US 20200225978A1

a2y Patent Application Publication o) Pub. No.: US 2020/0225978 A1

a9y United States

Feroz et al.

43) Pub. Date: Jul. 16, 2020

(54) INTROSPECTION METHOD AND

APPARATUS FOR NETWORK ACCESS
FILTERING

(71)
(72)

Applicant: Nicira, Inc., Palo Alto, CA (US)

Inventors: Azeem Feroz, San Jose, CA (US);
Vasantha Kumar, Tamil Nadu (IN);
James Christopher Wiese, San Ramon,
CA (US); Amit Vasant Patil, Pune (IN)

(21

(22)

Appl. No.: 16/833,532

Filed: Mar. 28, 2020

Related U.S. Application Data

Continuation of application No. 14/814,408, filed on
Jul. 30, 2015, now Pat. No. 10,606,626.

(63)

(30) Foreign Application Priority Data

Dec. 29, 2014 (IN) 6687/CHE/2014

Publication Classification

(51) Int. CL

GOGF 9/455
GOGF 16/9535
HO4L 29/06
GOGF 16/958
U.S. CL

CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)
GOGF 9/45558 (2013.01); GOGF 16/9535
(2019.01); HO4L 63/0236 (2013.01); GOGF
16/972 (2019.01); GO6F 2009/45595

< Start ’

\ 4

305

(2013.01); HO4L 63/0876 (2013.01); HO4L
63/20 (2013.01); GOGF 2009/45587 (2013.01);
HO4L 63/0281 (2013.01)

(57) ABSTRACT

Some embodiments of the invention provide a method for
performing network access filtering and/or categorization
through guest introspection (GI) on a device. In some
embodiments, this GI method intercepts directly on a device
a data message that device is preparing to send, and uses a
service appliance to determine whether the data message can
be sent. The device in some embodiments is a guest virtual
machine (VM) that executes on a multi-VM host computing
device along with a service VM (SVM) that is the service
appliance that determines whether the data message can be
sent based on a set of filtering rules. In some embodiments,
the method uses one or more introspectors (e.g., network
introspector and/or file introspector) to capture introspection
data from the guest VM (GVM) about the data message that
the GVM is preparing to send. To perform the network
access filtering, the GI method in some embodiments cap-
tures contextual information, such as user and application
information (e.g., application associated with a particular
URL request). Hence, in some embodiments, this method
seamlessly processes granular user-aware URL filtering
rules (e.g., members of the sales organization can access
social networking sites but not other members). This
approach requires no additional configuration on networking
infrastructure.

300

/

For a requested connection, receive from guest
introspector captured data, including URL

310

\

Parsc received data to identify URL

315

N\ ¥

identified URL

Try to identify one or more categories for the

'

320
Any

this access?

330

access policy prohibits

325

AN

Reject aceess

US 2020/0225978 Al

Jul. 16, 2020 Sheet 1 of 10

Patent Application Publication

[24n3Ly

roxordnn

A ﬂ IostAdAH

L

dD,

1/

d

I

Are1qrT A1moosg

N\

0t1

Security
Interface

U983y A0S

N\

ST

WAS /

S1I

011 — _
<
A\ 5
ol -
uonsadsonuy uoradsonuy uvonoadonuy
wWoISAS SIOMION g
091 gsl 0S1
INAOV D AN
SO1
sddy
WAD P01

201

001

C 2N

US 2020/0225978 Al

Jul. 16, 2020 Sheet 2 of 10

=
om

~d

3]

om

= SLT

= 59z /

=

= AN

2 (S)1BN

= Korjod

= Tan PN
~d

M (S)I0[[ONUO) JIOMION

S

A

08¢
0d1A10g
uoneziogoe))
N
007

JOAIOS

$8¢C

qad

uonezLI05a1e)
TdN

011

1SOH

XOW

URL
Allow/Deny

v

Allow/Deny
URL

¢el \ /

06¢

Are1qr1 Armoog J

N

,,Spoo%obﬁ SNI0MION

MOT[®. ST UOISIOOP
J1 AJuo $s200y

SotoNOd TN /\

Uy ANmoag

N
0zl 01T »

N _ IOSMOIE] _\
AN

WAS

STl
WAD
ST

01

90T

Patent Application Publication Jul. 16,2020 Sheet 3 of 10 US 2020/0225978 A1

Tt 300
C s) p;
305
\ l

For a requested connection, receive from guest
trospector captured data, including URL

310 l
N\

Parse received data to identify URL

315\ l

Try to identify one or more categories for the
identified URL

l 325

Any
access policy prohibits
this access?

320

AN

Reject access

Yes

330

Allow access

l

C END)4

Figure 3

Patent Application Publication Jul. 16,2020 Sheet 4 of 10 US 2020/0225978 A1

Site 1

s

D22

Site M

List of Blocked Sites

Site A Blocked App(s)

Site N Blocked App(s)

List of Sites Blocked for Apps

gy
¢}

Site B Blocked Group(s)

Na

290

®
- Site O Blocked Group(s)

List of Sites Blocked for Groups

/

20 / Category 1
/ .
L J
Policy Data Store hd
Category X
List of Blocked Site Categories
/4 25 / Category F Blocked App(s)
-
[
L]
List of Site Categories Category Y Blocked App(s)
Blocked for Apps
/4 30 / Category G Blocked Group(s)
®
-
*
List of Site Categories Category Z Blocked Group(s)
Blocked for Groups

Figure 4

US 2020/0225978 Al

Jul. 16, 2020 Sheet 5 of 10

Patent Application Publication

G N3

10)03dsonsur J10MION

/

SSl

H

WAD

Arexqry d1

/

ges

§TS

AN

H

ATRIqQIT 998d]

/

0¢cs

H

Areiqry dOL

01 104 pwodsueay,

—

Areiqry 1SS

/
SIS

01s

AN\

0Ts

voneorddy

00§

0s¢

US 2020/0225978 Al

Jul. 16, 2020 Sheet 6 of 10

Patent Application Publication

9 24n31,J

079
08T
S0TAIOS 801AIOS
UONBZLIOSE)) SunoyLg hYNEIN
TaN JUSIU0D)
/ / 089 a
1804
009
N\ 0tr
e
XOW 8z
g9
| 4 1 7 g
= 2 =<
kel < & -
i ™ £ ™
2 8
3| g gl <
= [] =}
$8¢C g a a =
zoszmﬂmoﬂwSmO m m m m
SL9 v §S1 vy ©
59t X
/ Areiqry AIInoog 10100dsonuT JI0MION
A\ $89 ™~
(SN 5 qd 0zl 012
%OEO d UL
Eowﬁou‘/!\ JBMI0)) JUaS Yy ALmosg // ddvy \
STl . /
(S)101101U0)) JI0OMION WAS WAD 01
ST

Patent Application Publication Jul. 16,2020 Sheet 7 of 10 US 2020/0225978 A1

(Start) /700
705
N '

For a requested connection, receive from guest .
introspector captured data, including URL Fi gure 7

710 l
N\

Parse received data to identify URL

715\ l

Try to identify one or more categories for the
identified URL

725

N\

Allow if URL can be
accessed; otherwise reject

File sharing
URL?

730

N\

Direct introspector(s) to capture additional data
if necessary

l 740

Any
access policy prohibits
this access?

AN

Reject access

735

745

Allow access

l

»(=D)

§ 2nSyq

US 2020/0225978 Al

— SISNOTUOY

174

Jul. 16, 2020 Sheet 8 of 10

D 150H

GEN I01RImMSGUOD)
D

10| |eeefl 0] Al
WAD WAD | | WAS WA N

S18

Patent Application Publication

0¢8

098

€ 150H

H4S

WAS

S0l

101eM3YU0))

es || ID
WAD

| 19 |

WAD

JUISY

IGIEEN

WA N

018

VIS0H

[10 |

WAD

ge8

WAS

0183 uo’)

U3y
WA N

N
1D NG

c08

008

058

098

0S8

098

Patent Application Publication Jul. 16,2020 Sheet 9 of 10

905

910

915

920

925

Receive new or updated filtering rules for a
network and/or new or updated compute
cluster membership

:

Identify any new GVM or SVM that has to
be newly allocated, if needed

l

Identify modifications to the filtering
policies of SVMs, if needed

:

Identify modifications to the configuration
of guest introspector(s), if needed

'

Transmit updated configurations, filtering
policies or allocation instructions to host(s)

l

C END)

Figure 9

US 2020/0225978 Al

900

US 2020/0225978 Al

Jul. 16, 2020 Sheet 10 of 10

Patent Application Publication

SYOl1

01 241514
001
N\
S901 | 0101 0¢01
AN | AN N\
NI0OMIDN $901A9(q Induy (S)un WOY
: 3urssaoo1g
AN
S001
AIOWDN
sdo1A0(MdinQ worsAg o3e101§
_ < C
| ST0T
N\ SE01

0001

US 2020/0225978 Al

INTROSPECTION METHOD AND
APPARATUS FOR NETWORK ACCESS
FILTERING

BACKGROUND

[0001] In today’s connected world, enterprises expect
their employees to access external websites as a means for
boosting productivity by leveraging what the Internet today
offers in terms of enhanced collaboration, communication
and information gathering and sharing. However, this also
opens up these enterprises to potential malicious attacks
when employees access websites that can be source of
malware or phishing attacks, which, in turn, expose the
entire internal enterprise network to malicious attacks. In
addition, there have been several recent cases of employees
(either intentionally or inadvertently) leaking enterprise
trade secrets or confidential data as a result of unfettered
access to the cloud.

[0002] Because of this, enterprises today recognize the
need for URL (uniform resource locator) filtering as applied
to their employee needs to access the Internet. Specifically,
enterprises have shifted away from providing unfettered
access to the Internet to defining strict policies on what
URLSs or URL categories employees can access, in order to
avoid leaks of sensitive information (e.g., company assets or
customer data), legal issues due to employees accessing
unauthorized content, and loss of productivity due to
employees accessing social networking sites.

[0003] During the infancy of the Internet, URL filtering
was merely implemented via firewall rules but as the Inter-
net quickly grew from a few thousand to millions of URLs,
that strategy quickly became unusable due to issues with
scale. URL filtering quickly evolved into deploying an
appliance inline with all network traffic thereby enabling
visibility into all outgoing network access. As the load on
these appliances grew, specialized appliances that only
inspected outgoing web traffic became the norm. These
appliances were sometimes deployed as explicit proxies or
in other cases as transparent proxies, also known as Secure
Web Gateways (SWGs).

[0004] These proxies look at the header of every URL
headed to the Internet, identify the URL being accessed and
lookup the URL being accessed in a database that catego-
rizes the URL into different Web categories, such as enter-
tainment, social networking, news, malware, etc. The cat-
egorized URL is then compared against the policy defined
by the enterprise to come up with an enforcement decision
on the URL. Access to the URL is then allowed or denied.

[0005] The above approach falls short when HTTPS is
used to access external URLs. Since the headers are already
encrypted by the time the outgoing URL request reaches the
proxy, the proxy cannot categorize the URL. Enterprises
solve this by running SSL proxies that have to decrypt the
outgoing traffic in order to categorize the URL and re-
encrypt to preserve the integrity of the secure connection.

[0006] There are several drawbacks with the above
approaches. In case of unencrypted traffic, the proxy has to
be explicitly configured on each client or all traffic destined
to a particular port (e.g., port 80) has to be redirected to the
proxy via a Layer 4 switch configuration or other redirecting
mechanisms (in case of transparent proxies). For transparent
proxies, redirecting traffic based on port number is prone to

Jul. 16, 2020

being defeated by web servers not running on standard ports.
In either case, it is difficult to create URL policies based on
user identity.

[0007] In the case of encrypted traffic, in addition to the
above drawbacks, performance becomes a major issue con-
sidering that the SSL proxy is both encrypting and decrypt-
ing all outgoing web traffic. In most cases, the use of SSL
proxy technology also requires manual configuration of the
client’s browser with a root certificate authority of the
appliance server in the trusted list.

BRIEF SUMMARY

[0008] Some embodiments of the invention provide a
method for performing network access filtering and/or cat-
egorization through guest introspection (GI) on a device. In
some embodiments, this GI method intercepts directly on a
device a data message that device is preparing to send, and
uses a service module to determine whether the data mes-
sage can be sent. The device in some embodiments is a guest
virtual machine (VM) that executes on a multi-VM host
computing device along with a service VM (SVM) that is the
service module that determines whether the data message
can be sent based on a set of filtering rules. In some
embodiments, the method uses one or more introspectors
(e.g., network introspector and/or file introspector) to cap-
ture introspection data from the guest VM (GVM) about the
data message that the GVM is preparing to send.

[0009] To perform the network access filtering, the GI
method in some embodiments captures contextual informa-
tion, such as user and application information (e.g., appli-
cation associated with a particular URL request). Hence, in
some embodiments, this method seamlessly processes
granular user-aware URL filtering rules (e.g., members of
the sales organization can access social networking sites but
not other members). This approach requires no additional
configuration on networking infrastructure.

[0010] The GI method in some embodiments intercepts
the data message before it can be encrypted. Accordingly,
this method works particularly well for encrypted traffic,
because it can obviate the need for expensive decryption
operations. By avoiding the need to decrypt and re-encrypt
the network traffic, the GI method of some embodiments
avoids the performance pitfalls of existing solutions.

[0011] The preceding Summary is intended to serve as a
brief introduction to some embodiments of the invention. It
is not meant to be an introduction or overview of all
inventive subject matter disclosed in this document. The
Detailed Description that follows and the Drawings that are
referred to in the Detailed Description will further describe
the embodiments described in the Summary as well as other
embodiments. Accordingly, to understand all the embodi-
ments described by this document, a full review of the
Summary, Detailed Description, the Drawings and the
Claims is needed. Moreover, the claimed subject matters are
not to be limited by the illustrative details in the Summary,
Detailed Description and the Drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The novel features of the invention are set forth in
the appended claims. However, for purposes of explanation,
several embodiments of the invention are set forth in the
following figures.

US 2020/0225978 Al

[0013] FIG. 1illustrates a host computing device on which
the GI architecture of some embodiments is utilized.
[0014] FIG. 2 illustrates a GI architecture of some
embodiments for performing URL filtering.

[0015] FIG. 3 presents a process that conceptually illus-
trates the operation of the SVM’s security agent of FIG. 2
when a monitored browser attempts to access a web resource
that is identified by a URL.

[0016] FIG. 4 illustrates several examples of policies that
are used in some embodiments.

[0017] FIG. Sillustrates how the approach of FIG. 2 works
well for URL filtering of encrypted traffic.

[0018] FIG. 6 illustrates how the GI architecture of some
embodiments can be used to filter content shared over the
web with external sites.

[0019] FIG. 7 presents a process that conceptually illus-
trates the operation of the SVM’s security agent of FIG. 6
when a monitored application attempts to share content
stored on the GVM with another device through a network
access.

[0020] FIG. 8 illustrates a multi-host system of some
embodiments that uses the GI method of some embodi-
ments.

[0021] FIG. 9 conceptually illustrates a process that a set
of one or more controllers performs to configure the GI
method of some embodiments.

[0022] FIG. 10 conceptually illustrates a computer system
with which some embodiments of the invention are imple-
mented.

DETAILED DESCRIPTION

[0023] In the following detailed description of the inven-
tion, numerous details, examples, and embodiments of the
invention are set forth and described. However, it will be
clear and apparent to one skilled in the art that the invention
is not limited to the embodiments set forth and that the
invention may be practiced without some of the specific
details and examples discussed.

[0024] Some embodiments of the invention provide a
method for performing network access filtering and/or cat-
egorization through guest introspection (GI) on a device. In
some embodiments, this GI method intercepts directly on a
device a data message that device is preparing to send, and
uses a service module to determine whether the data mes-
sage can be sent. As used in this document, a data message
refers to a collection of bits in a particular format sent across
a network. One of ordinary skill in the art will recognize that
the term data message may be used herein to refer to various
formatted collections of bits that may be sent across a
network, such as Ethernet frames, IP packets, TCP segments,
UDP datagrams, etc.

[0025] The device in some embodiments is a guest virtual
machine (VM) that executes on a multi-VM host computing
device along with a service VM (SVM) that is the service
module that determines whether the data message can be
sent based on a set of filtering rules. Instead of a SVM, some
embodiments use another process that executes on the host
(e.g., a user-space process) to determine whether the data
message can be sent based on the set of filtering rules. In
some embodiments, the method uses one or more introspec-
tors (e.g., network introspector and/or file introspector) to
capture introspection data from the guest VM (GVM) about

Jul. 16, 2020

the data message that the GVM is preparing to send. The
introspectors are installed on the GVMs in some embodi-
ments.

[0026] To perform the network access filtering, the GI
method in some embodiments captures contextual informa-
tion, such as user and application information (e.g., appli-
cation associated with a particular URL request). Hence, in
some embodiments, this method seamlessly processes
granular user-aware URL filtering rules (e.g., members of
the sales organization can access social networking sites but
not other members). This approach requires no additional
configuration on networking infrastructure.

[0027] The GI method in some embodiments intercepts
the data message before it can be encrypted. Accordingly,
this method works particularly well for encrypted traffic,
because it can obviate the need for expensive decryption
operations. By avoiding the need to decrypt and re-encrypt
the network traffic, the GI method of some embodiments
avoids the performance pitfalls of existing solutions.
[0028] Several more detailed embodiments of the inven-
tion will now be described. In several of these exemplary
embodiments, the guest introspection is implemented on
GVMs that are executing on multiple hosts in a Software
Defined Data Center (SDDC). FIG. 1 illustrates a host
computing device 100 on which the GI architecture of some
embodiments is utilized. In this architecture, the guest
introspection provides information about sensitive data, the
applications and the users accessing them, and where and
how the sensitive data flows in the network.

[0029] The guest introspection in this architecture is
achieved by installing an introspection agent 105 on a GVM
102 executing on the host 100. Specifically, as shown in
FIG. 1, the GI architecture 100 of some embodiments
includes a GI agent 105, a multiplexor 110, and a SVM 115.
As further shown, the SVM 115 includes a security library
120 and a security agent 125.

[0030] In some embodiments, the GI agent 105 is a thin,
in-guest component running in every GVM in the datacen-
ter. When an application 104 on the GVM 102 tries to send
a data message through the GVM’s network stack (e.g.,
TCP/IP stack), the agent intercepts file-system events, net-
work events, and/or operations associated with this attempt,
and delivers these events and/or operations to the SVM 115
along with metadata (such as application and user informa-
tion) that the agent captures. In some embodiments, the
agent 105 can process additional requests from the SVM in
order to capture more data about the attempted network
access. Based on the capture data, the SVM allows or rejects
the network attempt and provides its verdict to the agent
105. Based on the received SVM verdict, the agent then
either has the GVM allow or reject the network access that
the application is attempting to make.

[0031] The multiplexor (MUX) 110 is a user-world mod-
ule running on the host. Through the MUX, various intro-
spectors 150, 155 and 160 of the agent can send messages
to the SVM 115. In some embodiments, the introspectors
provide the introspection messages to the MUX 110 through
a VM communication interface (e.g., the VMCI interface of
VMware Inc.). In some embodiments, the mux 110 is a
module running on a hypervisor 140 (e.g., the ESX hyper-
visor of VMware Inc.) that executes on the host. The
hypervisor 140 is a software layer that enables the virtual-
ization of the shared hardware resources of the host. Mul-
tiple VMs (e.g., GVMs or SVMs) execute on top of this

US 2020/0225978 Al

hypervisor. In addition to the multiplexor 110, the hypervi-
sor 140 in some embodiments provides other shared soft-
ware resources, such as a software forwarding element that
performs software switching operations on the host and
provides virtualized shared access to at least on network
interface card (NIC) of the host.

[0032] As shown in FIG. 1, the introspectors of the GI
agent in some embodiments include the file introspector
150, the network introspector 155, and system introspector
160. As further described below, the file introspector 150
captures metadata about one or more files that a GVM
application is accessing for a network access. Some embodi-
ments use the system introspector 160 to obtain system level
data for the SVM to assess in allowing or rejecting a network
access. Other embodiments do not use the system intros-
pector. In some embodiments, the file and system introspec-
tors are implemented like the endpoint introspecting agents
of the vShield product of VMware Inc. Information about
these introspector can be found at:

[0033] http://www.vmware.com/files/pdf/vmware-
vshield-endpoint-ds-en.pdf

[0034] http://www.vmware.com/pdf/vshield_51_admin.
pdf
[0035] In some embodiments, the network introspector

155 of the agent 105 in some embodiments is called by the
GVM’s network stack (e.g., TCP/IP stack) each time the
stack initiates a connection request. Through these calls, the
network introspection module captures (1) every new con-
nection request (e.g., both incoming and outgoing connec-
tion requests) that is made by an application that is operating
on the GVM 102, and (2) contextual information (e.g., user
identity, application context, etc.) for the new connections.
In some embodiments, different flows are differentiated
based on the source port that is associated with the connec-
tion session that is associated with the flow.

[0036] For outgoing connections, the network inspector in
some embodiments can precisely identify which user initi-
ated the connection, including the Active Directory (AD)
groups of which the user is a member. For instance, if
different users from the Finance and Human Resources
groups of an enterprise are logged in on a terminal server,
the network introspector of some embodiments can identify
which user from which group initiated a particular network
connection. Also, in some embodiments, the network intro-
spector provides the application context with each network
connection initiated or accepted by a GVM. For instance, the
network introspector in some embodiments provides infor-
mation about the application associated with every outgoing
connection. For incoming connections, it provides detailed
information on the listening application in some embodi-
ments. This information in some embodiments includes
name of the process, application hash, publisher, etc. The
network introspector enables the gathering of this informa-
tion without the need to do costly deep packet introspection
on the received GVM data messages.

[0037] Through the MUX 110, the GI agent 105 in some
embodiments provides the captured connection information
and their associated contextual metadata to the SVM 115. As
shown, the communication from the introspectors and the
MUX are relayed to the SVM’s security agent 125 through
the SVM’s security library, which establishes a secure
channel (e.g., secure TCP/IP connection) for these commu-
nications. For each attempted data message flow, the SVM’s
agent 125 examines its configuration and cache stores (not

Jul. 16, 2020

shown) to determine whether the attempted network event or
operation is an event or operation that should be allowed or
denied. The SVM agent then relays its decision through the
secure channel (established by the security library 120) and
the MUX 110 to the GI agent 105. In some embodiments, the
security library 120 provides APIs to register for guest
events of interest for processing and provides semantics to
the SVM’s agent 125 so this agent is able to provide the
verdict for a network event. In some embodiments, the SVM
is an appliance that is licensed from a security vendor, such
as McAfee, TrendMicro, Symantec, VMware, etc.

[0038] The network access filtering of some embodiments
primarily relies on introspection data captured by the net-
work introspector 155 and file introspector 150 of the GI
agent 105. In some embodiments, network introspection in
GVMs is achieved through filtering the application network
calls at the socket layer. The network introspector captures
some or all network socket events inside the guest. These
events are then sent to the SVM for analysis and form the
basis of providing user and application context on a per-
connection basis. By filtering the socket calls just above
TCP/IP driver, rule enforcement can also be achieved by
either blocking or allowing a socket call. To capture the
outgoing TCP connection and disconnection event, the
socket calls “connect” & “closesocket” are filtered by the
introspector 155 in some embodiments. Similarly on the
socket server side, server-listen and inbound TCP connec-
tion events are delivered to the network introspector 155 by
filtering “listen” and “accept” socket calls. This way the
SVM can make allow/deny decisions for the incoming TCP
connections similarly to its decisions of outbound TCP
connections.

[0039] In some embodiments, the network introspector
155 uses a transport layer (L4 layer) filter of the GVM’s
operating system, in order to capture introspection data from
applications executing on the introspector’s host computing
device. For example, for a GVM that executes a Microsoft
Windows operating system, the network introspector in
some embodiments captures the network calls through a
Transport Driver Interface (TDI) filter driver. On the other
hand, for a GVM that executes a Linux operating system, the
network introspector in some embodiments captures the
network calls through the Netfilter library, as further
described below.

[0040] Using the TDI filter, the network introspector of
some embodiments captures all network socket events inside
the GVM. These events are then sent to the SVM for
analysis and form the basis of providing user and application
context on a per-connection basis. In the Windows environ-
ment, TDI provides a common interface to communicate
with the protocol drivers such as TCP/IP, NETBIOS, etc.
These interfaces are consumed by the upper layer socket
library to perform network operations requested by the
applications. In other words, the TDI layer provides a
common interface for socket libraries to communicate with
the protocol drivers such as TCP/IP, NETBIOS. As these
interfaces are consumed by the socket library, each TDI calls
will map to a socket call made by the application.

[0041] By filtering the requests just above TCP/IP driver,
the TDI filter driver provides a mechanism to block or allow
a socket call. In some embodiments, the network introspec-
tor 155 uses the TDI_CONNECT and IRP_MJ _CLOSE
filters to direct the TDI driver to capture and block “connect”
and “closesocket” socket calls respectively. After calling the

US 2020/0225978 Al

network inspector for a socket connection request, TDI
maintains the connection request blocked until it receives a
response from the network introspector 155. In turn, after
capturing and blocking a socket connection request, the
network in rospecior reports this connection event to the
SVM, which can then make allow/deny decision for the
incoming connection. After receiving the event, the SVM
can request further information (such as the user, application
and additional contextual information) for the network
event. Based on this contextual information and policies
configured by the security administrator, the SVM can either
allow or deny the network connection.

[0042] For traffic that is incoming to the GVM (e.g., for
the case that the GVM serves as a server from which data is
pulled), the network introspector 155 uses TDI_LISTEN
and TDI_EVENT_CONNECT requests to direct the TDI
driver to capture server listen events and inbound TCP
connection events. TDI_LISTEN directs the TDI transport
driver to listen fotr an offer to make an endpoint-to-endpoint
connection from a remote node, while TDI_EVENT_CON-
NECT registers a given client routine to be called when an
endpoint-to-endpoint connection is offered by a remote-
node peer. After calling the client routine, TDI maintains the
connection request block until it receives a response from
the network introspector 155. In turn, after capturing and
blocking a remote connection request, the network intros-
pector reports this remote connection event to the SVM,
which can then make allow/deny decision for the incoming
connection.

[0043] Some embodiments extend the GI framework for
client and server events to deliver data streams in the
sockets. In order to intercept the data sent and received on
a socket, the network introspector of some embodiments
uses the TDI_SEND, TDI_RECEIVE and TDI_EVENT_
RECEIVE requests of the TDI driver to capture data that is
being prepared to be sent, received or receive notification
through the event handler. When the TDI driver provides
data to the network introspector in response to such requests,
it blocks the outgoing data from being sent and the incoming
data from being delivered to its associated application until
it receives a response from the network introspector. The
network introspector sends the intercepted data to the SVM,
which can allow the data to be sent or delivered, or it can
either inject different data in the stack or drop the data
entirely.

[0044] In addition to capturing every new incoming or
outgoing connection request, the network introspector of
some embodiments can capture additional contextual infor-
mation (such as user identity and application context) for
every connection through TDI module, as mentioned above.
This additional contextual information allows the GI archi-
tecture of some embodiments to perform URL filtering
efficiently by only capturing data streams from connections
initiated by only known web browsers.

[0045] On the Linux platform, the network introspector
155 of some embodiments uses the Netfilter library to filter
out the data packets. To do this, some embodiments use a
kernel module that uses Netfilter to intercept the packets
coming-in/going-out of the GVM. As part of this intercept,
the network introspector gathers connection information and
sends it to the user-space program using Netlink channel.
Alternatively, some embodiments have the user space Net-
filter client that intercepts the packets coming-in/going-out
of the GVM.

Jul. 16, 2020

[0046] FIG. 2 illustrates a GI architecture of some
embodiments for performing URL filtering. In this example,
a network introspector 155 captures connections initiated by
a web browser 210 of a GVM 102 to a server 206. The
network introspector 155 captures connections through a
transport layer filter (such as the TDI filter) or higher layer
filter. To increase the efficiency of its URL filtering, the
network introspector 155 in some embodiments only cap-
tures connections initiated by one or more known web
browsers, which the introspector can identify because it has
application context, including the application name and
hash. To prevent someone from circumventing the filtering
scheme by using a web browser that is not monitored by the
guest introspector, some embodiments use application
white-listing techniques to prevent users from installing
unknown or unmonitored browser applications on the GVM
202. Although the browser 210 is shown as the monitored
application in the example of FIG. 2, one of ordinary skill
will realize that the architecture of this figure is used in some
embodiments to monitor the network access of other appli-
cations that execute on the GVM 202.

[0047] The GI architecture of FIG. 2 is similar to the
architecture of FIG. 1, except FIG. 2 also shows the GI
architecture to include URL categorizing service provider
280 and database 285, and policy configuration storage 290.
In this architecture, the SVM 115 (1) uses the categorization
service provider 280 or database 285 to try to identify one
or more categories for a URL that a browser is attempting to
access, and (2) uses the policy configuration storage 290 to
determine whether the access should be allowed or denied.
When a category is identified for a URL, the SVM’s policy
determination of whether the access should be allowed or
denied is at least partly dependent on the identified category.

[0048] In some embodiments, a set of one or more con-
trollers 265 publishes the policies for URL filtering as
defined by a security administrator. As shown in FIG. 2, the
policies are published by one or more URL policy managers
275 that execute on one or more controllers in the controller
set 265, and these published policies are stored in the policy
configuration data storage 290. In the example illustrated in
FIG. 2, the SVM 215 that performs the filtering operation,
executes on the same host 200 as the GVM 102 in which the
browser 210 operates. In other embodiments, the SVM
executes on a different host than the GVM 102.

[0049] FIG. 3 presents a process 300 that conceptually
illustrates the operation of the SVM’s security agent 125 of
FIG. 2 when a monitored browser attempts to access a web
resource that is identified by a URL. By performing these
operations, the security agent 125 can determine whether the
attempted access should be allowed. As shown, the process
300 initially receives (at 305) data from the network intro-
spector 155 for a connection that the browser 210 is attempt-
ing to make to a web resource that is identified by a URL.
[0050] For URL filtering, the network introspector 155 in
some embodiments has the TDI driver capture (1) an out-
going connection request that identifies a new network
connection, (2) contextual information (e.g., the process
identifier and/or user identifier) that identifies a web browser
as the application making the connection request and/or a
user identifier that identifies the user for which the applica-
tion is making the attempted the network access, and (3) one
outgoing data packet that identifies the URL that is being
accessed. In some embodiments, the network introspector
captures the connection request and contextual information

US 2020/0225978 Al

before allowing the TCP/IP stack from sending a SYN
message to establish the TCP/IP connection session, while
capturing the URL after the TCP/IP stack sends the ACK
message and before a first data packet is allowed to be sent.
In some embodiments, the URL is part of the payload of the
first data packet.

[0051] Upon receiving the GI captured data (including
contextual data and outgoing data packet), the agent 125
parses (at 310) the payload of the first packet in order to
identify the URL associated with the connection. Next, at
315, the agent 125 identifies one or more categories for the
URL by interfacing with either the cloud-based URL cat-
egorization service provider 280 or a local database 285.
[0052] The cloud-based service provider 280 provides one
or more categories (e.g., adult material, business, collabo-
ration, education, entertainment, gambling, government,
health, etc.) for a URL that the security agent 125 sends the
provider through the host’s NIC and one or more intervening
networks (such as the Internet). Examples of such service
providers include Zscaler, Bluecoat, etc. The local database
285 has one or more lookup tables that map a URL to one
or more categories. In some embodiments, the security agent
125 caches in the database 285 results that the service
provider 280 sends to it for earlier requests. Also, in some
embodiments, the security agent 125 first checks the local
database 285 to identify a category for a URL, and then
checks with the service provider when it cannot identify a
category for a URL in the database 285. In some embodi-
ments, the security agent 125, the service provider 280, or
the database 285 assigns a default category when a non-
default category for the identified URL cannot be identified.
[0053] After trying (at 315) to identify a category for the
URL, the security agent 125 examines the access policies in
the policy storage 290 to determine whether it should allow
or deny the requested connection to the web resource
identified by the URL. Examples of policies include block
all access to file-sharing website, block all access to social
media site for users who are not in the marketing depart-
ment, only allow access to entertainment sites to the execu-
tive staff, etc.

[0054] In some embodiments, the security agent allows
the access when it cannot find any policies in the policy
storage that rejects this access. Also, in some embodiments,
one or more stored policies include access rules that reject
a network access irrespective of the category that was
identified for the URL. However, in these embodiments, one
or more policies include access rules that are dependent of
the identified category for the URL. For example, a policy
might reject any network access that is made by individuals
that belong to a first active directory group, while another
policy might reject access to social media sites by individu-
als that belong to a second active directory, whose members
can access non-social media sites.

[0055] FIG. 4 illustrates several examples of policies that
are used in some embodiments. As shown, the policy storage
290 in some embodiments includes multiple tables that set
out multiple different types of policies. In this example,
these tables include site tables 405-415 that list sites that are
blocked, and category tables 420-435 that list site categories
that are blocked. The site tables include (1) a general site
table 405 that identifies sites that are blocked for everyone,
(2) an application site table 405 that identifies sites that are
blocked for certain applications (e.g., that are blocked for
accounting applications), and (3) a group site table 405 that

Jul. 16, 2020

identifies sites that are blocked for certain groups of users
(e.g., for certain active directory group).

[0056] The category tables include (1) a general category
table 420 that identifies site categories that are blocked for
everyone, (2) an application category table 405 that identi-
fies site categories that are blocked for certain applications
(e.g., that are blocked for accounting applications), and (3)
a group category table 405 that identifies site categories that
are blocked for certain groups of users (e.g., for certain
active directory group). The category for an attempted
network access that is checked by the process 300 is the
category that is identified at 315.

[0057] In some embodiments, the process 300 will reject
an attempted network access when the accessed site or its
associated category are listed as being blocked for everyone,
for the application that is attempting the network access, or
for the group that contains the user or machine that is
attempting the network access. Other embodiments use
other types of access policies, such as policies that require
actions other than Allow or Deny, e.g., add some rate
control, bandwitdh control or QoS policies based on URL
categories. For instance, in some embodiments, a policy
directs the guest introspector to limit the aggregate band-
width to 1% of link speed when the URL category is P2P,
while another policy directs the introspector to ensure that a
1 Mbps per connection when the URL category is Meeting
(e.g., Webex). In some embodiments, the access policies are
maintained in fewer tables. For instance, in some embodi-
ments, the access policies are maintained in a single table
that stores the policies based on a hierarchy that is based on
the importance (e.g., the more important policies appear
earlier in the table).

[0058] When the security agent identifies (at 320) a policy
that prohibits the requested access, the security agent returns
(at 325) a Deny to the network introspector 155, which, in
turn, has the TDI filter driver reject the attempted connec-
tion. In rejecting the attempted connection, some embodi-
ments present a message on the browser that explains the
reason for the rejection. After 325, the process 300 ends. On
the other hand, when the security agent cannot identify (at
320) apolicy that prohibits the requested access, the security
agent returns (330) an Allow to the network introspector
155, which, in turn, has the TDI filter driver allow the
attempted connection. After 330, the process 300 ends.

[0059] The approach illustrated in FIG. 2 works well for
URL filtering encrypted traffic. Secure data communications
across the networks is usually implemented by using Layer
3 security protocols (such as IPsec) or Layer 5 or 6 security
protocols (such as SSL/TLS). As used in this document,
layer 2 (L2), layer 3 (L3), layer 4 (L4), layer 5 (L5), layer
6 (L6), and layer 7 (L.7) are references respectively to the
second data link layer, the third network layer, the fourth
transport layer, the fifth session layer, the sixth presentation
layer and the seventh application layer of the OSI (Open
System Interconnection) conceptual seven layer model.

[0060] FIG. 5 illustrates how the approach of FIG. 2 works
well for URL filtering of encrypted traffic. Specifically, FI1G.
5 shows the network introspector 155 obtaining GI data
from two different network layers of a GVM 550. As shown,
multiple layers of software execute on the GVM 550. These
layers include an application 500 (e.g., a browser), an SSL
library 510, a TCP library 525, an 1Psec library 530, and an
IP library 535. In some embodiments, the SSL, TCP, IPsec

US 2020/0225978 Al

and IP libraries are part of the network stack that is provided
by the GVM’s operating system.

[0061] FIG. 5 shows the network introspector 155 of some
embodiments obtaining GI data from the transport layer
filter 520 and a patch filter 515 in the SSL library 510. The
transport layer filter 520 captures transport layer calls that
the application 500 makes to the TCP library 525. As
mentioned above, one example of such a filter is the TDI
filter. The SSL patch filter 515 captures SSL encryption calls
that the application 500 makes to the SSL library. The SSL
encryption encrypts the TCP payload.

[0062] Instead of using SSL encryption to capture the TCP
payload, the IP payload can be encrypted by using the [Psec
library 530. Accordingly, for IPsec encryption, the data is
encrypted after leaving the TCP layer 525 and entering the
1P layer 535, which, in turn, allows the transport layer
filtering (e.g., the TDI filtering) to capture the data before it
enters the TCP stack. Hence, through this filtering, the
network introspector can capture the unencrypted data
before entering the L3 IPsec security stack. In this manner,
the transport layer filtering of some embodiments is entirely
agnostic of the encapsulation and de-capsulation of frames
involved in L3 encryption. In this case, there is no need to
decrypt or re-encrypt traffic in order to do URL filtering.
[0063] When SSL encryption is used, the data is already
encrypted by the time it reaches the transport layer driver. To
address this situation, the network introspector 155 of some
embodiments needs to use a Layer 5/6 patch to capture the
API calls in the context of certain applications (e.g., know
browsers). The SSL patch 515 is one example of such a
patch. As mentioned above, the SSL patch captures SSL
encryption calls that the application makes to the SSL
library.

[0064] Windows provides SSL library APIs that are con-
sumed by all Microsoft applications including Internet
Explorer, Outlook, IIS etc. In these applications, SSL func-
tions are implemented over Security Service Provider Inter-
face (SSPI), which is a standard set of functions exposed for
all windows security related functions including Kerberos,
NTLM and SSL.

[0065] By using the SSL patch 515 to capture the interface
calls (e.g., EncryptMessage and DecryptMessage), the net-
work introspector 155 extracts the raw data provided by the
application for encryption. Most other non-Microsoft appli-
cations use openSSL library for SSL client/server applica-
tions. By capturing the SSL dynamic link library (DLL) calls
(e.g., SSL_Connect, SSL._read and SSI._ Write), the network
introspector can capture the unencrypted data including the
HTTP request that is to be sent to the remote destination.
[0066] FIG. 6 illustrates how the GI architecture of some
embodiments can be used to filter content shared over the
web with external sites (such as Dropbox or other file
sharing websites). Such filtering can prevent data leaks in
the case of sensitive data being shared with external site.
This GI architecture is implemented on a host that executes
a GVM 102 and SVM 115. This architecture is similar to the
architecture of FIG. 2, except it now also includes content
filtering policy manager(s) 675, a content filtering data
storage 685 and a cloud-based content filtering service
provider 680.

[0067] In FIG. 6, the network introspector 155 captures
connections initiated by a user application 610 (e.g., a
browser) of a GVM 102 through a transport layer filter (such
as the TDI filter) or a higher layer filter (such as an SSL

Jul. 16, 2020

patch). Through this filter, the network introspector 155 can
also capture content that is intended for transmission to an
external server 620. The introspector provides the captured
connection and content data to the SVM 115, which, in turn,
uses the content filtering service provider 680 or content
filtering library 685 to identify rules that are applicable to the
captured content. As further described below, such rules may
prohibit the transfer of the desired content to the server 620.
[0068] As shown, the GI architecture of FIG. 6 also
includes the URL categorization service provider 290 and
the URL categorization database 285. These categorization
resources are used in some embodiments to categorize the
URL associated with the server 620, and subsequently to use
the identified category in assessing whether the content can
be transferred to the server 620, as further described below.
[0069] In some embodiments, a set of one or more con-
trollers 265 publishes the policies for URL and content
filtering as defined by a security administrator. As shown,
the policies are published by one or more policy managers
675 that execute on one or more controllers in the controller
set 265, and these published policies are stored in the content
filtering data storage 685. In the example illustrated in FIG.
6, the SVM 215 that performs the filtering operation,
executes on the same host 600 as the GVM 202 in which the
application 610 operates. In other embodiments, the SVM
executes on a different host than the GVM 202.

[0070] FIG. 7 presents a process 700 that conceptually
illustrates the operation of the SVM’s security agent 125 of
FIG. 6 when a monitored application attempts to share
content stored on the GVM with another device through a
network access. By performing these operations, the security
agent 125 can determine whether the attempted access
should be allowed. As shown, the process 700 initially
receives (at 705) data from the network introspector 155 for
a connection that the application 610 is attempting to make
to a web resource that is identified by a URL.

[0071] In some embodiments, the process 700 receives
this data when the network introspector 155 captures and
blocks the start of a web sharing access. As mentioned
above, the network introspector in some embodiments con-
figures a transport layer or higher layer filter to intercept data
traffic in the datastream for every connection, including the
payload of one outgoing packet to capture the URL that is
being examined. In some embodiments, the captured data
includes (1) the outgoing connection request that identifies
a new network connection, (2) contextual information (e.g.,
the process identifier) that identifies the application making
the connection request and/or a user identifier that identifies
the user for which the application is making the attempted
the network access, and (3) one outgoing data packet that
identifies the URL that is being accessed. In some embodi-
ments, the network introspector captures the connection
request and contextual information at a different time than
the URL, as described above.

[0072] The network introspector 155 passes the captured
data to the SVM 115, so that the SVM can determine
whether the captured and blocked connection should be
allowed or denied. Upon receiving the GI captured data
(including contextual data and outgoing data packet), the
agent 125 parses (at 710) the payload of the first data packets
in order to identify the URL associated with the connection.
Next, at 715, the agent 125 identifies one or more categories
for the URL by interfacing with either a cloud-based URL
categorization service provider 280 or a local database 285.

US 2020/0225978 Al

This interaction was described by reference to FIG. 3, and
will not be further described here as URL categorization of
process 700 is similar to the URL categorization of process
300 in some embodiments.

[0073] After trying (at 715) to identify a category for the
URL, the security agent 125 determines (at 720) whether the
URL being accessed is categorized as “File Sharing.” If not,
the security agent 125 examines (at 725) the URL access
policies in a URL-access policy storage (like storage 290,
which is not shown in FIG. 6) to determine (at 725) whether
it should allow or deny the requested connection to the web
resource identified by the URL. In some embodiments, the
security agent allows the access (at 725) when it cannot find
any URL-access policies in the policy storage that rejects
this access. Also, the resolution of these policies in some
embodiments is dependent on the category or categories that
the process identified for the URL at 715. Several examples
of URL-access policies were provided above by reference to
FIGS. 3 and 4, and will not be further described here as these
examples are equally applicable to the process 700 of FIG.
7.

[0074] When the process 700 identifies (at 725) a policy
that requires the network access to be rejected, the process
700 returns (at 725) a Deny to the network introspector so
that it can reject the attempted network access. On the other
hand, when the process cannot identify (at 725) a policy that
requires the network access to be rejected, it returns (at 725)
an Allow to the network introspector, so that it can allow the
attempted access. After 725, the process ends.

[0075] When the process 700 determines (at 720) that the
captured URL is a “File Sharing” URL, the process 700 in
some embodiments directs (at 730) the network introspector
to capture additional data in the datastream for the requested
connection. In other embodiments, the process 700 does not
request (at 730) additional captured data as all the data that
it needs was previously supplied at 705. Next, at 735, the
process uses all of the captured GI data to assess whether it
should allow the access to the content sharing site. In some
embodiments, the process makes this assessment by using
the captured GI data to assess the content-sharing policies in
the policy storage 685. Alternatively, or conjunctively, the
process makes this assessment in some embodiments by
forwarding the captured GI data to the cloud-based content
filtering service 680, which uses this data to assess the
file-sharing policies that it enforces.

[0076] When the process 700 determines (at 735) that it
should reject the attempted network access based on a policy
in the local policy storage 685 or a policy enforced by the
service 680, the process returns (at 740) a Deny to the
network introspector so that it can have the filter (e.g., TDI
or SSL filter) reject the attempted network access. After 740,
the process ends. On the other hand, when the process
cannot identify (at 735) a policy that requires the network
access to be rejected, it returns (at 735) an Allow to the
network introspector, so that it can have its filter allow the
attempted access. After 745, the process ends.

[0077] In some embodiments, the security agent 125 fol-
lows slightly different process to perform its content-sharing
access check. For instance, in some embodiments, the agent
does not rely on the URL categorization to assess whether
content can be shared with a site. In these embodiments, or
in the embodiments in which the security agent 125 uses
URL categorization to enforce content-sharing access check,
the agent’s content-sharing process loops through operations

Jul. 16, 2020

730-745, whenever it detects that the network access is
trying to access another file for content.

[0078] To do this, the security agent uses the file intros-
pector 150 to monitor access to files by the application that
is attempting the network access. As mentioned above, the
network introspector 155 in some embodiments identifies
the network-accessing application initially when it detects
an attempted network access. The network introspector 155
passes the identity (e.g., the process identifier) of this
application to the security agent, which can then provide this
application ID to the file introspector with a request that the
file introspector detect the application’s access to each file
and notify the security agent of each detected access. The file
introspector uses filters that it sets in the GVM’s file system
to identify any access of the identified application to all files
or certain files (e.g., files of a particular category, such as
non-system files, or data files) that are managed by the file
system.

[0079] In some embodiments, the security agent has the
file introspector block the application’s access to certain files
until the agent approves of the access. In some embodi-
ments, the SVM’s security agent has the file introspector
provide metadata regarding the file that the application is
trying to access. Based on this metadata, the security agent
in some embodiments reviews its content filtering policies to
determine whether the file access should be allowed or
denied. In some embodiments, the agent through the file
introspector and the MUX scans the content of the file to
detect one or more particular types of sensitive content, such
as HIPAA data, PCI data, etc. When the agent identifies such
data, the agent directs one of the introspectors to block the
application’s access to the file, or the application’s trans-
mission of the file or its content through a network connec-
tion. In some embodiments, the particular types of sensitive
content can be defined for the SVM and the file introspector
by policies that are stored on the host and accessible by the
SVM.

[0080] Alternatively, or conjunctively, the security agent
prevents file-sharing network accesses by having the net-
work introspector enforce the network access to certain files.
For instance, after detecting that a monitored application is
accessing a particular file, obtaining metadata regarding the
particular file from the file introspector, and determining
from the metadata that the particular file contains confiden-
tial data (e.g., confidential health related data), the security
agent has the network introspector capture the data for the
packets that the application wants to send through the
network access, so that the agent can determine whether the
captured data relates to the particular file. When the captured
data relates to the particular file and such data need to be
blocked, the security agent has the network introspector
reject the attempted transmission of the data.

[0081] FIG. 8 illustrates a multi-host system 800 of some
embodiments that uses the GI method of some embodi-
ments. This system is part of a software defined data center
in some embodiments. As shown, this system includes
multiple hosts 805-815, a set of one or more controllers 825,
and a network 875. The network 875 communicatively
couples the hosts with each other and with the controller set.
In some embodiments, the network is a local area network
(LAN), a wide area network (WAN), and/or a network of
networks (e.g., Internet).

[0082] In some embodiments, the controller set 825 pro-
vides control and management functionality for defining

US 2020/0225978 Al

(e.g., allocating or instantiating) and managing one or more
GVMs and SVMs on the host computing devices 805-815.
The controller set 825 also provide control and management
functionality for configuring the introspectors of the GVMs.
In addition, controller set 825 also provide control and
management functionality for defining and managing mul-
tiple logical networks that are defined on the common
software forwarding elements of the hosts. In some embodi-
ments, the controller set 825 includes multiple different sets
of one or more controllers for performing different sets of
the above-described controller operations.

[0083] In some embodiments, the hosts 805-815 are simi-
lar to the hosts 100, 200 and 600 of FIGS. 1, 2, and 6.
However, in FIG. 8, some of the modules (e.g., the MUX
110, security agent 125, security library 120, introspectors
150-160, etc.) that were illustrated in FIGS. 1, 2, and 6 are
not shown in order not to obscure the discussion of FIG. 8
with unnecessary detail. On the other hand, in FIG. 8, other
modules are shown to emphasis other functionalities of the
hosts of some embodiments. These other modules include
software forwarding element 855, VM configuration agent
860, and GI configurator 850.

[0084] The software forwarding element (SFE) 855 on the
host communicatively couples the GVMs and SVMs of the
host to each other, and to other devices outside of the host
(e.g., VMs on other hosts) through the host’s NIC and the
intervening network 875. One example of such an SFE is a
software switch. In some embodiments, an SVM commu-
nicates with GVMs on its host through a different forward-
ing element or through a different communication channel.
However, even in some of these embodiments in which an
SVM communicates with GVMs outside of its host, the
SVM communicates with these GVMs through the SFE 855.
[0085] In some embodiments, one host’s SFE implement
one or more logical forwarding elements (e.g., logical
switches or logical routers) with SFEs executing on other
hosts in a multi-host environment. A logical forwarding
element in some embodiments can span multiple hosts to
connect VMs that execute on different hosts but belong to
one logical network. In other words, different logical for-
warding elements can be defined to specify different logical
networks for different users, and each logical forwarding
element can be defined by multiple SFEs on multiple hosts.
Each logical forwarding element isolates the traffic of the
VMs of one logical network from the VMs of another logical
network that is serviced by another logical forwarding
element. A logical forwarding element can connect VMs
executing on the same host and/or different hosts.

[0086] InFIG.8, cachhost’s VM agent 860 communicates
with the controller set 825. Through this communication, the
VM agent can receive configuration data for configuring the
operation of the GVMs and SVMs that operate on the
agent’s host. In some embodiments, a different set of one or
more VM agents is used on one host for the GVMs than the
set of one or more VM agents that is used for the SVM(s)
on that host. In some embodiments, the VM agents receive
from the controller set 825 network access policies for their
respective SVMs, and store these policies in the SVM policy
storage(s) (e.g., storage 290 and/or storage 685). In other
embodiments, the VM agents generate some or all of these
policies from the configuration data that they receive from
the controller set 825.

[0087] Also, each host’s GI configurator 850 communi-
cates with the controller set 825 to receive configuration data

Jul. 16, 2020

for configuring the operation of the guest introspectors of the
GVMs. The configuration data in some embodiments directs
how each introspector’s should configure its network stack
filters (e.g., its transport layer filter or SSL patch filter) and
the type of data that it should direct each filter to capture. In
some embodiments, the configuration data further config-
ures the type of captured data that each introspector should
report to its associated SVM.
[0088] FIG. 9 conceptually illustrates a process that a set
of one or more controllers performs to configure the GI
method of some embodiments. As shown, this process starts
(at 905) each time a new or updated compute cluster
membership is received (e.g., from a network administrator),
and/or a new or updated set of rules for performing network
access filtering is received (e.g., from a network adminis-
trator). After receiving such data, the process identifies (at
910) any new GVM or SVM that it has to instantiate or
allocate on one or more hosts to implement the new or
updated compute cluster membership and/or network access
filtering. For each identified GVM or SVM, the process
defines configuration data at 910.
[0089] Next, at 915, the process identifies new or modified
filtering policies for one or more SVMs, if such new or
modified policies are needed to implement the new or
updated compute cluster membership and/or network access
filtering. For each identified filtering policy, the process
defines configuration data at 915. After 915, the process
identifies (at 920) new or modified configurations for one or
more guest introspectors (e.g., introspectors 150-160), if
such new or modified configurations are needed to imple-
ment the new or updated compute cluster membership
and/or network access filtering. At 920, the process defines
configuration data to implement any new or modified GI
configuration.
[0090] Lastly, at 925, the process distributes any configu-
ration data that it generates at 910-920 to the VM configu-
rator agent 860 and GI configurators 850 of each host that
has a GVM, SVM, or guest introspector that has to be
configured to account for the new or updated compute
cluster membership and/or a new or updated set of network
access filtering rules that are received at 905. After 925, the
process ends.
[0091] One of ordinary skill will realize that the process
900 of FIG. 9 is just a conceptual illustration of the set of
operations that one or more controllers have to perform to
configure the guest introspectors and SVMs of some
embodiments, so that these modules can perform the GI
method of some embodiments. In some embodiments, mul-
tiple different processes on one or several controllers per-
form these operations. Also, the sequence of these opera-
tions differs in some embodiments of the invention.
[0092] The following example is illustrative of how the
controller set 825 configures the guest introspectors to
perform URL and content filtering in a hospital’s software
defined data center (SDDC). The datacenter has several
users who may be part of different Active Directory groups
such as Doctors and Nurses. The datacenter also runs the
hospital servers that have confidential patient data. The
security administrator deploys a guest introspection-based
URL filtering and web content filtering service provided by
defining the following web security policies (called SecPols
below):

[0093] SecPol 1: No users can access social networking

websites;

US 2020/0225978 Al

[0094] SecPol 2: No users can post confidential patient
HIPAA data to file sharing websites;

[0095] SecPol 3: Doctors are allowed access to health-
care websites; and

[0096] SecPol 4: All users are allowed access to web
email category.

[0097] In order to comply with the security policy above,
the security administrator has the controller set perform the
following steps:

[0098] Create Security Group (SG) Doctors with
dynamic membership criteria so that any VM with a
doctor logged on it becomes a member, and drops out
of membership when the doctor logs off.

[0099] Create SG Nurses with dynamic membership
criteria so that any VM with a nurse logged on it
becomes a member, and drops out of membership when
the nurse logs off.

[0100] Create URL filter policies for the Doctors SG
allowing access to healthcare and web-email categories
and denying access to social networking category.

[0101] Create URL filter policies for the nurses SG
allowing access to web-email categories and denying
access to healthcare and social networking category.

[0102] Create content filter policies in Doctors SG that
inspect all content on file-sharing URLs and deny
access if the content includes HIPAA data

[0103] The controller set 825 pushes these policies to the
SVMs deployed on every host to do URL and/or content
filtering. When a nurse or a doctor logs on to a GVM, the SG
will automatically be populated with that GVM as a member
for the appropriate SG. When a doctor tries to access
Facebook, the network introspector 155 of the GI agent 105
(that is installed on the GVM by the of VM configurator
agent 860) intercepts the connection. Since the connection is
originating from a browser application and the SG that the
GVM is a member of has a URL filtering policy, the
connection information is sent to the SVM on the same host
as the GVM. The SVM then lets this connection proceed but
requests the next data packet in the stream for this connec-
tion. Once it receives the next data packet, the SVM parses
this packet for the URL, which it then categorizes as a
“social networking” website by using the local URL cat-
egorization database 285 or the cloud-based URL categori-
zation service 280. The SVM then examines this category
against the policies pushed down to the SVM by the con-
troller set. In this example, the doctor’s access is denied
because there is a policy that requires access to social-
networking URLs by doctors to be denied.

[0104] Many of the above-described features and applica-
tions are implemented as software processes that are speci-
fied as a set of instructions recorded on a computer readable
storage medium (also referred to as computer readable
medium). When these instructions are executed by one or
more processing unit(s) (e.g., one or more processors, cores
of processors, or other processing units), they cause the
processing unit(s) to perform the actions indicated in the
instructions. Examples of computer readable media include,
but are not limited to, CD-ROMs, flash drives, RAM chips,
hard drives, EPROMs, etc. The computer readable media
does not include carrier waves and electronic signals passing
wirelessly or over wired connections.

[0105] In this specification, the term “software” is meant
to include firmware residing in read-only memory or appli-
cations stored in magnetic storage, which can be read into

Jul. 16, 2020

memory for processing by a processor. Also, in some
embodiments, multiple software inventions can be imple-
mented as sub-parts of a larger program while remaining
distinct software inventions. In some embodiments, multiple
software inventions can also be implemented as separate
programs. Finally, any combination of separate programs
that together implement a software invention described here
is within the scope of the invention. In some embodiments,
the software programs, when installed to operate on one or
more electronic systems, define one or more specific
machine implementations that execute and perform the
operations of the software programs.

[0106] FIG. 10 conceptually illustrates a computer system
1000 with which some embodiments of the invention are
implemented. The computer system 1000 can be used to
implement any of the above-described hosts, controllers, and
managers. As such, it can be used to execute any of the
above described processes. This computer system includes
various types of non-transitory machine readable media and
interfaces for various other types of machine readable
media. Computer system 1000 includes a bus 1005, pro-
cessing unit(s) 1010, a system memory 1025, a read-only
memory 1030, a permanent storage device 1035, input
devices 1040, and output devices 1045.

[0107] The bus 1005 collectively represents all system,
peripheral, and chipset buses that communicatively connect
the numerous internal devices of the computer system 1000.
For instance, the bus 1005 communicatively connects the
processing unit(s) 1010 with the read-only memory 1030,
the system memory 1025, and the permanent storage device
1035.

[0108] From these various memory units, the processing
unit(s) 1010 retrieve instructions to execute and data to
process in order to execute the processes of the invention.
The processing unit(s) may be a single processor or a
multi-core processor in different embodiments. The read-
only-memory (ROM) 1030 stores static data and instructions
that are needed by the processing unit(s) 1010 and other
modules of the computer system. The permanent storage
device 1035, on the other hand, is a read-and-write memory
device. This device is a non-volatile memory unit that stores
instructions and data even when the computer system 1000
is off. Some embodiments of the invention use a mass-
storage device (such as a magnetic or optical disk and its
corresponding disk drive) as the permanent storage device
1035.

[0109] Other embodiments use a removable storage
device (such as a floppy disk, flash drive, etc.) as the
permanent storage device. Like the permanent storage
device 1035, the system memory 1025 is a read-and-write
memory device. However, unlike storage device 1035, the
system memory is a volatile read-and-write memory, such a
random access memory. The system memory stores some of
the instructions and data that the processor needs at runtime.
In some embodiments, the invention’s processes are stored
in the system memory 1025, the permanent storage device
1035, and/or the read-only memory 1030. From these vari-
ous memory units, the processing unit(s) 1010 retrieve
instructions to execute and data to process in order to
execute the processes of some embodiments.

[0110] The bus 1005 also connects to the input and output
devices 1040 and 1045. The input devices enable the user to
communicate information and select commands to the com-
puter system. The input devices 1040 include alphanumeric

US 2020/0225978 Al

keyboards and pointing devices (also called “cursor control
devices”). The output devices 1045 display images gener-
ated by the computer system. The output devices include
printers and display devices, such as cathode ray tubes
(CRT) or liquid crystal displays (LCD). Some embodiments
include devices such as a touchscreen that function as both
input and output devices.

[0111] Finally, as shown in FIG. 10, bus 1005 also couples
computer system 1000 to a network 1065 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN”), or an Intranet, or
a network of networks, such as the Internet. Any or all
components of computer system 1000 may be used in
conjunction with the invention.

[0112] Some embodiments include electronic compo-
nents, such as microprocessors, storage and memory that
store computer program instructions in a machine-readable
or computer-readable medium (alternatively referred to as
computer-readable storage media, machine-readable media,
or machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety of recordable/rewritable DVDs (e.g., DVD-RAM,
DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,
mini-SD cards, micro-SD cards, etc.), magnetic and/or solid
state hard drives, read-only and recordable Blu-Ray® discs,
ultra density optical discs, any other optical or magnetic
media, and floppy disks. The computer-readable media may
store a computer program that is executable by at least one
processing unit and includes sets of instructions for per-
forming various operations. Examples of computer pro-
grams or computer code include machine code, such as is
produced by a compiler, and files including higher-level
code that are executed by a computer, an electronic com-
ponent, or a microprocessor using an interpreter.

[0113] While the above discussion primarily refers to
microprocessor or multi-core processors that execute soft-
ware, some embodiments are performed by one or more
integrated circuits, such as application specific integrated
circuits (ASICs) or field programmable gate arrays (FP-
GAs). In some embodiments, such integrated circuits
execute instructions that are stored on the circuit itself.

[0114] As used in this specification, the terms “computer”,
“server”, “processor”, and “memory” all refer to electronic
or other technological devices. These terms exclude people
or groups of people. For the purposes of the specification,
the terms display or displaying means displaying on an
electronic device. As used in this specification, the terms
“computer readable medium,” “computer readable media,”
and “machine readable medium” are entirely restricted to
tangible, physical objects that store information in a form
that is readable by a computer. These terms exclude any
wireless signals, wired download signals, and any other
ephemeral or transitory signals.

[0115] While the invention has been described with ref-
erence to numerous specific details, one of ordinary skill in
the art will recognize that the invention can be embodied in
other specific forms without departing from the spirit of the
invention. For instance, this specification refers throughout
to computational and network environments that include
virtual machines (VMs). However, virtual machines are

Jul. 16, 2020

merely one example of data compute nodes (DCNs). DCNs
may include non-virtualized physical hosts, virtual
machines, containers that run on top of a host operating
system without the need for a hypervisor or separate oper-
ating system, and hypervisor kernel network interface mod-
ules.

[0116] VMs, in some embodiments, operate with their
own guest operating systems on a host using resources of the
host virtualized by virtualization software (e.g., a hypervi-
sor, virtual machine monitor, etc.). The tenant (i.e., the
owner of the VM) can choose which applications to operate
on top of the guest operating system. Some containers, on
the other hand, are constructs that run on top of a host
operating system without the need for a hypervisor or
separate guest operating system. In some embodiments, the
host operating system uses name spaces to isolate the
containers from each other and therefore provides operating-
system level segregation of the different groups of applica-
tions that operate within different containers. This segrega-
tion is akin to the VM segregation that is offered in
hypervisor-virtualized environments that virtualize system
hardware, and thus can be viewed as a form of virtualization
that isolates different groups of applications that operate in
different containers. Such containers are more lightweight
than VMs.

[0117] Hypervisor kernel network interface module, in
some embodiments, is a non-VM DCN that includes a
network stack with a hypervisor kernel network interface
and receive/transmit threads. One example of a hypervisor
kernel network interface module is the vimknic module that
is part of the ESXi™ hypervisor of VMware, Inc. One of
ordinary skill in the art will recognize that while the speci-
fication refers to VMs, the examples given could be any type
of DCNs, including physical hosts, VMs, non-VM contain-
ers, and hypervisor kernel network interface modules. In
fact, the example networks could include combinations of
different types of DCNs in some embodiments.

[0118] Several examples were described above by refer-
ence to URL filtering policies. In place of URL filtering
policies, some embodiments employ URI (uniform resource
identifier) policies. As commonly understood, URLs are one
form of URIs. A number of the figures (e.g., FIGS. 3, 7, and
9) conceptually illustrate processes. The specific operations
of these processes may not be performed in the exact order
shown and described. The specific operations may not be
performed in one continuous series of operations, and dif-
ferent specific operations may be performed in different
embodiments. Furthermore, the process could be imple-
mented using several sub-processes, or as part of a larger
macro process. In view of the foregoing, one of ordinary
skill in the art would understand that the invention is not to
be limited by the foregoing illustrative details, but rather is
to be defined by the appended claims.

1-19. (canceled)

20. A method of controlling network access on a host
computer on which a machine executes, the method com-
prising:

at a service engine executing on the host computer

separately from the machine,

receiving, through a guest introspection (GI) agent
installed on the machine, captured contextual data
that includes a uniform resource identifier identify-
ing a resource that the machine is attempting to
access through a network;

US 2020/0225978 Al

using the uniform resource identifier to identify a
policy applicable to the attempted network access;

based on the identified policy, directing the GI agent to
allow or reject the network access.

21. The method of claim 20, wherein the GI agent is a
network introspection agent that captures data through a set
of filters that is defined in a network stack of the data
compute node.

22. The method of claim 21, wherein the set of filters
include a transport layer library filter.

23. The method of claim 21, wherein the set of filters
includes a filter that is defined in a library that handles
communication protocol operations higher than layer 4.

24. The method of claim 21, wherein the set of filters
capture the data before the data is encrypted, wherein the
capturing of the unencrypted data allows the captured data
to be used to examine network access policies without
decrypting the data.

25. The method of claim 20, wherein

the data compute node is a guest virtual machine, and

the service engine is a service virtual machine executing

on the host computer.

26. The method of claim 20, wherein the uniform resource
identifier identifies a website that is intended for access, the
method further comprising evaluating the identified policy
to determine whether the machine is allowed to access the
website.

27. The method of claim 26, wherein evaluating the
identified policy comprises evaluating the identified policy
to determine whether the website is accessible by an appli-
cation that executes on the machine and that is attempting
the network access.

28. The method of claim 26, wherein evaluating the
identified policy comprises evaluating the identified policy
to determine whether the website is accessible by a user that
is using the machine while the network access is being
attempted.

29. The method of claim 26, wherein the website access
is for accessing a file, and evaluating the identified policy
determines comprises evaluating the identified policy to
determine whether the file is available for the network
access.

30. The method of claim 20 further comprising:

identifying a category associated with the uniform

resource identifier;

evaluating the identified policy to determine whether the

identified category is one category of resources that the
machine has a right to access.

31. A non-transitory machine readable medium for storing
a service engine to control network access on a host com-
puter on which a machine executes, the service engine to
execute on the host computer, the service engine comprising
sets of instructions for:

receiving, through a guest introspection (GI) agent

installed on the machine, captured contextual data that

Jul. 16, 2020

includes a uniform resource identifier identifying a
resource that the machine is attempting to access
through a network;

using the uniform resource identifier to identify a policy

applicable to the attempted network access;
when the identified policy allows the network access,
directing the GI agent to allow the network access;

when the identified policy does not allow the network
access, directing the GI agent to reject the network
access.

32. The non-transitory machine readable medium of claim
31, wherein the GI agent is a network introspection agent
that captures data through a set of filters that is defined in a
network stack of the data compute node.

33. The non-transitory machine readable medium of claim
32, wherein the set of filters include a transport layer library
filter.

34. The non-transitory machine readable medium of claim
32, wherein the set of filters includes a filter that is defined
in a library that handles communication protocol operations
higher than layer 4.

35. The non-transitory machine readable medium of claim
32, wherein the set of filters capture the data before the data
is encrypted, wherein the capturing of the unencrypted data
allows the captured data to be used to examine network
access policies without decrypting the data.

36. The non-transitory machine readable medium of claim
31, wherein

the data compute node is a guest virtual machine, and

the service engine is a service virtual machine executing

on the host computer.

37. The non-transitory machine readable medium of claim
31, wherein the uniform resource identifier identifies a
website that is intended for access, the service engine further
comprising a set of instructions for evaluating the identified
policy to determine whether the machine is allowed to
access the website.

38. The non-transitory machine readable medium of claim
37, wherein the set of instructions for evaluating the iden-
tified policy comprises a set of instructions for evaluating
the identified policy to determine whether the website is
accessible by an application that executes on the machine
and that is attempting the network access.

39. The non-transitory machine readable medium of claim
37, wherein the set of instructions for evaluating the iden-
tified policy comprises a set of instructions for evaluating
the identified policy to determine whether the website is
accessible by a user that is using the machine while the
network access is being attempted.

40. The non-transitory machine readable medium of claim
37, wherein the website access is for accessing a file, and
evaluating the identified policy comprises evaluating the
identified policy to determine whether the file is available
for the network access.

#* #* #* #* #*

