M, can
be defined as follows:

M(key parameters)=keygen(hash(key parameters+
inspector-shared-secret))

Jul. 16, 2020

[0057] Each key-pair is calculated from key parameters
associated with a specific TLS session plus the inspector-
shared secret, so each TLS session is independent. Because
each key-pair calculation is independent, the order of the
sessions will not affect the result.

[0058] Using the function M, each inspector could gener-
ate the following messages, for example:

(Server Key Exchange)'=GenKeyExchange(M(Server
Key Exchange))

(Client Key Exchange)'=GenKeyExchange(M(Client
key Exchange))

(Server Public Key)'=GenPubKey (M (Server Public
Key))

[0059] These are but some exemplary messages that can
be generated by using a common inspector-shared-secret
with a key parameter. One of ordinary skill in the art will
appreciate that use of the common mapping function algo-
rithm M is not limited to the generation of the above
examples.

[0060] FIG. 3 depicts a client-server flow chart 300
according to an embodiment of the invention. The client 301
sends to the server 302 a client hello message 306 compris-
ing the cryptographic information described above such as
the TLS version, encryption protocols, a random byte string
used in subsequent calculations, and other optional infor-
mation. In response, the server 302 responds with a “server
hello” message 307. The client 301 receives a “fake” server
hello message 308. The client 301 sends a client key
exchange message 309. A “fake” client key exchange mes-
sage 310 is sent to the server 302. A server finish message
311 is sent from the server 302 to the client 301, and the
client 310 sends a client finish message 312 to the server
302.

[0061] The inspectors 303, 304, and 305 may reside (or be
collocated) at the client 301 or server 302, within the
network, at a proxy, or at any other point in the network such
that the data may be intercepted and inspected. According to
an embodiment of the invention, to inspect encrypted data
of, for example, a TLS session, the inspectors 303, 304, and
305 use the common mapping function algorithm M to
generate identical key-pairs that are used to build the pre-
master-secret and generate a session key. The session keys
used by the inspectors 303, 304, and 305 are identical. The
inspectors 303, 304, and 305 are each able to inspect in step
314 data transmitted during a session between the client 301
and the server 302 in steps 313 and 315.

[0062] Thus, as depicted in FIG. 3, inspectors 303, 304,
and 305 intercept data from the client 301 (or server 302)
during a session, decrypt the data using identical session
keys, inspect the data, encrypt the data using identical
session keys, and then send the non-malicious data to the
server 302 (or client 301). This process is described in more
detail with respect to FIGS. 5 and 6 below.

[0063] FIG. 4 is a block diagram of an example data
processing system 400 in which aspects of the illustrative
embodiments, such as the inspectors, can be implemented.
Data processing system 400 is an example of a computer,
such as a server or client, in which computer usable code or
instructions implementing the process for illustrative
embodiments of the present invention are located. In one

US 2020/0228513 Al

embodiment, FIG. 4 represents a server computing device,
such as a server, which implements the network tracking
system described herein.

[0064] In the depicted example, data processing system
400 can employ a hub architecture including a north bridge
and memory controller hub (NB/MCH) 401 and south
bridge and input/output (I/O) controller hub (SB/ICH) 402.
Processing unit 403, main memory 404, and graphics pro-
cessor 405 can be connected to the NB/MCH 401. Graphics
processor 405 can be connected to the NB/MCH 401
through an accelerated graphics port (AGP).

[0065] In the depicted example, the network adapter 406
connects to the SB/ICH 402. The audio adapter 407, key-
board and mouse adapter 408, modem 409, read only
memory (ROM) 410, hard disk drive (HDD) 411, optical
drive (CD or DVD) 412, universal serial bus (USB) ports
and other communication ports 413, and the PCI/PCle
devices 414 can connect to the SB/ICH 402 through bus
system 416. PCI/PCle devices 414 may include Ethernet
adapters, add-in cards, and PC cards for notebook comput-
ers. ROM 410 may be, for example, a flash basic input/
output system (BIOS). The HDD 411 and optical drive 412
can use an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface. The
super I/O (S10) device 415 can be connected to the SB/ICH
402.

[0066] An operating system can run on processing unit
403. The operating system can coordinate and provide
control of various components within the data processing
system 400. As a client, the operating system can be a
commercially available operating system. An object-ori-
ented programming system, such as the Java™ program-
ming system, may run in conjunction with the operating
system and provide calls to the operating system from the
object-oriented programs or applications executing on the
data processing system 400. As a server, the data processing
system 400 can be an IBM® eServer™ System p® running
the Advanced Interactive Executive operating system or the
Linux operating system. The data processing system 400 can
be a symmetric multiprocessor (SMP) system that can
include a plurality of processors in the processing unit 403.
Alternatively, a single processor system may be employed.
[0067] Instructions for the operating system, the object-
oriented programming system, and applications or programs
are located on storage devices, such as the HDD 411, and are
loaded into the main memory 404 for execution by the
processing unit 403. The processes for embodiments of the
network tracking system can be performed by the processing
unit 403 using computer usable program code, which can be
located in a memory such as, for example, main memory
404, ROM 410, or in one or more peripheral devices.
[0068] A bus system 416 can be comprised of one or more
busses. The bus system 416 can be implemented using any
type of communication fabric or architecture that can pro-
vide for a transfer of data between different components or
devices attached to the fabric or architecture. A communi-
cation unit such as the modem 409 or network adapter 406
can include one or more devices that can be used to transmit
and receive data.

[0069] Those of ordinary skill in the art will appreciate
that the hardware depicted in FIG. 4 may vary depending on
the implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives may be used in addition to or

Jul. 16, 2020

in place of the hardware depicted. Moreover, the data
processing system 400 can take the form of any of a number
of different data processing systems, including but not
limited to, client computing devices, server computing
devices, tablet computers, laptop computers, telephone or
other communication devices, personal digital assistants,
and the like. Essentially, data processing system 400 can be
any known or later developed data processing system with-
out architectural limitation.

[0070] FIGS. 5 and 6 explain, in more detail, embodi-
ments of the invention in which two (or more) inspectors can
inspect the data of the same encrypted session. FIG. 5
depicts stateless TLS key synchronization according to
embodiments described herein for a first inspector 503 of a
TLS communications session between the client 501 and the
server 502. FIG. 6 depicts the second inspector 603 for the
same TLS communications session.

[0071] Referring to FIG. 5, the client 501 sends a Clien-
tHello message 504 to the server 502. The ClientHello
message 504 indicates to the server 502 that the available
cryptography method is Diffie-Hellman Ephemeral (DHE).
The clientHello message 504 also includes the client random
byte string (cr).

[0072] In response to the client 501 initiating a TLS
session with a Clienthello message 504, the server 502 sends
a ServerHello message 505 and a ServerCert message 506
that are received by the first inspector 503. The ServerHello
message 505 includes acknowledgement that DHE will be
the cryptography format used. The ServerHello message 505
also includes the server random byte string (sr). The Server-
Cert 506 is the digital certificate from the server 502, which
is used to authenticate the server 502. The first inspector 503
receives the ServerHello message 505 and the ServerCert
506. The first inspector 503 sends a ServerCert message 506
to the client 501 in step 509.

[0073] The server 502 generates a Diffie-Hellman key-pair
in step 507 using prime modulus (p) and the primitive root
modulo p (g). The server 502 generates a private key (Ks),
and then calculates the public key (Ps) as follows:

Ps=g’Ksmod p

[0074] The server 502 sends p, g, and Ps to the first
inspector 503 as part of a ServerKeyExchange message 508.

[0075] In an embodiment, the first inspector 503 in step
510 utilizes a common mapping function algorithm M, as
described above, to generate a first key-pair, comprising a
“fake” private server key (Ks') and a “fake” public server
key (Ps"). Ks’ is generated using the public key from the
server 502 (Ps) as follows:

Ks'=M(Ps)

The “fake” public server key (Ps') is generated using
Ks’ as follows:

Ps’=g’Ks' mod p

[0076] The “fake” public server key is transmitted to the
client 501 from the inspector 503 as part of a “fake”
ServerKeyExchange' message 511. Also included in the
ServerKeyExchange' message 511 are the values forp and g.
The server 502 sends to the client 501 a ServerHelloDone
message 512.

US 2020/0228513 Al

[0077] In step 513, the client 501 generates a Diffie-
Hellman key-pair using p and g. The client 501 generates a
private key (Kc), and then calculates the public key (Pc) as
follows:

Pc=gKe mod p

[0078] The client 501 sends p, g, and Pc to the first
inspector 503 as part of a ClientKeyExchange message 514.
[0079] In step 515, the first inspector 503 generates a
second key-pair. In an embodiment, the first inspector 503
utilizes a common mapping function algorithm M, as
described above, to generate a “fake” private client key (Kc')
using the public key from the client 501 as follows:

Kc'=M(Pc)

Then, a “fake” public client key (Pc') is generated
using K¢' as follows:

Pc'=g’Kc' mod p

[0080] The “fake” public client key is transmitted to the
server 502 from the first inspector 503 as part of a “fake”
ClientKeyExchange' message 516. Also included in the
ClientKeyExchange' message 516 are the values for p and g.
[0081] The session key for the session between the client
501 and the inspector 502 is calculated by both the client 501
and the first inspector 503 using a pre-master-secret. As
shown in step 517, the client 501 calculates the pre-master-
secret it will use from the client private key and “fake”
server public key as follows:

pmsl=g’KcPs’

[0082] The first inspector 503 calculates the pre-master-
secret it will use from the “fake” private server key and
public client key as follows:

pmsl=g’Ks"Pc

[0083] With the pre-master-secret as well as cr and sr, both
the client 501 and the first inspector 503 can generate the
session key used for bulk encryption/decryption of the
payload between the client 501 and the first inspector 503,
as shown in step 521.

[0084] Similarly, the session key for the session between
the first inspector 503 and the server 502 is calculated by
both the first inspector 503 and the server 502 using a
pre-master-secret. As shown in step 518, the first inspector
503 calculates the pre-master-secret it will use from the
“fake” private client key and the public server key as
follows:

pms2=g’Kc"Ps

[0085] The server 502 calculates the pre-master-secret it
will use from the private server key and “fake” public client
key as follows:

pms2=g’Ks-Pc’

[0086] With the pre-master-secret as well as cr and sr, both
the first inspector 503 and the server 502 can generate the
session key used for bulk encryption/decryption of the
payload between the first inspector 503 and the server 502,
as shown in step 522.

[0087] The client 501 sends a ClientFinished message 519
to the server 502. The server 502 sends a ServerFinished
messaged 520 to the client 501.

[0088] FIG. 6 depicts TLS key synchronization according
to embodiments described herein for a second inspector of

Jul. 16, 2020

the TLS communications session between the client 501 and
the server 502, previously discussed with regard to FIG. 5§
describing the first inspector. A second inspector 603
receives a ClientHello message 604, which includes the
available cryptography method of Diffie-Hellman Ephem-
eral (DHE). The second inspector 603 also receives a
ServerHello message 605 and a ServerCert message 606. In
step 607, the server 502 generates Ks and Ps key-pair as
described with respect to step 507 in FIG. 5.

[0089] The ServerKeyExchange message 608 provides the
second inspector 603 with the public server key (Ps), p, g,
cr, and sr information. From this information, the second
inspector 603 generates in step 609 a third key-pair includ-
ing a “fake” private key and a public server key using the
common mapping function algorithm M using the same
inspector-shared-secret that was used by the first inspector
503. The “fake” private server key (Ks') is generated as
follows:

[0090] Ks=M(Ps)

[0091] Then, the “fake” public server key (Ps') is gener-
ated using Ks’ as follows:

[0092] Ps'=g'Ks' mod p

[0093] A ServerHelloDone message 610 is sent from the
server 502 to the second inspector 603.

[0094] The client 501 generates a key-pair Kc and Pc in
step 611 as described with respect to step 513 in FIG. 5.
[0095] The client 501 sends p, g, Pc, cr, and sr to the
second inspector 603 as part of a ClientKeyExchange mes-
sage 612.

[0096] In step 613, the second inspector 613 generates a
fourth key-pair. In an embodiment, the second inspector 603
utilizes the common mapping function algorithm M, as
described above using the same inspector-shared-secret as
the first inspector (e.g., inspector 503) to generate a “fake”
private client key (Kc') using the public key from the client:

Kc'=M(Pc)

Then, a “fake” public client key (Pc') is generated
using Kc' as follows:

Pc'=g"Kc' mod p

[0097] Because the second inspector 603 uses the same
inspector-shared-secret as the first inspector 503, the first
key-pair generated in step 510 and the third key-pair gen-
erated in step 609 are identical. Likewise, the second key-
pair generated in step 515 and the fourth key-pair generated
in step 613 are identical. Because the first inspector key-
pairs are identical to the second inspector key-pairs, the
second inspector 603 is able to generate identical session
keys (in the same process as described with respect to the
first inspector 503). This process begins in step 614 in which
the pre-master-secret used by the client 501 and second
inspector 603 is determined as set forth in step 517. In step
618, this pre-master-secret is used to generate the session
key used for bulk encryption/decryption of the payload
between the client 501 and the second inspector 603, as
described with respect to step 521. The pre-master-secret
used by the server 502 and second inspector 603 is deter-
mined in step 615 as described with respect to step 518. This
pre-master-secret is used in step 619 to generate the session
key used for bulk encryption/decryption of the payload
between the second inspector 603 and the server 502, as
described with respect to step 522.

US 2020/0228513 Al

[0098] The client 501 sends a ClientFinished message 616
to the server 502. The server 502 sends a ServerFinished
messaged 617 to the client 501.

[0099] Using session keys that are identical to the session
keys used by the first inspector 503, the second inspector
603 can, in the same session as the first inspector 503,
passively inspect the payload transferred between the client
501 and the server 502. An inspector can be identified
among other entities in a system by determining whether the
entity-in-question is using the same or different session keys
for the incoming and outgoing data channels. Inspectors, as
disclosed in the present invention, use different session keys
for the incoming data channel and outgoing data channel.
[0100] Furthermore, embodiments of the invention can be
implemented in communication sessions other than those
using TLS without departing from the scope of this inven-
tion. For example, an embodiment utilizing the IPSec secu-
rity protocol and its associated encryption methods to secure
network data is also contemplated.

[0101] The system and processes of the figures are not
exclusive. Other systems, processes and menus may be
derived in accordance with the principles of embodiments
described herein to accomplish the same objectives. It is to
be understood that the embodiments and variations shown
and described herein are for illustration purposes only.
Modifications to the current design may be implemented by
those skilled in the art, without departing from the scope of
the embodiments. As described herein, the various systems,
subsystems, agents, managers and processes can be imple-
mented using hardware components, software components,
and/or combinations thereof. No claim element herein is to
be construed under the provisions of 35 U.S.C. 112, sixth
paragraph, unless the element is expressly recited using the
phrase “means for.”

[0102] Although the invention has been described with
reference to exemplary embodiments, it is not limited
thereto. Those skilled in the art will appreciate that numer-
ous changes and modifications may be made to the preferred
embodiments of the invention and that such changes and
modifications may be made without departing from the true
spirit of the invention. It is therefore intended that the
appended claims be construed to cover all such equivalent
variations as fall within the true spirit and scope of the
invention.

What is claimed is:

1. A computer implemented method in a data processing
system comprising a processor and a memory comprising
instructions, which are executed by the processor to cause
the processor to implement a system for providing stateless
synchronization, the method comprising:

receiving, by a first inspector device, a first set of key

parameters while in a communication session;
generating, by the first inspector device, a first key-pair
using the first set of key parameters and a shared key;
receiving, by the first inspector device, a second set of key
parameters while in the communication session; and
generating, by the first inspector device, a second key-pair
using the second set of key parameters and the shared
key.
2. The method as recited in claim 1, further comprising:

receiving, by the first inspector device, the shared key
while in the communication session.

Jul. 16, 2020

3. The method as recited in claim 2, further comprising:

wherein the first inspector device receives the shared key
from a second inspector device inspecting the commu-
nication session.

4. The method as recited in claim 1, further comprising:

receiving, by the first inspector device, a new shared key

while in the communication session.

5. The method as recited in claim 4, further comprising:

generating, by the first inspector device, a third key-pair

using the first set of key parameters and the new shared
key, wherein the new shared key is configured to be
shared with the plurality of inspector devices inspecting
the communication session; and

generating, by the first inspector device, a fourth key-pair

using the second set of key parameters and the new
shared key.

6. The method as recited in claim 4, further comprising:

wherein the new shared key is generated according to a

predefined frequency.
7. The method as recited in claim 1, further comprising:
generating, by the first inspector device, a new shared key
while in the communication session; and

transmitting, by the first inspector device, the new shared
key to the plurality of inspector devices inspecting the
communication session.

8. The method as recited in claim 1, further comprising:

determining, by a first inspector device, a type of inspec-

tion.

9. The method as recited in claim 8, further comprising:

wherein the type of inspection comprises passive or active

inspection.

10. The method as recited in claim 8, further comprising:

wherein the type of inspection is determined using one or

more of the following: client Internet protocol address,
server Internet protocol address, server name, or port
number.

11. A computer program product for providing stateless
synchronization, the computer program product comprising
a computer readable storage medium having program
instructions embodied therewith, the program instructions
executable by a processor to cause the processor to:

receive, by a first inspector device, a first set of key

parameters while in a communication session;
generate, by the first inspector device, a first key-pair
using the first set of key parameters and a shared key;
receive, by the first inspector device, a second set of key
parameters while in the communication session; and
generate, by the first inspector device, a second key-pair
using the second set of key parameters and the shared
key.

12. The method as recited in claim 11, further comprising:

receive, by the first inspector device, the shared key while

in the communication session.

13. The method as recited in claim 12, further comprising:

wherein the first inspector device receives the shared key

from a second inspector device inspecting the commu-
nication session.

14. The method as recited in claim 11, further comprising:

receive, by the first inspector device, a new shared key

while in the communication session.

15. The method as recited in claim 14, further comprising:

generate, by the first inspector device, a third key-pair

using the first set of key parameters and the new shared
key, wherein the new shared key is configured to be

US 2020/0228513 Al

shared with the plurality of inspector devices inspecting
the communication session; and

generate, by the first inspector device, a fourth key-pair
using the second set of key parameters and the new
shared key.

16. The method as recited in claim 14, further comprising:

wherein the new shared key is generated according to a
predefined frequency.

17. The method as recited in claim 11, further comprising:

generate, by the first inspector device, a new shared key
while in the communication session; and

transmit, by the first inspector device, the new shared key
to the plurality of inspector devices inspecting the
communication session.

18. The method as recited in claim 11, further comprising:

determine, by a first inspector device, a type of inspection.

19. The method as recited in claim 18, further comprising:

wherein the type of inspection comprises passive or active
inspection.

20. A system for providing stateless synchronization,

comprising:

A first inspector device including memory configured to:

receive a first set of key parameters while in a commu-
nication session;

generate a first key-pair using the first set of key param-
eters and a shared key;

receive a second set of key parameters associated with the
communication session; and

generate a second key-pair using the second set of key
parameters and the shared key.

#* #* #* #* #*

Jul. 16, 2020

