U.S. patent application number 10/405132 was filed with the patent office on 2003-10-02 for modulus plating system and method.
Invention is credited to Lemole, G. Michael JR..
Application Number | 20030187509 10/405132 |
Document ID | / |
Family ID | 28457288 |
Filed Date | 2003-10-02 |
United States Patent
Application |
20030187509 |
Kind Code |
A1 |
Lemole, G. Michael JR. |
October 2, 2003 |
Modulus plating system and method
Abstract
In one embodiment, a modular system for cervical fixation is
disclosed. The system comprises a first plate operable to be
attached to a first vertebra and a second plate operable to be
attached to a second vertebra. A fixation means for connecting the
first v-plate to the second v-plate is provided. The fixation means
can be any one of a number of devices including a pair of beams
that connect to the first and second plate, an attachment plate
that attaches the first and second plates and an attachment plate
that has an elastic middle portion.
Inventors: |
Lemole, G. Michael JR.;
(Huntington Vly., PA) |
Correspondence
Address: |
Squire, Sanders & Dempsey L.L.P.
Two Renaissance Square
40 North Central Avenue, Suite 2700
Phoenix
AZ
85004-4498
US
|
Family ID: |
28457288 |
Appl. No.: |
10/405132 |
Filed: |
April 1, 2003 |
Related U.S. Patent Documents
|
|
|
|
|
|
Application
Number |
Filing Date |
Patent Number |
|
|
60369245 |
Apr 1, 2002 |
|
|
|
Current U.S.
Class: |
623/17.16 |
Current CPC
Class: |
A61B 17/8009 20130101;
A61B 17/7059 20130101; A61F 2/4425 20130101; A61F 2002/30576
20130101; A61B 17/70 20130101; A61B 17/7044 20130101 |
Class at
Publication: |
623/17.16 |
International
Class: |
A61F 002/44 |
Claims
What is claimed:
1. A modular system for cervical fixation comprising: a first plate
operable to be attached to a first vertebra; a second plate
operable to be attached to a second vertebra; and a fixation means
for connecting the first v-plate to the second v-plate.
2. The system of claim 1 wherein the fixation means is one or more
I-beams, each I-beam comprising an elongated structure operable to
span from the first plate to the second plate, each I-beam
anchoring a same side of the first plate and the second plate.
3. The system of claim 1 wherein the fixation means is an I-plate,
the I-plate comprising a single piece structure operable to span
from the first plate to the second plate, the I-plate anchored to
the first plate at a first end of the I-plate by an anchoring means
and anchored to the second plate at a second end of the
I-plate.
4. The system of claim 3wherein the I-plate includes one or more
openings through the I-plate to allow for visual access to the area
below the I-plate once the I-plate is installed.
5. The system of claim 1 wherein a retractor is attached to the
first plate and the second plate.
6. The system of claim 5 wherein a ratcheting system can be
attached to the retractor to allow for manual separation or
contraction of the first vertebra and the second vertebra.
5. The system of claim 1 wherein one or more additional plates are
attached to one or more vertebra and all of the plates are attached
by a fixation means.
6 The system of claim 1, wherein the first plates and second plates
are attached to the first vertebra and the second vertebra using a
curved talon, the talons having a pointed end that inserts in to
the bone and a second end that secures the first plate and second
plate to the first and second vertebra.
7. The system of claim 1 wherein the fixation means comprises a
variable tension plate, the variable tension plate comprising a
first end operable to attach to the first plate, a second end
operable to attach to the second plate and an elastic middle
portion connecting the first end to the second end.
8. The system of claim 1 wherein the fixation means comprises a
first L-plate having a first portion attaching to the first plate
and a second portion formed at essentially a right angle to the
first portion and contact a portion of the first vertebra and a
second L-plate having a first portion attaching to the second plate
and a second portion formed at essentially a right angle to the
first portion and contact a portion of the second vertebra, an
artificial disc material sandwiched between the second portion of
the first L-plate and the second portion of the second L-plate.
9. The system of claim 1, wherein the system is used in anterior
cervical spine operations.
10. The system of claim wherein the I-plate includes a plurality of
indentations formed along each side, the plurality of indentations
having a radius of curvature greater than the head of the fastening
device used to affix the I-plate to the first plate and the second
plate, the indentations allowing for adjustment of the I-plate as
it attaches to the first plate and second plate.
11. The system of claim 8 wherein the L-plate and the artificial
disk material are manufactured from bio-absorbable materials.
12. The system of claim 1 wherein the first plate is attached to
the first vertebra by one or more screws and the second plate is
attached to the second vertebra by one or more screws.
13. The system of claim 1 wherein the attachment means covers at
least part of the one or more screws used to attach the first plate
and the one or more screws used to attached the second plate.
14. An apparatus for attaching a structure to a bone comprising
curved talons, having a first pointed end for insertion into bone
and a second end to apply pressure to in order to insert the talon
into the bone.
15. The apparatus of claim 14 wherein two talons are inserted into
the structure along the same line, each of the two talons curved in
relation to the other to prevent the talons from impinging on each
other when inserted.
16. The apparatus of claim 14 where in the structure is a vertebra
plate and the bone is a vertebra body.
17. The apparatus of claim 14 wherein the talons are inserted using
an air gun.
18. An artificial disc for use in replacing an injured or
degenerated disc in the human body comprising: a first L-plate
having a first leg for attaching to a first vertebra and a second
leg at essentially a right angle to the first leg, a second L-plate
having a first leg for attaching to a second vertebra and a second
leg at essentially a right angle to the first leg, and artificial
disc material deposited between the second leg of the first L-plate
and the second leg of the second L-plate having the between
them.
19. The artificial disc of claim 18 wherein the artificial disc
material is initially connected to either the first L-plate or the
second L-plate.
20. The artificial disk of claim 18 wherein the first L-plate is
mounted over a first plate attached to a first vertebra and the
second L-plate is mounted to a second plate attached to a second
vertebra.
Description
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Patent
Application 60/369,245, filed on Apr. 1, 2002.
TECHNICAL FIELD OF THE INVENTION
[0002] This invention relates to medical devices and more
specifically to a modulus plating system and method.
BACKGROUND OF THE INVENTION
[0003] Surgery for anterior cervical discectomy is performed with
the patient lying on his or her back. A small incision is made in
the front of the neck, to one side. After fat and muscle are pulled
aside with a retractor, the disc is exposed between the vertebrae.
An operating microscope may be used as part of the disc is removed
with a forceps. Specialized instruments or a surgical drill may be
used to enlarge the disc space. This will help the surgeon to empty
the disc space fully and relieve any pressure on the nerve or
spinal cord from bone spurs or the ruptured disc. If a bone graft
is used, it will be placed in the disc space to help fuse the
vertebrae it lies between. Any of several graft shapes may be used.
In most cases, a cervical plate is applied to the cervical bodies
surrounding the disc that was operated on. These cervical plates
are one-piece plates that span one or more cervical bodies. An
exemplary cervical plate is shown in FIG. 1. In the plate of FIG.
1, in use one end of cervical plate 1 is fixed to a vertebra and
the other end of the cortical plate is attached to a second
vertebra. One of the goals of a cervical plate is to improve
initial stability in the post-operative period in order to decrease
the need for wearing a cervical collar and result in a faster
return to normal activities. In addition, anterior cervical plate
fixation can potentially decrease the complications of graft
dislocation, end plate fracture, and late kyphotic collapse. The
operation is completed when the neck incision is closed in several
layers. Unless dissolving suture material is used, the skin sutures
(stitches) or staples will have to be removed after the incision
has healed.
[0004] One of the drawbacks of current cervical plates and cervical
plating system is that they are designed in one-piece units and may
not always adaptable to cervical vertebra bodies of different
sizes. Additionally, in certain designs, the bone screw that
secures the plate to the cervical body can back out of the cervical
body over time, loosening the cervical plates. Also, current
cervical plates can only be applied at the end of surgery limiting
their usefulness during the decompression and disc evacuation.
SUMMARY OF THE INVENTION
[0005] Thus a need has arisen for a modular plating system that
overcomes a drawback of present cervical plating schemes. In the
present invention, the cervical plate is a modular system
consisting of at least two vertebra plates (v-plates) that attach
to the vertebra body and a connecting plate that is mounted over
and is attached to the v-plates.
[0006] In one embodiment, a modular system for cervical fixation is
disclosed. The system comprises a first plate operable to be
attached to a first vertebra and a second plate operable to be
attached to a second vertebra. A fixation means for connecting the
first v-plate to the second v-plate is provided. The fixation means
can be any one of a number of devices including a pair of beams
that connect to the first and second plate, an attachment plate
that attaches the first and second plates and an attachment plate
that has an elastic middle portion.
[0007] The present invention allows the use of one system to be
used for any vertebral body size. Additionally, by mounting the
v-plates early in the procedure, the v-plates can be used to anchor
retractors and dissectors to aid in the discectomy procedure. Also,
the attachment means for connecting plates are mounted over the
v-plate, which helps to prevent the body screws of the v-plate from
backing out. Additionally, a variable tension connector can be used
to maintain tension between v-plates. A system for using talon
shaped attachment means is also disclosed which provides benefits
over current attachment means such as screws. A novel artificial
disc system is disclosed, which provides for better disc
replacement surgeries. Other technical benefits will be apparent
from the description of the invention and appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] Non-limiting and non-exhaustive preferred embodiments of the
present invention are described herein, with like numbers
indicating like parts and where:
[0009] FIG. 1 is an illustration of a conventional vertebra
plate;
[0010] FIG. 2 is an illustration of a vertebral body plate
(v-plate) in accordance with the teachings of the present
invention;
[0011] FIG. 3 is a drawing of a v-plate attached to a vertebra;
[0012] FIG. 4 is an illustration of the v-plate used to secure
retractors and distractors;
[0013] FIG. 5 is an embodiment of FIG. 3 with an I-beam attached to
each v-plate;
[0014] FIG. 6 is a detailed view of a modulus plate with an I-beam
attached;
[0015] FIG. 7 is an illustration of an I-plate;
[0016] FIG. 8 is a drawing of an I-plate attached to two
v-plates;
[0017] FIG. 9A is a drawing of an elastic I-plate attached to
vertebra;
[0018] FIG. 9B is a side view of the elastic I-beam;
[0019] FIG. 10 illustrates a novel attachment system (talon);
[0020] FIG. 11 illustrates the talons as deployed in a vertebra
body, securing a cervical plate;
[0021] FIG. 12 illustrates an embodiment of the v-plate used in
conjunction with an disc; and
[0022] FIG. 13 is a flow chart illustrating a method of using the
modular plating system in anterior cervical discectomy.
DETAILED DESCRIPTION OF THE DRAWINGS
[0023] This invention relates to components for use in a modulus
plating system for cervical fixation. The system uses two or more
v-plates, each of which is attached to a vertebra. After a surgical
procedure is performed, the v-plates can be coupled in one of
several ways to hold the vertebra together. However, the present
invention is not limited solely to cervical fixation and can be
applied to other spinal fixation system such as thoracic fixation,
lumbar fixation, and possibly other applications such as
appendicular skeleton applications and cranium applications. Thus,
while the invention may be discussed primarily with regard to
cervical fixation the inventive concepts are not limited to
such.
[0024] FIG. 2 illustrates a vertebra body plate (v-plate) 10 in
accordance with the teachings of the present invention. V-plate 10
is typically a one-piece plate that is generally oval in shape,
although the exact shape and size of the v-plate 10 is unimportant
as long as v-plate 10 can fit on to and secure on to a vertebra.
V-plate 10 has a fixed thickness that depends on the choice of
material and is chose based on the strength needed to firmly
attached to the vertebra and support a fixation device in a system
designed to connect to vertebra. V-plate 10 includes a body portion
12 having a first screw hole 16 and a second screw hole 20. Body
screw 25, not pictured, is inserted through screw hole 16 and 20 to
fix v-plate 10 to a vertebra and the like. While two screw holes
are shown in FIG. 2, any number of screw holes may be used. Also,
screw holes 16 and 20 can also be used as openings for bolts or
other means to fix the v-plate to a bone.
[0025] V-plate 10 can be fabricated from-a metal or metal alloy
such as titanium or any other suitable material including
radio-opaque carbon fiber constructs. The v-plate 10 can also be
fabricated from a bio-absorbable material that can be absorbed back
by the body. In a typical embodiment the v-plate 10 is
approximately oval in shape and can be contoured such that the
v-plate 10 will match the shape of the anterior vertebral body to
which it is affixed. In one embodiment, bone screws (not pictured)
are inserted into screw hole 16 and 20 to fix the v-plate 10 to the
vertebral body. The screw holes may be fixed trajectory screw
holes. Alternatively, any other fastening means known in the art
can be used. V-plate 10 can also includes an interface (not
pictured) for the fixation of an I-plate 50 or I-beams 30 as
described in detail in FIGS. 5 through 9b. The use of a screw
locking mechanism such as a locking washer or additional screws
would typically not be necessary in the present invention because
the I-plate 50 or I-beams 30 as described further in FIGS. 5
through 9b would at least partially cover the screws attaching the
v-plate 10 to the vertebral body, thus preventing screw back
out.
[0026] Two v-plates 10 are illustrated attached to two different
cervical vertebra bodies 24 using body screws 25 in FIG. 3.
Illustrated between the cervical vertebra bodies 24 is a disc 26.
Unlike prior art vertebra plates, the v-plates 10 are installed
prior to operating on the disc. The v-plates 10 can be used during
surgery to help secure body structures.
[0027] FIG. 4 illustrates two v-plates 10 attached to vertebra
bodies 24 on two discs 26. Retractor arms 29 can be attached to
retractor arm anchor points 31 formed on the v-plate 10. The
retractor arm anchor points 31 may be part of the screw holes of
v-plate 10 or may be a separate structure on v-plate 10. Anchor
points 31 can be any structure formed on v-plate that allows the
retractor to be solidly mounted. The retractor arms 29 can be used
during surgery to hold vital tissues such as the esophagus, the
carotid artery and the trachea out of the way when the surgeon
operates on the disc. This is advantageous because an additional
person with manual retractors or a separate retractor system is not
needed. Additionally, a ratcheting system 33 can be attached to the
retractor arms 29. The ratcheting system 33 can be adjusting in a
conventional manner in order to separate (distract) the cervical
vertebra body for access to the disc 26. At the end of the
procedure a fixation means is used to connect the two v-plates 10.
While any, structure that connects the two or more v-plates can be
used as a fixation means, various embodiments of such fixation
means are illustrated in FIG. 5 through FIG. 9b.
[0028] FIG. 5 illustrates two v-plates 10 attached to cervical
vertebra 24 with an I-beam fixing the v-plates 10. In a typical
embodiment, two I-beams 30 are typically used to fix the v-plates
10 in place after graft is placed between vertebra bodies 24. In
this illustration only one I-beam is shown attached to one side of
v-plate 10 for simplification purpose, typically an I-beam is be
placed on either side of v-plate 10 parallel to each other to
enhance stability. I-beam 30 is generally a straight piece of metal
such as titanium. I-beam 30 can be fastened directly on top of
v-plates 10 using a screw or other fastening device. Typically,
I-beam 30 will attach to v-plate 20 using a locking screw 40 or
similar structures. I-beam 30 is designed to at least partially
block the screws or other structure attaching the v-plate 10 to the
vertebra body 24. This prevents the screws from baking out.
Typically I-beam 30 is constructed of titanium or other rigid
materials.
[0029] FIG. 6 illustrates the I-beam 30 as shown in FIG. 5 attached
to a single v-plate 10 with a lock screw 40. In this embodiment
I-beam 30 is inserted through a channel 35 formed on v-plate 10. A
grove 41 of I-beam 30 is mated with the channel 35 and the I-beam
30 can be inserted through the channel 35. A locking screw or
similar structure is then used to fix I-beam 30 to v-plate 10.
Again, for simplicity, only one I-beam 30 is shown installed,
typically I-beam 30 is installed in pairs with an I-beam 30 on
either side of v-plate 10. Alternatively, the I-beam 30 could
attach directly on top of v-plate 10, with the use of a locking
screw 40.
[0030] FIG. 7 illustrates a novel I-plate 50 for connecting
v-plates 10 in accordance with the teachings of the present
invention. I-plate 50 is a single structure designed to be mounted
along the center of v-plate 10 as opposed to the I-beam 30, which
is designed to be mounted along the side of v-plate 10. I-plate 50
can be constructed from titanium or any suitable material such as
those used for v-plate 10. In one embodiment, I-plate 50 has a
series of indentations 52 along each side for receiving a locking
screw to help attach the I-plate to the v-plate 10 as seen in FIG.
8. In one embodiment, the radius of curvature of the indentations
is greater than the radius of curvature of the screws or other
structure used to attach the I-plate 50. This allows for the
I-plate 50 to be angulated and adjusted to get the best fit between
the I-plate 50 and v-plate 10. Two v-plates 10 along with I-plate
50 form the modulus plating system for a cervical level.
[0031] FIG. 8 illustrates I-plate 50 attached to two v-plates 10
which in turn are attached to vertebra 24 with disc 26 between the
two vertebras. As seen in FIG. 8, I-plate 50 is attached to the
v-plate 10 with locking screws 62 and 64. Alternatively, I-plate 50
can be attached using a conventional ratchet/cam system, as is well
known in the art. I-plate 50 is designed to cover a large portion
of the central part of v-plate 10. Locking screw 62 and 64 may be
referenced to existing screws and/or sockets on the v-plate 10 or a
variable ratchet and cam system can be used to attach I-plate 50 to
each v-plate 10. I-plate 50 is designed to cover at least a portion
of the screws or other structures used to secure v-plate 10 to
prevent screw back out. Once the I-plate 50 is attached to the
v-plates 10 the cervical fusion fixation is complete and
traditional radiography or fluoroscopy can verify placement and
alignment. I-plate 50 may also include one or more optional
openings 66 placed such that any surgical grafts can be visualized
while I-plate 50 is being applied.
[0032] FIG. 9A is a variable tension plate 70 in accordance with
the teachings of the present invention. FIG. 9A illustrates
variable tension plate 70 including locking screw 73 and elastic
area 72. Variable tension plate 70, as illustrated in FIG. 9a and
9b, includes a top portion 74 and a bottom portion 76. A connection
bar 75, which is a sliding structure comprising groves in one
embodiment, connects top portion 74 and bottom portion 76. Part of
connection bar 75 is attached to top portion 74 and part to bottom
portion 76. Other means for allowing connection bar to expand and
contract with the expanding and contraction of variable tension
plate 70 can be used. The connection bar 75 limits the contraction
of variable tension plate 70 while the elasticity of the elastic
area limits the stretching of variable tension plate 70
[0033] Elastic area 72 formed from an elastic polymer or other
elastic means such as springs to maintain tension between the
plates. As the elastic interface is stretched, tension between the
plates increases. Elastic means 72 can be designed to either
maintain constant tension across the graft interface or to produce
a variable tension on the graft depending on how far apart the top
portion 74 and bottom portion 76 of variable tension plate 70 are
stretched. The elastic polymer or springs means can also be encased
within the plate, applied over the plate either laterally or
medially, or fixed in some other fashion as would be well known in
the art. The advantage of this system is that traditional stresses
that exist at a variable angle screw interface in the bone would
shift to a bone hardware interface with a variable tension applied
over the hardware. The decreased sheer forces at the screw plate in
the interface helps to prevent hardware breakage. Additionally the
elasticity of the variable tension plate 70 can be used to maintain
graft compression over a wide range of tensions and distractions.
Alternatively, multi-level variable tension plates 70 could be
utilized so that each level of cervical fixations could have its
own distraction/tension between two vertebra bodies. FIG. 9B is a
side view of the present invention illustrating two parts of the
metal I-plates 74 and 76 held together by the elastic area 72.
While this represents one possible cross section of elastic plate
70 others would be known to one skilled in the art.
[0034] FIG. 10 illustrates a novel attachment system that can be
used with v-plate 10 in the present invention. Illustrated are two
talons 80 which are inserted through a cervical plate 82 using
guide holes 84. Titanium plate 82 may be the v-plate 10. In one
embodiment talons 80 are sharp, pointed, curved nails manufactured
of titanium that have a decreasing diameter from an end 81 to a tip
83. The tip 83 of the talon 80 is designed to be sharp enough to
accelerate into a bone without fracturing the vertebra body. In a
typical embodiment talons 80 are applied to either side of a
cervical plate 82 into the vertebral body. One talon may have a
slight rostral bend and the other a caudal curve. This ensures that
each one would move into the body without hitting each other on the
way in. Once deployed into the vertebra body the shape of the
talons 80 helps to resist pull out force as opposed to traditional
screws that resist pull out force solely on the grip between the
grooves of the screw and bone mass. The talons 80 may be locked in
the place using locking screws or washers or, in present invention,
covered by an I-beam 30 or I-plate 50 or variable tension plate 70.
In one embodiment the talons 80 may be applied using a modified air
gun. In one embodiment, an air gun can be modified to both place
the cervical plate 82 and deploy the talons 80 in one operation. By
sizing the talon 80 such that they are not long enough to either
threaten to impinge on the spinal cord or vertebral arteries,
safety is enhanced. In one embodiment, screw threads could be
placed into the ends of the talon to facilitate pull out in case
the construct has to be removed. FIG. 11 illustrates the talons as
deployed in a vertebra body 24, securing a cervical plate 82.
[0035] FIG. 12 illustrates an embodiment of the v-plate 10 used in
conjunction with an artificial disc. One problem with current
artificial disc is that they require a means to fix the artificial
disc to adjacent vertebra and plates and across disc space until
the artificial disc is incorporated into the adjacent vertebral
level. As illustrated in FIG. 12 this can be accomplished by using
the v-plates 10 of the present invention with L-plates 100 mounted
over them. In one embodiment the L-plate 100 is a right angle plate
that affixes through the v-plate 10 using a screwing system or a
ratchet and cam system. A first leg 101 of the L-plate 100 attaches
to the v-plate 10 in the vertebra body face while a second leg 103,
at essentially a right angle to first leg 101 and adjacent to the
vertebra body, secures to an artificial disc 102. Another L-plate
100 is mounted onto the other vertebra body 24 to also secure the
artificial disc. This helps induce fusion of the disc. In this
embodiment L-plate 100 can be made from a bio-absorbable material
that could include osteogenic or osteoinductive compounds to help
induce integration of the L-plate 100 into the vertebra itself. In
one embodiment, a complete artificial disc structure comprising two
L-plates 100 with an artificial disc mounted between them can be
provided. In another embodiment, the artificial disc can be
inserted separately between the vertebra and the L-plates inserted
in such way that the second leg 103 of the L-plate 100 will attach
to the artificial disc. In one embodiment, this can be accomplished
using a prong type structure on the second leg of the L-plate
100.
[0036] FIG. 13 is a flow chart illustrating a method of using the
modular plating system in an anterior cervical discectomy. In a
first step 110 a small incision is made in the front of the neck,
to one side. Next, in step 112, fat and muscle are pulled aside
with a retractor, the disc is exposed between the vertebras. In a
next step 1 14, the v-plates 10 are secured to the vertebral bodies
of each level to be fixated. This is different then current methods
employing vertebra plates that are not secured until the end of the
operation. Next, in step 116, the discectomy is completed. Part of
the disc is removed and specialized instruments or a surgical drill
may be used to enlarge the disc space. This will help the surgeon
to empty the disc space fully and relieve any pressure on the nerve
or spinal cord from bone spurs or the ruptured disc. If a bone
graft is used, it is placed in the disc space to help fuse the
vertebrae it lies between. Any of several graft shapes may be used.
After the graft is in place, cervical alignment is optimized and
adequate compression is applied. During the operation, retractors
can be attached to the v-plate to hold body structure such as the
esophagus. Then, in step 118, the I-plate (or I-beam 30, variable
tension plate 70 or similar structure) is locked to the v-plates 10
at each level. If necessary, traditional radiography or fluoroscopy
can be used to verify hardware placement and cervical alignment. In
step 120, the neck incision is closed in several layers. Unless
dissolving suture material is used, the skin sutures (stitches) or
staples will have to be removed after the incision has healed.
[0037] Having now described preferred embodiments of the invention
modifications and variations may occur to those skilled in the art.
The invention is thus not limited to the preferred embodiments, but
is instead set forth in the following clauses and legal equivalents
thereof. For example, although the discussions only disclosed the
use of the present invention for attaching of two vertebras
together, multiple vertebras can be connected without departing
from the scope of the present invention.
* * * * *