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h(y) of exact degree n in a ring F_[y]. The method includes
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the ring F_[y]/(h(y)) and constructing an inverse isomor-
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HOMOMORPHIC ENCRYPTION

PRIORITY

[0001] This application is being filed on 8 Jul. 2016, as a
PCT International patent application, and claims priority to
U.S. Provisional Patent Application No. 62/190,121, entitled
“FF-ENCRYPT: LEVELED HOMOMORPHIC ENCRYP-
TION VIA FINITE FIELD ISOMORPHISMS,” filed on Jul.
8, 2015, the disclosure of which is hereby incorporated by
reference herein in its entirety.

GOVERNMENT LICENSE RIGHTS

[0002] The invention was made with government support
under DMS1349908 awarded by National Science Founda-
tion (NSF). The government has certain rights in the inven-
tion.

BACKGROUND

[0003] Data encryption refers to the process of converting
data into another format that cannot easily be understood by
unauthorized parties. Computer systems often use data
encryption to protect user’s privacy, for example, when
communicating over a network. Typically, when encrypted
data is received, the data is decrypted so that the receiving
party can understand and process the data. Thus, an under-
lying premise of many encryption technologies is that the
receiving party must be trusted with the data.

[0004] It is with respect to these and other general con-
siderations that embodiments have been made. Also,
although relatively specific problems have been discussed, it
should be understood that the embodiments should not be
limited to solving the specific problems identified in the
background.

SUMMARY

[0005] In general terms, this disclosure is directed to
systems and methods for homomorphic encryption via finite
ring isomorphisms. In one possible configuration and by
non-limiting example one or more messages are encrypted
using an isomorphism from one ring to another ring.
[0006] One aspect is a system for homomorphic encryp-
tion via finite ring isomorphisms, comprising: at least one
processor; and memory, operatively connected to the at least
one processor and storing instructions that, when executed
by the at least one processor, cause the at least one processor
to: select a polynomial f(x) of exact degree n with small
coeflicients in a ring R,[x]; select a polynomial h(y) of exact
degree n in a ring Fq[y]; construct an isomorphism from the
ring Fq[x]/(f(x)) to the ring Fq[yl/(h(y)); construct an
inverse isomorphism from the ring Fq[y]/(h(y)) to the ring
Fq[x]/(f(x)); encrypt one or more messages using said
isomorphism from the ring Fq[x]/(f(x)) to the ring Fq[y]/(h
(y)); transmit the encrypted one or more messages to a
remote computer; receive one or more encrypted response
messages from the remote computer based at least in part on
the transmitted one or more messages; and decrypt the one
or more encrypted response messages.

[0007] Another aspect is a method for homomorphic
encryption via finite ring isomorphisms, the method com-
prising: selecting a polynomial j(x) of exact degree n with
small coeflicients in a ring F,[x]; selecting a polynomial h(y)
of exact degree n in a ring F [y]; constructing an isomor-
phism from the ring F [x]/(f(x)) to the ring F [y]/(h(y));
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[0008] constructing an inverse isomorphism from the ring
F [yl/(h(y)) to the ring F_[x]/(f(x)); encrypting one or more
messages using said isomorphism from the ring F [x]/(f(x))
to the ring F _[y]/(h(y)); transmitting the encrypted one or
more messages to a remote computer; receiving one or more
encrypted response messages from the remote computer
based at least in part on the transmitted one or more
messages; and decrypting the one or more encrypted
response messages.

[0009] Yet another aspect is a computer-readable storage
device having computer executable instructions stored
thereon, which, when executed by a computing system,
provide instructions to perform a method for homomorphic
encryption via finite ring isomorphisms, the method com-
prising: selecting a polynomial f(x) of exact degree n with
small coeflicients in a ring F_[x]; selecting a polynomial h(y)
of exact degree n in a ring F [y]; constructing an isomor-
phism from the ring F [x]/(f(x)) to the ring F [y]/(h(y));
constructing an inverse isomorphism from the ring F,[y]/(h
(y)) to the ring F,[x]/(f(x)); encrypting one or more mes-
sages using said isomorphism from the ring F [x]/(f(x)) to
the ring F_[y]/(h(y)); transmitting the engrypted one or more
messages to a remote computer; receiving one or more
encrypted response messages from the remote computer
based at least in part on the transmitted one or more
messages; and decrypting the one or more encrypted
response messages.

[0010] This summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Non-limiting and non-exhaustive embodiments are
described with reference to the following Figures.

[0012] FIG. 1is an example system for performing homo-
morphic encryption using finite ring isomorphisms.

[0013] FIG. 2 is an example method for performing cal-
culations on data using homomorphic encryption with the
system of FIG. 1.

[0014] FIG. 3 is an example method for encrypting data
using the system of FIG. 1.

[0015] FIG. 4 is an example method for encrypting data
using the system of FIG. 1.

[0016] FIG. 5 is an example method for generating an
isomorphism and an inverse isomorphism using the system
of FIG. 1.

[0017] FIG. 6 is an example method for key generation
using the system of FIG. 1.

[0018] FIG. 7 illustrates one example of a suitable oper-
ating environment in which one or more of the aspects of the
disclosure may be implemented.

[0019] The attached Appendix provides additional
examples to aid in the understanding of the present tech-
nology.

DETAILED DESCRIPTION

[0020] Various embodiments are described more fully
below with reference to the accompanying drawings, which
form a part hereof, and which show specific example
embodiments. However, embodiments may be implemented
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in many different forms and should not be construed as
limited to the embodiments set forth herein; rather, these
embodiments are provided so that this disclosure will be
thorough and complete, and will fully convey the scope of
the embodiments to those skilled in the art. Embodiments
may be practiced as methods, systems or devices. Accord-
ingly, embodiments may take the form of a hardware imple-
mentation, an entirely software implementation or an imple-
mentation combining software and hardware aspects. The
following detailed description is, therefore, not to be taken
in a limiting sense. While different embodiments are illus-
trated, one of skill in the art will appreciate that different
aspects from the different embodiments may be combined
without departing from the scope of this disclosure.

[0021] Generally, data encryption refers to the process of
encoding plaintext data (e.g., ordinary, readable text) into
ciphertext (e.g., encrypted, non-readable data) to prevent
unauthorized access to the data. Broadly, plaintext data is
encrypted through the use of a private key and decrypted
using an associated public key, thereby allowing only autho-
rized users to access to the data.

[0022] Homomorphic encryption enables computation on
encrypted data that is stored remotely, such as in the cloud.
Homomorphic encryption is a type of data encryption that
involves the encryption of plaintext data using a particular
algebraic expression, wherein that particular algebraic
operation is equivalent to another algebraic operation per-
formed on the ciphertext data. Homomorphic encryption can
be performed for both public key (asymmetric) and private
key (symmetric) encryption.

[0023] Homomorphic encryption allows calculations to be
performed on ciphertext. The present disclosure provides
novel systems and methods of a leveled homomorphic
encryption scheme that is based on a secret isomorphism
between finite rings, wherein the secret isomorphism is
defined as ¢:R;,—R,. The disclosed encryption scheme
provides both symmetric (private key) and asymmetric
(public key) encryption.

[0024] FIG. 1 is an example system 100 for performing
homomorphic encryption using finite ring isomorphisms.
The system 100 includes a computing device 102 and a
remote computing device 104. The computing device 102
encrypts data using a secret isomorphism 114 to generate an
encrypted message, which the computing device 102 sends
to the remote computing device 104. The remote computing
device 104 receives the encrypted message, performs cal-
culations on or using the encrypted message 120 without
ever decrypting the encrypted message, and sends the results
back to the computing device 102 in another encrypted
message. In this manner, the computing device 102 can use
the processing capabilities of the remote computing device
104 without revealing the data upon which the calculations
are performed in a format that is understandable by the
remote computing device.

[0025] The computing device 102 and the remote com-
puting device 104 communicate over a network. The net-
work may be any type of network that is capable of
facilitating communications between the computing device
and the remote computing device. Examples of such net-
works include, but are not limited to, LANs, WANSs, cellular
networks, and/or the Internet.

[0026] The computing device 102 includes a processor
and memory, and may be any type of computing device.
Non-limiting examples of the computing device include but
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are not limited to server computers, network appliances,
network storage devices, desktop computers, laptop com-
puters, tablets, smart phones, wearable devices, or other type
of computing devices. In this example, the computing device
102 includes an application 106 and a cryptography engine
108.

[0027] The application 106 is a computer program that
performs one or more functions. The application may run
autonomously or may be controlled by a user. In some
embodiments, the application 106 is interactive and receives
one or more inputs from a user. The application 106 may
interact with or generate confidential data 112. The confi-
dential data 112 may be any type of data that a user desires
to keep private. Examples of the confidential data 112
include but are not limited to health data, genetic data,
security data, and financial data.

[0028] In some embodiments, the system 100 operates to
maintain the confidentiality of the confidential data 112 by
only transmitting the confidential data 112 from the com-
puting device 102 when it has been encrypted to ciphertext
by the cryptography engine. Further, the computing device
102 may be the only device that is able to decrypt the
ciphertext.

[0029] The cryptography engine 108 operates to encrypt
unencrypted data such as the confidential data 112 and
decrypt encrypted data such as the encrypted message 122
received from the remote computing device 104. In some
embodiments, the cryptography engine 108 operates to
generate a secret isomorphism 114 that is usable to encrypt
data and a secret inverse isomorphism 116 that is usable to
decrypt data encrypted using the secret isomorphism 114.
The secret isomorphism 114 may be from a private-basis
ring to a public-basis ring. The secret inverse isomorphism
116 may be from the public-basis ring to the private-basis
ring. In some embodiments, the secret isomorphism 114 and
the secret inverse isomorphism 116 are stored on the com-
puting device 102 and are not shared with or made available
to any other computing devices.

[0030] The computing device 102 includes a processor
and memory, and may be any type of computing device.
Non-limiting examples of the computing device include but
are not limited to server computers, network appliances,
network storage devices, desktop computers, laptop com-
puters, tablets, smart phones, wearable devices, or other type
of computing devices. In this example, the remote comput-
ing device 104 includes a services engine 118.

[0031] The services engine 118 performs computing ser-
vices. For example, the services engine 118 may perform
computing services for the computing device 102 based on
the encrypted message 120 received from the computing
device 102. The services engine 118 performs the services
without decrypting the encrypted message 120. In one
example, the services engine 118 may perform calculations
on the encrypted message 120 that are usable in performing
genetic analysis.

[0032] In some embodiments, the cryptography engine
108 performs leveled homomorphic encryption, which
imposes a limit on the number of computations that can be
performed on the ciphertext before numerical error over-
comes the data in the ciphertext. In some embodiments, the
services engine 118 may therefore limit the number of
computations it performs based on the limit imposed by the
cryptography engine 108.
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[0033] FIG. 2 is an example method 200 for performing
calculations on data using homomorphic encryption. The
method 200 may be employed to use the processing capacity
of an external computing device such as a server to perform
calculations on confidential data without allowing the exter-
nal computing device to decrypt the confidential data. As an
example, the method 200 may be executed by a component
of an example system such as the system 100. In examples,
the method 200 may be executed on one or more devices
comprising at least one processor configured to store and
execute operations, programs, or instructions.

[0034] At operation 202, plaintext data is accessed. The
plaintext data may comprise confidential data, non-confi-
dential data, or a combination of both. The plaintext data
may be accessed from a storage device such as a hard drive
or memory device on a computing device. The plaintext data
may be stored in one or more tables in a database or files
stored in a file system. As another example, the plaintext
data may be generated by an application running on the
computing device. The plaintext data may include various
data received as user input from a user of the computing
device as well. As used herein, plaintext data refers to data
that is unencrypted. Plaintext data may be any type of data,
including but not limited to textual data, audio data, image
data, video data, computer instruction data, and any other
types of data.

[0035] At operation 204, an isomorphism is accessed. The
isomorphism maps from a private-basis ring to a public-
basis ring. The isomorphism is usable to transform data
represented in the private-basis ring to the public-basis ring.
In some embodiments, the isomorphism is accessed from a
storage location on the computing device or another secure
location. Alternatively, the isomorphism is generated at the
time the method 200 is performed according to the methods
described herein.

[0036] At operation 206, the plaintext data is encrypted
using the isomorphism to generate an encrypted message.
For example, the plaintext data may be encoded as polyno-
mials in the private-basis ring, which are then converted to
public-basis ring using the isomorphism.

[0037] At operation 208, the encrypted message is trans-
mitted to a remote computing device. For example, the
encrypted message may be transmitted over one or more
wired or wireless networks.

[0038] Although the remote computer will receive the
encrypted message, the remote computer will be unable to
decrypt the encrypted message so the remote computer will
not be able to understand the encrypted message. Similarly,
any third-parties that intercept the encrypted message will
also be unable to decrypt or understand the message.
[0039] Even though the remote computer is unable decrypt
and therefore have access to the plaintext message, the
remote computer may perform various computations on the
encrypted message to generate one or more encrypted
response messages. In some embodiments, the computations
performed by the remote computer are limited to a particular
level associated with the homomorphic encryption scheme.
The level specifies an amount of calculations that can be
performed before numerical error overwhelms the results of
the calculations.

[0040] Because the remote computer performs computa-
tions on the encrypted message, there is no need to exchange
decryption keys with the remote computer. Accordingly, a
third party cannot intercept the decryption keys and later use
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the intercepted decryption keys to decrypt encrypted mes-
sages. Instead, the decryption keys (e.g., the secret inverse
isomorphism) are kept confidential to the computing device.
[0041] At operation 210, one or more encrypted response
messages are received by the computing device. The
encrypted response messages may be the result of the remote
computer performing various calculations on the encrypted
message.

[0042] At operation 212, an inverse isomorphism is
accessed. The inverse isomorphism inverses the isomor-
phism. In other words, the inverse isomorphism is from the
public-basis ring to the private-basis ring. Like the isomor-
phism accessed in operation 204, the inverse isomorphism
may be accessed from a storage device on the computing
device or may be generated according to the methods
described herein.

[0043] At operation 214, the encrypted response message
is decrypted using the inverse isomorphism. For example,
the encrypted response message may be converted from
polynomials in the public-basis ring to polynomials in the
private-basis ring using the inverse isomorphism. The poly-
nomials in the private-basis ring may then be converted to
plaintext data.

[0044] Once the response message is decrypted to plain-
text data, the plaintext data can be stored or presented to a
user. Alternatively, the plaintext data can be used for further
processing by the application.

[0045] The leveled homomorphic encryption scheme may
be based on a secret isomorphism of rings. The isomorphism
may be represented as: ¢: F . n—F n.

[0046] In some embodiments, two bases for F are chosen
as an F -vector space. Specifically, a private F -basis

Vi, e, VeeR D
and a public F -basis
Wi, .., Weel

are chosen. To encrypt a plain text message, such as m=2e¢,v,
with €, mod p, a random polynomial is chosen, such as
r=29,v, with small J,.

[0047] Then, the ciphertext is generated as c=pr+m
expressed in terms of the public F_-basis (w). To decrypt a
ciphertext, the ciphertext is expressed in terms of the private

F,-basis (v), then the v-coordinates are lifted from F, to Z,
and reduced by mod p. In some embodiments, p is a small
prime number that is private (e.g., known only to the
computing device performing encryption). The above-de-
scribed cryptosystem is similar to a classical Hill cipher
using a secret n-by-n matrix to define a linear transformation
F »—F » However, additional conditions are imposed on the
cryptosystem as described herein.

[0048] F, has a multiplication and multiplication of basis
elements in the ring F_» gives the formulas

n n
Vivj = Zw;jkvk and wiw; = Zﬁ;jkwk
k=1 k=1

for ce.:Ijtain element.s Oz 32€F - Accordingly, the following
conditions can be imposed:

[0049] 1. B, is public, which allows the public to

perform ring operations (e.g., addition and multiplica-

tion) using the public F -basis (w);
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[0050] 2. o is secret and small, which allows for
correct decryption; and
[0051] 3. multiplication in F » and F» are “compatible”
when expressed in terms of “small” linear combina-
tions of appropriately chosen bases, as is explained in
greater detail herein.
[0052] The n*-tuples (o) and (B,;) may be symmetric
3-tensors. In particular, the small secret a;; satisfies com-
patibility relations coming from the commutative and asso-
ciative laws

vy, and (o =y 0.

[0053] In some embodiments, the private F_-basis and
public F -basis are constructed as described herein. To avoid
confusion, the notation F_[x]/(f(x)) and F [y]/(h(y)) for
certain irreducible polynomials f(x) and h(y) of degree n
such that f(x) has small coefficients are used to refer to two
copies of the ring F,. The secret basis is 1, %, . . ., X"~ with
secret multiplication rules determined by f(x), and the public
basis is 1, y, . . . ., y"~* with public multiplication rules
determined by h(y). The formulas that express powers of x
and y in terms of each other are also secret. Table 1 below
provides some notation that is used herein.

TABLE 1

public q prime (or prime power)
public n dimension (degree) parameter
private f(x) irreducible monic polynomial of degree

n in F_[x] with small coefficients
private o) polynomial of degree less than n in F_[y]
private h(y) irreducible manic polynomial of degree n

in F[y] with arbitrary coefficients
[0054] In some embodiments, n is chosen as a prime so

that there are no intermediate fields between F, and F .
Additionally, in some embodiments, f(x) is chosen so that it
is irreducible in F,[x] as well as F [x].

A method for finding polynomialsi(x) and h(y) and an
explicit isomorphism,

Fylx] e, Fyly)
™ By’

is described below. Polynomials f, ¢, and h are selected to
satisfy

h(y) @)

Methods for finding such a triple of polynomials are dis-
cussed herein. Since f and h are irreducible over F, both of
the quotients F_[x]/(f(x)) and F [y])/(h(y)) are rings with q"
elements. Further, the polynomial ¢ defines an isomorphism
of rings via

Fylxl | Faly]
T Bo)

mx)mod f(x) = m(@(y))mod A(y).

[0055] The polynomial 1 defines an inverse isomorphism
to the isomorphism defined by the polynomial ¢. Specifi-
cally, the polynomial is selected as a polynomial of degree
less than n satistying

P ())=x(mod ().
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[0056] Then 1 gives an inverse to the isomorphism
defined by polynomial ¢, that is, the map

Fobl | Ryl
) F)

c(y)mod A(y) = c(¥(x))mod f(x)

has the property that
P E)=x(mod A(x)) and H(99 ())=y(mod A(y)).

A method is described herein to find ¢ from ¢ and f via
linear algebra.

[0057] FIG. 3 is an example method 300 for encrypting
data. The method 300 may be employed to perform homo-
morphic encryption of plaintext data. As an example, the
method 300 may be executed by a component of an example
system such as the system 100. In examples, the method 300
may be executed on one or more devices comprising at least
one processor configured to store and execute operations,
programs, or instructions.

[0058] At operation 302, the plaintext is represented a

polynomial m(x)eZ [x] of degree less than n with small
coeflicients.

[0059] At operation 304, a random polynomial r(x)eF [x]
of degree less than n with small coefficients is chosen.
[0060] At operation 306, a ciphertext c(y) is computed.
For example, the ciphertext may be computed as

c@)=pr@)+m(())mod k(y)eFg[yV/h(y).
[0061] FIG. 4 is an example method 400 for decrypting
data. The method 400 may be employed to perform homo-
morphic decryption of plaintext data. As an example, the
method 400 may be executed by a component of an example
system such as the system 100. In examples, the method 400
may be executed on one or more devices comprising at least
one processor configured to store and execute operations,
programs, or instructions.
[0062] Decryption is performed on a ciphertext such as
c(y), which may be generated according to the method
illustrated and described with respect to FIG. 4 or by
performing calculations on a ciphertext generated accord-
ingly.
[0063] At operation 402, a polynomial a(x) is computed
from the ciphertext. The polynomial a(x) may be computed
based on the inverse isomorphism. For example a(x) may be
computed as

a(x)=c(y(x)) mod flx)eFq[x]/fx)
[0064]
polynomial A(x). The polynomial A(x) may be in Z[x] with
degree less than n and having the smallest possible coeffi-
cients.

[0065] At operation 406, the plaintext is recovered by
calculating

A(x) mod p=¢( Z/p Z)[x].
This method 400 works because:

At operation 404, the polynomial a(x) is lifted to a

alx) = c(x)mod £ (x) .
= prgWR) + m(@YO))mod f(x))
= pr(x) + m(x)(mod f(x))
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Then since r and in have small coefficients, A(x) is exactly
equal to pr(x)+m(x), so A(x) mod p is equal to m(x) mod p.
[0066] FIG. 5 is an example method 500 for generating an
isomorphism and an inverse isomorphism. The method 500
may be employed to perform homomorphic encryption. As
an example, the method 500 may be executed by a compo-
nent of an example system such as the system 100. In
examples, the method 500 may be executed on one or more
devices comprising at least one processor configured to store
and execute operations, programs, or instructions.

[0067] At operation 502, a polynomial f(x) of exact degree
n with small coeflicients in a ring F,[x] is selected. In some
embodiments, the selected polynomial f(x) is irreducible and
monic. For example, the polynomial f(x) may be selected
randomly.

[0068] At operation 504, a polynomial h(y) of exact
degree n with small coeflicients in a ring F_[y] is selected.
In some embodiments, the selected polynomial h(y) is
irreducible and monk. Like the polynomial f(x), the poly-
nomial h(y) may be selected randomly.

[0069] At operation 506, an isomorphism from the ring
F [x] (f(x)) to the ring F [y]/(h(y)) is constructed. In some
embodiments, the isomorphism is constructed by determin-
ing a root ¢(y) of the polynomial {(x) in the ring F ,[y]/(h(y)).
The root ¢(y) of the polynomial f{x) in the ring F [y]/(h(y))
may be found using a root-finding algorithm.

[0070] At operation 508, an inverse isomorphism from the
ring F_[y]/(h(y)) to the ring F [x]/(f(x)) is constructed. In
some embodiments, the inverse isomorphism is constructed
by determining an inverse root Y (x) of the polynomial h(y)
in the ring F [x]/(h(x)). The inverse isomorphism may be
constructed from the isomorphism using linear algebra.
[0071] The described encryption engine has leveled
homomorphic properties. For example, if m, (x), . , m (x) are
plaintexts and c,(y), . . . , cx(y) are associated ciphertexts
and q is chosen sufficiently large, then decryption of the
product ¢,(y), . . ., cx{y) gives the exact value of

ﬁ (pri(x) + m-(x))in@
|| pri i I

Then, reduction modulo p yields
my(x). . . Mg(x) in F,[x)/(f(x)).

Addition of ciphertexts works similarly. But note that com-
putation of plaintexts takes place in the ring F,[x]/f(x).
[0072] A method to construct the polynomials f, h, ¢, and
Y is described below with respect to FIG. 6. The four
polynomials f, h, ¢, and 1 must satisfy the following
conditions:

[0073] f(x)eF,[x] is of exact degree n with small coef-
ficients;

[0074] h(y)eF,[y] is of exact degree n with random
coefficients;

[0075] ¢(y)eF, [y] and (y)eF [y] have degree less than
n:

[0076]  h(y)If(¢(y)); and

[0077]  $(yp(x))=x(mod f(x)).

[0078] In some embodiment, one or both of f(x) and h(y)
are irreducible manic polynomials.

[0079] FIG. 6 is an example method 600 for key genera-
tion. The method 600 may be employed to perform homo-
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morphic encryption. As an example, the method 600 may be
executed by a component of an example system such as the
system 100. In examples, the method 600 may be executed
on one or more devices comprising at least one processor
configured to store and execute operations, programs, or
instructions.

[0080] At operation 602, random small degree n polyno-
mials f(x)eF [x] are selected until one is found that is
irreducible. The polynomials f(x)eF, [x] may be of exact
degree n. Additionally, in some embodiments, the selected
polynomials f(x)eF [x] are monic.

[0081] There are q” monic degree n polynomials in F [x],
and the proportion of these polynomials that are irreducible
is

LY

din

[0082] This is more-or-less 1/n+O(1/q*?) and is the func-
tion field version of the classical prime number theorem.
Classical primality tests for integers such as Miller-Rabin
can be adapted to the function field setting and used to check
(at least with very high probability) whether a given poly-
nomial is irreducible. The probability of a given polynomial
being irreducible is roughly 1/n.

[0083] At operation 604, random degree n polynomials
h(y)eF [y] are selected until one is found that is irreducible.
The polynomials h(y)eF [y] may be of exact degree n.
Additionally, in some embodiments, the selected polynomi-
als h(y)eF [y] are monic. Testing whether h(y) is irreducible
can be performed similarly to testing whether f(x) is irre-
ducible as described with respect to operation 602.

[0084] At operation 606, a root of the polynomial f(x) in
the field F_[y]/(h(y))=F -~ is found. This root is then lifted to
a polynomial/(y)eF [y] of degree less than n. A polynomial
time root-finding algorithm such as the routine polrootsft in
Pari-GP available from the PARI group, Bordeaux, France
can be used. Other root-finding algorithms may be used as
well. Because the polynomial f(x) is irreducible of degree n,
any one of its roots generates the field F ”. Since any two
fields with gn elements are isomorphic, f(x) must have a root
in the ring F_[y]/(h(y)). Further, since F */F  is Galois, any
irreducible polynomial with one root must split completely,
so f(x) has n distinct roots in the ring F [y]/(h(y)). Some
embodiments take ¢(y) mod h(x) as any one of these roots.

[0085] At operation 608, a unique polynomial }(x)eF [x]
of degree less than n is constructed that satisfiest P(¢(x))=y
(mod h(y)). In some embodiments, the polynomial (%) is
found by finding the roots of h(y) in the ring F_[y]/(h(y)) in
a manner similar to that described in operation 606. Then,
the root that satisfies (¢)(x))=y (mod h(y)) is selected.
Alternatively, in some embodiments, a root of ¢(y)-x is
calculated in the ring F [x]/(f(x)).

[0086] As another alternative, linear algebra can be used to
find the unique polynomial {(x). Because the map defined
by x> ¢(y) is a field isomorphism, there is an inverse
isomorphism determined by the image of'y. Accordingly, the
inverse isomorphism can be written as
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The polynomial }(x) is then found by determining the c,
coefficients. Since

PP v

gives an automorphism of the ring F_[y]/h(y),
Y(@(y))=y (mod h(y)).

Hence, it suffices to determine the (unique) polynomial 1 (x)
of degree less than n satisfying the above equation, which
when combined with the automorphism can be written as

n—1

D (v = ymod h(y)).

i=0

Each power ¢(y)’ is written modulo h(y) as polynomial of
degree less than n. In other words, the known values of ¢(y)
and h(y) are used to write

n=1

p(y) = Z a;jyj(mod A(y)) forO<i=<n.
=0

Substituting this into Y(¢p)(y)) yields

n—

@)= ) cd(y)

1
i=0

=l

= Z ciy | aiylmod h(y)

= 0

n—1 el
= Zc{ a;jyf](mod A(Y))
=0 0

i= 7=

Hence 1 will satisty p(¢(y)) =y (mod h(y)) ifc,, . . ., ¢,
are chosen to satisfy

w2l {1 if j=1,
a;c; = [P
4 0 if j#l.

=

This is a system of n equations for the n variables c, . . . ,
¢, , over the ring F, and can be solved using standard
techniques to find the polynomial y(y) that will satisfy

V(9 y (mod h(y)).

[0087] In some embodiments, using linear algebra to find
the unique polynomial y(x) includes computing one or more
powers of ¢(y)' (mod h(y)) for values of i between 0 and n
in the field F [x], wherein each of the one or more powers
includes a coeflicient value; placing each coefficient value
into a coefficient matrix; computing an inverse matrix using
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the coeflicient matrix; and computing the coefficients for an
inverse polynomial, wherein the coeflicients are based on the
inverse matrix.

[0088] Insomeembodiments, the polynomial f(x) is secret
and the polynomial h(y) is public. Because the polynomials
f(x) and h(y) are chosen independently, knowledge of the
polynomial h(y) reveals no information about f(x). A hypo-
thetical attacker would only begin to acquire information
about f(x) when given a ciphertext. Further, the fact that
there are no security issues in the of h(y) other than that it
be irreducible in F [y] allows for choosing h(y) to simplify
field operation in the ring F [y]/(h(y)). For example, h(y)
may be a trinomial.

[0089] The encryption system described herein may be
used for either symmetric (private key) leveled homomor-
phic cryptosystems or asymmetric (public key) cryptosys-
tems. Initially, a list of encryptions is published. For
example,

€0,1» €0,25 - - - » €01 are encryptions of 1,
€115 €12 - - - » €1, &r€ encryptions of x,
€, 1,15 €4—1,25 - - + » €,_1, AT €Ncryptions of XL,
[0090] Then a mod p plaintext m(x) is encrypted as

1
(pr;; + my)e;; (mod g),

n

-3

/
=

I
=3

where the r,; are random trinary values and where for each
i, @ j(1) in [1,I] is randomly chosen and m,; is set as

{mij if j=j(d),
m; =
/ 0 if j# jG).

[0091] Then c is an encryption of in. For a given choice of
{r,} and in, there are I" possible encryptions depending on
the choice of j(i). So assuming that there is a collision attack,
the quantity 12 should be chosen larger than 2% for the
desired bit security K. The public key has size roughly
nl*log,(q) bits. In some embodiments, the public key size is
further reduced by publishing only the 1 encryptions of x
since one can multiply i of those chosen at random with
replacement to get I’ encryptions of x’.

[0092] In alternate embodiment, the parameter p is a
polynomial instead of a small prime number, as explained
herein. A product of t plaintexts has the form

[ Jtprito + mienmod fx.

i=1

In order for decryption to be successful, the coefficients of
this reduced product must be in the range —%2q to Y2q. In
some situations to reduce the size of the coefficients of the
above-described product of t plaintexts (prior to the reduc-
tion modulo f(x)), a polynomial p(x) is used for the param-
eter p. There are some potential tradeoffs to this approach,
however. First, if p(x) is non-constant, then the degree of
r(x) is smaller, which means there is less combinatorial
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security in the choice of r. Second, decryption ultimately

reveals the value of m(x) in the ring Z [x]/(p(x), f(x)). So, for
example, if p(x)=x-2, then one obtains the value of m(2)
mod f(2), and thus all computations are being done in the

ring Z/f(2)Z . In this example, some embodiments chose an
f(x) so that f(2) is prime. More generally, some embodiments

choose an f(x) so that the ring Z [x]/(p(x), f(x)) is a field. In
some embodiments, decrypting the ciphertext will be based
in part on an image of the encrypted message in the ring
F q[x]/(f(x), p(x)), the quotient of the polynomial ring F JX]
by the ideal generated by the polynomials f(x) and p(x).
[0093] Having described various example methods to per-
form homomorphic encryption, the disclosure will now
describe systems that may be employed to perform the
methods disclosed herein. FIG. 6 and the additional discus-
sion in the present disclosure are intended to provide a brief
general description of a suitable computing environment in
which the disclosed embodiments and/or portions thereof
may be implemented. Although not required, the embodi-
ments described herein may be implemented as computer-
executable instructions, such as by program modules, being
executed by a computer, such as a client workstation or a
server, including a server operating in a cloud environment.
Generally, program modules include routines, programs,
objects, components, data structures and the like that per-
form particular tasks or implement particular abstract data
types. Moreover, it should be appreciated that the disclosed
embodiments and/or portions thereof may be practiced with
other computer system configurations, including hand-held
devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, network PCs, mini-
computers, mainframe computers and the like. The disclosed
embodiments may also be practiced in distributed comput-
ing environments where tasks are performed by remote
processing devices that are linked through a communica-
tions network. In a distributed computing environment,
program modules may be located in both local and remote
memory storage devices.

[0094] FIG. 7 illustrates one example of a suitable oper-
ating environment 700 in which one or more of the present
embodiments may be implemented. This is only one
example of a suitable operating environment and is not
intended to suggest any limitation as to the scope of use or
functionality. Other well-known computing systems, envi-
ronments, and/or configurations that may be suitable for use
include, but are not limited to, personal computers, server
computers, hand-held or laptop devices, multiprocessor sys-
tems, microprocessor-based systems, programmable con-
sumer electronics such as smartphones, network PCs, mini-
computers, mainframe computers, distributed computing
environments that include any of the above systems or
devices, and the like.

[0095] In its most basic configuration, operating environ-
ment 700 typically includes at least one processing unit(s)
702 and memory 704. Depending on the exact configuration
and type of computing device, memory 704 (instructions to
perform homomorphic encryption) may be volatile (such as
RAM), non-volatile (such as ROM, flash memory, etc.), or
some combination of the two. Memory 704 may store
computer instructions related to performing the homomor-
phic encryption and decryption embodiments disclosed
herein, may store raw data, and/or may store compressed
and encrypted data. Memory 704 may also store computer-
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executable instructions that may be executed by the pro-
cessing unit(s) 702 to perform the methods disclosed herein.
[0096] This most basic configuration is illustrated in FIG.
6 by dashed line 706. Further, environment 700 may also
include storage devices (removable, 708, and/or non-
removable, 710) including, but not limited to, magnetic or
optical disks or tape. Similarly, environment 700 may also
have input device(s) 714 such as keyboard, mouse, pen,
voice input, etc. and/or output device(s) 716 such as a
display, speakers, printer, etc. Also included in the environ-
ment may be one or more communication connections, 712,
such as an Ethernet adaptor, a modem, a Bluetooth adaptor,
WiFi adaptor, etc.

[0097] Operating environment 700 typically includes at
least some form of computer readable media. Computer
readable media can be any available media that can be
accessed by processing unit(s) 702 or other devices com-
prising the operating environment. By way of example, and
not limitation, computer readable media may comprise
computer storage media and communication media. Com-
puter storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information such as
computer readable instructions, data structures, program
modules or other data. Computer storage media includes,
RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
tangible medium which can be used to store the desired
information. Communication media embodies computer
readable instructions, data structures, program modules, or
other data in a modulated data signal such as a carrier wave
or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina-
tions of the any of the above should also be included within
the scope of computer readable media.

[0098] The operating environment 700 may be a single
computer operating in a networked environment using logi-
cal connections to one or more remote computers. The
remote computer may be a personal computer, a server, a
router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above as well as others not so men-
tioned. The logical connections may include any method
supported by available communications media. Such net-
working environments are commonplace in offices, enter-
prise-wide computer networks, intranets and the Internet.
[0099] The aspects of the disclosure described herein may
be employed using software, hardware, or a combination of
software and hardware to implement and perform the sys-
tems and methods disclosed herein. Although specific
devices have been recited throughout the disclosure as
performing specific functions, one of skill in the art will
appreciate that these devices are provided for illustrative
purposes, and other devices can be employed to perform the
functionality disclosed herein without departing from the
scope of the disclosure.
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[0100] This disclosure described some embodiments of
the present technology with reference to the accompanying
drawings, in which only some of the possible embodiments
were shown. Other aspects can, however, be embodied in
many different forms and should not be construed as limited
to the embodiments set forth herein. Rather, these embodi-
ments were provided so that this disclosure was thorough
and complete and fully conveyed the scope of the possible
embodiments to those skilled in the art.

[0101] Although specific embodiments were described
herein, the scope of the technology is not limited to those
specific embodiments. One skilled in the art will recognize
other embodiments or improvements that are within the
scope and spirit of the present technology. Therefore, the
specific structure, acts, or media are disclosed only as
illustrative embodiments. The scope of the technology is
defined by the following claims and any equivalents therein.

A Numerical Example: A Single Encryption

[0102] In this section we do an example illustrating key
creation, encryption, and decryption with very small param-
eters that do not allow homomorphic decryption. We take

q=11, n=7, p=3.
[0103]
degree n in ¥ ,Ix] until finding one that is irreducible,’

We choose random small monic polynomials of
N i K Tt
[0104]

degree n in ¥ A%} (but no longer with small coefficients)
until finding one that is irreducible:

h)=y + -y 45445y -4y 243y-3.
[0105] We use a root-finding algorithm to find a root ¢(y)
of f(x) in the field ¥ LAy h(y):

O1)= 5+ +2y357 07 -4y +5.
[0106] We use the linear algebra method to construct the

inverse map 1(x). The first step is to compute the powers of
¢(y)" mod h(y) for O=i<n,

®()° mod A(y)=1

We next ch000se random small polynomials of

0()! mod ~(y)=—y*+4y™+2y" -3y 4y ~4p+5
6()” mod h()=5y°-2y°-2y*- 2y +4y7+ 2942
90)* mod A(y)=5y°-2y°~5y*+2y -4y -y+2
() mod k(y)=3y5-4y+3y°-3y7-y-3

$0)° mod h(y)=4y°+4y°~53*-3y>4y°-5y-2

0()® mod h(y)=y*~2y°-4y'-2)>-2y~4y-1
and put the coefficients into a matrix

1 0 0 0 0 0 O
5 -4 1 -3 2 4 -1
2 2 4 -2 -2 -2 5
A=2 -1 -4 2 -5 -2 5|
-3 -1 -3 3 0 -4 3
-2 -5 1 -3 -5 4 4
-1 -4 -2 -2 -4 -2 1

(Note that all of these computations are being done in ¥ )
Next we compute the inverse matrix
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1 0 0 0 0 0 0
-3 4 3 0 -2 5 -3
5 4 4 4 -3 0 -5
Al'modg=[ 4 4 0 4 3 -2 5
-5 -2 5 -2 3 -4 1
-1 -1 =3 -1 1 0 5
-4 0 1 -5 -5 0 3

and use it to compute the coeflicients

(coy .o »onm1)=10(0,1,0, ..., O)A’lmodq

=(-3,5,-2,0,3,4,-3)

for the inverse polynomial
P(x)=3x5+5x° - 2x*+ 3x%+4x-3.
[0107] A quick check shows that
$(¢() mod A()=y,
$(w(x) mod flx)=x,

[0108] We are now ready to encrypt a message. We take
plaintext m and random polynomial r to be

m(x)=—xSx"x-x,

rx)=x+xt-x-x,

[0109] Then the ciphertext is

c(y) = prg(y)) + m(p(y))modh(y)

:5y6+3y5+4y4—2y3+y—1.

[0110] To decrypt we compute

a(x) = c(y(x))mod f(x)
= x0+4° + 44 — 3% —4x in F, (],

= -2+ % +x* - x(mod3) = m(x).\/

A Numerical Example: Homomorphic Properties

[0111] In this section we do an example with larger
parameters and illustrate homomorphic decryption of a
product of two ciphertexts. We note that the parameters are
far too small to be combinatorially secure. We take

q=541, n=7, p=3.

We find polynomials f'h, ¢, 1) as in Section 5, omitting the
details of the computation:

Ax)=xT-x+x34x-1
h()=y"-17735-1371°+172*+84)°-148)7~160y+15
O()=—155y5426y°+123)*-1181°+41)7+84y-162

Px)=8x5-91x7+258x*+137x3+266x°-201x-143
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We next encrypt two plaintexts, keeping in mind that all
computations are being done modulo 541:

ml(x):xs—x3—x2+x
== +x2+x-1

c1(y) = pr(@(y)) +my(¢(y))modh(y)
= 144y + 12135 — 94y* +81y3 +203y% — 198y + 117

myx) =x0+x° —xt =1
) = xS +xt+x%—x

c2(y) = = pry(@(y) + ma((y))modh(y)
=735 +85y° + 241y* — 3433 — 15232 + 168y + 263

We note for future reference that the product of the plain-
texts is

m3(x) = my(x) - mz(x)mod(f(x), p)

=+ P+ —x-1.

We next multiply the ciphtertexts,

c3(y) = c1(y)- ca(y)mod(h(y), q)

= —21y% + 64y° — 65y* — 136y° + 223y + 211y +28.

When we decrypt the product of the ciphertexts, we obtain
the product of the plaintexts:

a(x) = c3(Y(x)mod(f(x), g)
=3x8 - 15x° + 166 +4x° - 827 —x 42
=2+ 2+ —x— 1 mod(f(x), p)

=m3(x) mod (f(x), p)

‘We note that the reason that homomorphic decryption works
is because the product

(pri(x) + m(x))- (pry(X)my(x)) = —2xM 410 4 10x7 - 8x% — 1147 + 1145 —
8x° + 12x* +10x° = 23x% + 5x + 3
=3x8 - 152 + 16x* +4x° — 847 -

x+2(mod f(x))

has coeflicients that are smaller than |q/2|=270.

[0112] To further illustrate this last remark, we do an
example in which homomorphic decryption fails because p
is too large compared to q. We take

q=541, n=7, p=13.
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We use the polynomials

Sx)=x b -x a1

)=y +1013°-81y°-69y*-1271°-168y°-224y-223
P(1)=89y5-1681°+245y*+1861°+130°-35+86
P(x)=3x5+261x°-150x*+87x3+62x%+16x+201

We choose plaintexts and compute ciphertexts as usual,

ml(x):—xs—x4+x3 +X

r@)=x0—x +xt—?

ci(y) = pri(@(y) +my (@(y)mod h(y)

= 148y% + 214y + 266y* — 172y +70y% — 132y + 119
my(x) = e - ex
2

) =xt+ x5 — X

c2(y) = pry(@(y) + ma($(y)mod h(y)

—-X

= —157y% +250y° + 190y" — y* — 86y% + 98y + 66

The product of the plaintexts is

m3(x) = my(x)- mp(x)mod(f (x), p)

=220 — 4 + 24 — 2% 4347 —x,

but we observe that the product

(pri() +m(x)- (pry(0m,(x) = 156x10 + 1457 — 2342 +220x7 — 14245 —
328x° + 184x* + 1424° — 1242
= 75245 — 42055 + 496x* + 440x° —

62x% — 560x + 468 (mod f(x))

has coeflicients whose magnitude is larger than |g/2]|=270.
This means that decryption of c; will probably not be equal
to m; 'm,. And indeed we find that

c3(y) = c1(y)- ca(y)modh(y)
=38y° — 179y + 137y" — 191y® — 1642 — 129y — 219,
a(x) = c3(¥(x))mod f(x)
= —211x% + 121x° —45x* = 101x° — 624% — 19x - 73
=3x8 +4x° —6x* +3x° + 3% —6x+5 (mod 13)

+ ms(x).

7. A High-Dimensional Lattice Attack

[0113]

m'=pr+m

To ease notation, in this section we write
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to denote “plaintext plus randomness.” Thus, m' has small
coeflicients, since p is small and r and m have small
coeflicients. Given k ciphertexts

C15 €2 v+ 5 G

with k>n, we describe a lattice attack on the associated
plain-texts m';, . . ., m', in a lattice L satisfying:

dim L = kn,

Gaussian expected Ay (L) ~ / kn/re -ql’%,
Target size =~ Vn2 +kn - p/3.

[0114] If we ignore the multiplicative structure, than the
map

[Fq[x] N [Fq[}’]

(f&) By

m(x)modf(x) > m(@(y))modh(y)

defined in (3.2) may be viewed as a linear transformation

n—1

from F A F 4 More precisely, taking 1, x, .. . X" and

1,y, ...,y " as bases, for each Osi<n we write

n-1
X o () modh(y) = " iy,
=0

We let A=(a,) be the associated matrix. Then, identifying
polynomials v(X)=v,+vx+ . .. +v,_x"~! with vectors v=(v,,
Vi, ..., V,_;), the formula

c(y)=m'(¢(y)) mod h(y)
becomes

c=m'd (mod g).

In this formula, the attacker knows ¢, and she knows that m'
is short, but she does not know A. So there are n’+n
unknowns, namely the coordinates of A and m', of which n
coordinates are small. So this single equation does not reveal
much information about m' or A. However, suppose that the
attacker has access to a large number of ciphertexts

C1,Co v v vy Cp

[0115]
for c,, we form the matrices

141 | J— 1 1 1
Writing m',=(m',o,m’,;, . . . ,m’,,_

1), and similarly

M =mjp), . and C=(cy) -

0= j<n 0= j<n

This gives the formula
C=M'4 (mod g). (7.1)
[0116]

a short vector in the space Z ¥ of k-by-n matrices having
integer coeflicients. So we can set up a lattice problem to
find M'. Let U be the k-by-n matrix defined by

C=M'd+qU.

The unknown matrix M' has small entries, so it is
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Then we have a matrix equation

AL
(c ql)[ ]:M’
—ua!

We observe that the dimensions of these matrices are

-1

(C gl)e ka(rﬁk)’ [ = Z(n+k)><n’ M e zhn,

—ua!

The small target matrix M' thus lives in the known sublattice
of Z% defined by

=4(C gl . (n+h)xny _ é( (ntk)xn ___ kxn).
LC, g):={(C gl W: WeZ } = Imagel Z WH(W/Z

We have
dim L(C, q)=kn.

[0117] We use the notation B, for a matrix (of the appro-
priate dimensions) with a 1 in the ij-entry and 0 elsewhere.
In order to compute (estimate) the discriminant, we take the
images of each of the n’+kn basis matrices in EijeZ (rerlepen
and write it as a linear combination of the kn basis matrices
B.e Z%” Thus

E;F(cgpE,~00...0%0. .. 0),

where * denotes the i'th column of(C ql), which now
occupies the j'th column in the image space. In other words,
if we write the columns of C as (¢, ¢'; ... ¢',_;)and lete,,

..., e, be the standard basis vectors in Zx, then

4
1
v

(C gl)E;=(©0--0 0 --- 0) with

if l<i<n,

¢
v= . .
ge;,_, if n<isn+k.

In particular, we have
(C gDE;=qE;_,; for all Osj<n and all n<isn+k.

So among the n®+kn matrices that we know span L(C, q),
there are mk of them that are q times a basis matrix.
[0118] We now view matrices in £ as simply being
vectors of dimension kn. Then L(C, q) is the row span of a
(n®+km)-by-kn matrix, so its discriminant is the gcd of the
kn-by-kn minors of that matrix. But from our computation,
the bottom kn-by-kn block of this matrix is q times the
identity matrix. In other words, the discriminant of L(C, q)
is the ged of the kn-by-kn minors of a (n*+kn)-by-kn matrix
of the form

(4n.)
qlkn’
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where the top block is n-by-kn and the bottom block is
kn-by-kn. Now any kn-by-kn block must include at least kn
n? rows from the bottom block, hence its determinant will be
divisible by g™, (This assumes that k=n.) We have proven
that

¢ Disc L(C, q).

(In practice, they are likely to be equal, or differ by a very
small factor.) The Gaussian expected norm of the smallest
vector in a lattice L is

y=y(L)=ydimL/me(Disc L) L,
so for L(C, q) we have
V=Y(C, pRn/meq' .

On the other hand, the coordinates of the plaintexts are
random numbers modulo p, and the matrix M' has n*+km
entries, so its Euclidean norm is roughly

1Ml ~ V2 +kn -g.

Hence the Hermite ratio is

[0119] So taking (say) k=2n, the Hermite ratio is roughly
p'Vq. On the other hand, this is in a lattice of dimension
217, so if n=100, then it is unlikely that it will be feasible to
run a lattice reduction algorithm.

Remark 4. One might make the more conservative assump-
tion that the attacker knows a large number of plaintext/
ciphertext pairs

{tmy, ep), -+ - (my, )]s

but of course we must assume that she does not know the
random quantities r, that were used for encryption; cf.
Remark 2. Letting R=(r;) and M=(m,;), we have

M'=pR+M,

so the matrix equation (7.1) becomes

C=pRA+MA (mod q).

In this formula, the attacker knows C and M, and she knows
that R is small. So she can set up a closest vector problem
to find R. The net effect is |[R||~||M|/p, so the target vector
becomes smaller, leading to a Hermite ratio of roughly v/q,
rather than p~'v/q.

Remark 5. We note that the lattice attack described in this
section ignores two additional pieces of structure. First, the

map is a field isomorphism between two copies of F 4> 1ot
merely a vector space isomorphism between two copies of

F 7 Second, the polynomial used to define one of the copies

of ¥ 7 has small coefficients. It is possible to exploit these
properties to formulate an attack that requires finding small
solutions to systems of higher degree multivariable polyno-
mial equations, but we do not see how to use these properties
while keeping the attack linear, i.e., a lattice problem.
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8. Size Of The Remainder

[0120] In this section we investigate the size of the coef-
ficients of the remainder when one polyomial is divided by
another. Fix integers m=n>0. Fix a polynomial

fw=]]a-o ek

i=1

Let
[0121]

b(x) = ’f bix'
=0

be chosen with each b, satisfying some probability distribu-
tion. Different coefficients may have different distributions,
but we assume that they are independent and have mean 0,
which implies that*

E(bib)=E(b)E(b)=0 if ixj,
while the numbers E(b,?) depend on the distributions satis-

fied by the various b,.
[0122] We perform division with remainder,

b(x)=flx)q(x)++(x) with O=deg r<n.
As usual, we view the polynomials as vectors,
b=(b,, .., b,) and r=(bg, . ., b,).

[0123]
8,’s,

We let V denote the vanderMonde matrix of the

16 ..ot
) 16 ..ot
V@ =
O=j<n -
16, ..o
and we set
o
o = 6 i
6
Then we set
[0124]
b(61)
by | mt
b(O) = :2 =ij9m’
: o
b(6,)

and similarly for r(0).
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[0125] We take the relation b(x)=f(x)q(x)+r(x) and substi-
tute x=0,, . . ., 6,. Since {(6,)=0, this gives

7(0,)=b(8,) for all 1=i=n.

With our earlier notation, this is simply the equality of
vectors

r(0)=b(0).

[0126] Now we observe that since r has degree at most
n-1, we can write r(0) as

n-l
ROE] Z rjO(j) =Vr.

J=0

Hence
[0127]
r=V-15(@).

We now compute the expected value of |[r]]* as b(x) varies.

E(IrIP) = E(Iv-"p0)0°) .1
=ECHOYVIVTibe)

m—=1
= [(Z B, e‘k)’v*lv*lbjo‘f)]

k=0
m-1 .

= Z E(bebyy o™ v-ly-1g0
k=0

—1
= E@H¢rviview

3

.
I
=3

E@IV 60",

g

S

I
=3

[0128] This last formula explains what’s going on. If we
assume that f(x) is fixed and that deg b(x) is large compared
to n=deg f(x), then we obtain the rough, but useful, estimate

E(IP) < mas (E®3) - max 61 ).

Which term dominates will depend on the relative size of
E(bjz) and max|6,V for O=j<m.

[0129] In our scenario, we have b(x)=a,(X). . . a,(x) with
deg a,~n, so m~nt. The coefficients of the a, are uniform and
small, so most of the coefficients of b are roughly C’. Then
E(|f[*) is roughly C* max|6™. So in order for decryption to
work, we need roughly

q>(C max|9,/")".
As expected, we get exponential growth in t. But this shows

very clearly how the largest root of f(x) has a major influence
on the required size of q.

Definition. Let f{(x)eC [x] be a manic polynomial and let 0,
..., 0, be the roots of f. We let
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M(f) = max 6.

=i=n

This quantity is often called the Mahler measure of f, since
it is also equal

1 .
M) = f logl £ (et
0

Example 6. Experiments clearly reveal the effect of the size
of the roots of f(x). We fixed an f(x) of degree 11, chose 100
polynomials g(x) of degree 32 with random coefficients in
[-2, 2] and computed the largest coefficients of g(x) modulo
f(x). We used the polynomials

F100)=x M xS xS —x- 1.

So)=xt axt O - —x-1.

S = xSt a3 -2 1.

Then
[0130]
f M (f) Avg Ig mod fleo St.Dev. Ig mod fleo
il 1.1835 43.420 16.226
£ 1.3511 352.250 191.452
f3 1.4307 1167.720 666.196

Example 7. We now consider if there is an advantage in
taking the non-zero coefficients of f(x) to be in the lower
degree terms. So we take f(x) to have the form

S,
where f(x) is random trinary of small degree. Simple esti-
mates make it clear that such polynomials tend to have
smaller roots than polynomials whose non-zero monomials
have higher degree. In order to compare with the experi-
ments in Example 6, we took polynomials f(x) of degree 11
with non-zero coeflicients on monomials of degree at most
4, more precisely, we took

Sx)=rta ptrapd v ra x-1
with the a, randomly chosen from {+1}. The polynomial

Fioo)=xt xtaxd o ax-1

has
M5y =1.18225,

so M (f,) is comparable to M (f)) for the f,(x) in Example
6. For £, and 100 samples, we found

Avglg mod f4],,=28.450 and St.Dev. |g mod
f4156=15.658.

These may be compared with the roughly similar values 43.4
and 16.2 for f,. A likely reason for the difference is due to
secondary effects due to the other roots. Thus the magni-
tudes of the roots of f, are
[0131] 1.18, 1.18, 1.15, 1.15, 1.08, 1.08, 1.00, 1.00,
0.890, 0.890, 0.,
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while the magnitudes of the roots of f, are

[0132] 1.18,1.18,1.00,1.00,1.00,1.00,1.00, 0.953,0.953,

0.888,0.888.

So the second largest root of f| is significantly larger than the
second largest root of f,.
[0133] As the formula (8.1) makes clear, the size of the
inverse of the vanderMonde matrix V calso has an effect. We
list the sup norm and the spectral radius of Vf"1 for our two
example polynomials.

1 fa
Spectral Radius of V™ 7.766 5522
Sup Norm of V™ 0.666 0.263

[0134] We note that the remainder coeflicients for division
by f; and f, resemble one another much more closely than do
the remainder coefficients for division by f, or f;. This
suggests that it is not so much the distribution of non-zero
monomials that affects the remainder coefficients as it is the
size of the roots of f. However, if one desires to find an f with
comparatively small roots, it is definitely advantageous to
select f with non-zero monomials in the lower degree terms.

Using a Polynomial for p

[0135] A product of t plaintexts has the form

[ Jtprico +mienmods ).

i=1

[0136] In order for decryption to be successful, the coern-
cients of this reduced product must be in the range —-'4q to
14q. In this section we look at the product before reduction
modulo f(x) and consider ways in which to reduce the size
of'its coefficients. For simplicity, we will take r; and m, to be
random trinary polynomials. And as a further simplification,
we will ignore the m, and just look at products of the form

A =[ | peori,

i=1

but note that we now allow p be be a polynomial.
[0137] We performed experiments with:

px)=one of 3, x-2, ¥—x-1, ¥*x-1, ...,

r{x)=random trinary of degree n—deg p.

We computed the largest magnitude coefficient of the prod-
uct A(x) for a 1000 samples, and then computed the mean
and standard deviation of these maxima. The results are
listed in the Table 2.

TABLE 2

Largest coefficient of A(x) = Mp(x)r(x)

p(x) n t Mean [[All® S.D. llAllee

3 21 5 53992.2 23225.6
X-2 21 5 21037.7 12800.8

x?-x-1 21 5 4622.0 2931.7
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TABLE 2-continued

Largest coefficient of A(x) = HpX)ry(x)

p(x) n t Mean [[All® S.D. lAll®
X-x-1 21 5 7369.4 5682.6
x-x2-1 21 5 3569.1 2178.1
x6-x*-1 21 5 2535.9 1697.1
[0138] However, we note that there are some tradeoffs.

First, if p(x) is non-constant, then the degree of r(x) is
smaller, which means there is less combinatorial security in
the choice of r. So using p(x)=x*-x-1 is probably not
significant, but using p(x)=x°-x>-1, or more generally x**-
x*~1 with larger k, may lead to a larger n that cancels the
advantage of products having smaller coefficients.

[0139] Second, decryption ultimately reveals the value of
m(x) in the ring ¥ [x]/(p(x), f(x)). So for example, if
p(x)=x-2, then one obtains the value of m(2) mod f(2), and
thus all computations are being done in the ring ¥ /f(2) F .
In this case, it might be advisable to choose f so that {(2) is
prime. Similarly, if p(x)=x*-x-1, then computations are
done in the ring ¥ /D ¥ with

D=YA(+/SA(1-V)

1-20. (canceled)

21. A system comprising:

a computing device, the computing device configured to
encrypt data using a secret isomorphism to generate a
first encrypted message;

a remote computing device, the remote computing device
configured to receive the encrypted message, perform
calculations on the first encrypted message without
decrypting the first encrypted message, and send the
results back to the computing device in second
encrypted message; and

a network communicatively linking the computing device
and the remote computing device.

22. The system of claim 21, wherein the network is
selected from the group consisting of a Local Area Network,
a Wide Area Network, a cellular network and a public
network.

23. The system of claim 21, wherein the computing device
comprises:

a processor;

a memory;

an application; and

a cryptography engine.

24. The system of claim 23, wherein the application
comprises a computer program that performs one or more
functions and interacts with confidential data.

25. The system of claim 24, wherein the confidential data
is selected from the group consisting of health data, genetic
data, security data, and financial data.

26. The system of claim 23, wherein the cryptography
engine is configured to encrypt unencrypted data decrypt
encrypted data.

27. The system of claim 26, the cryptography engine is
further configured to generate a secret isomorphism that is
usable to encrypt data and a secret inverse isomorphism that
is usable to decrypt data encrypted using the secret isomor-
phism.

28. The system of claim 27, wherein the secret isomor-
phism is from a private-basis ring to a public-basis ring.
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29. The system of claim 28, wherein the secret inverse
isomorphism is from the public-basis ring to the private-
basis ring.

30. The system of claim 27, wherein the remote comput-
ing device comprises a services engine.

31. The system of claim 30, wherein the services engine
is configured to perform computing services for the com-
puting device based on the first encrypted message received
from the computing device.

32. The system of claim 31, wherein the computing
services include a service to perform calculations on the first
encrypted message that are usable in performing genetic
analysis.

33. The system of claim 26, wherein the cryptography
engine is further configured to perform leveled homomor-
phic encryption.

34. The system of claim 33, wherein the leveled homo-
morphic encryption imposes a limit on a number of com-
putations that can be performed on ciphertext before numeri-
cal error overcomes data in the ciphertext.

#* #* #* #* #*



